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Abstract 

Minimum distance is not always the most determinant factor to acheive 
high performance for error correction. Of course the knowledge of the 
whole weight distribution of the code is more accurate than the knowledge 
of the mere minimum distance, and the phenomenon amplifies for a high 
noise level. Besides this fact, the use of error-correcting codes in practical 
situations requires a trade-off between the algorithmic complexity and the 
performance of the decoding procedure. We show here that for low rates 
a very good trade-off is possible using product codes, although they are 
known for their poor minimum distance. 

1 I n t r o d u c t i o n  

We consider transmission of information through a memoryless q-ary symmetric 
channel which can model an additive chamM for instance. In sucha  model, 
the probability of transition froln a word to another is a decreasing function 
of their Hamming distance. This means that finding codes with a large mini- 
mum distance is desirable, though not necessary, to acheive good performance. 
The "best." decoding algorithm for any given code is the maximum likelihood 
decoder. Unfortunately, this algorithm usually has a prohibitive algorithmic 
cost. It is thus necessary to find a trade-off between algorithmic complexity mid 
perform an ce. 

One of the most efficient pair code/decoder is the Berlekamp-Massey decod- 
ing algorithm for alternant codes. This algorithm is bounded by the designed 
distance and has a relatively low algorithmic complexity. But it cannot correct 
error patterns of weight larger than half the designed distance. 

Some other classes of codes, like product codes, have a relatively bad mini- 
mum distance but possess a natural decoding algorithm that can correct many 
error patterns of weight larger than half the minimum distance. We have ob- 
tained very good decoding performance for such codes. Furthermore we will 
prove that the algorithmic complexity of the product code decoder is less than 
the complexity of the Berlekamp-Massey algorithm for a code of same length 
and dimension, that acheives similar performance. 
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We will give in sections 2 and 3 the definitions and tools that  help to highlight 
the main result, and in section 4 we will give an example of a good product code; 
the product code RS(256; 15, 7, 9) | RS(256; 15, 7, 9), where RS(256; 15, 7, 9) is 
the shortened Reed-Solomom code over GF(256), has parameters (225, 49, 81) 
and acheives a residual error rate of 10 -6 for a channel error probability of 
0.254. For the same channel error probability, the shortened Reed-Solomom code 
RS(250; 225, 49,177) over GF(256) using Berlekamp-Massey decoding algorithm 
has a residual error rate of 2.2 10 -s  and a higher algorithmic complexity. 

2 Error correcting algorithm 

Let C(n, k, d) denote a linear code over GF(q), of length n dimension k and 
minimum distance d. 

Def in i t i on  1 An error-correcting algorithm for C is a mapping 7 from GF(q) n 
into C U {oo} such, that for all z in C, 7@) = z. (The symbol oo denotes a 
decoding failure) 

Th.e error-correcting algorithm 7 is said to be C-additive if  for all y in 
GF(q) '~ and all x in C, 7(Y + x) = 7(Y) + x (with the convention cx~ + x = ~ ) .  

Def in i t i on  2 An error pattern y in GF(q) n is said to be correctable i f  for all 
x i n C ,  7 ( x + y ) = x .  

When an error-correcting algorithm 7 is C-additive, an error pattern y in 
GF(q) n is correctable if and only ifT(y ) = 0. From now on, we will only consider 
C-additive algorithms. This is the case for all syndrome based decoders. 

Let 7 be a C-additive decoding algorithm. We will denote by %'v(P) the 
probability of correct transmission of a codeword transmitted through a q-ary 
symmetric channel of error probability p; its complement to one 1 - P , (p)  is 
called the residual error rate. These probabilities can be computed if we are 
able to describe the set {y E GF(q)", 7(Y) = 0} of correctable error patterns. 

P r o p o s i t i o n  1 Let 7 be a C.additive error-correcting algorithm, we call decod- 
ing region of 7 the set 

E.~ = {y E GF(q) n, 7(Y) = 0} 

of correctable error patterns. Th.e probability of correct transmission of a code- 
word from. C transm.itte~t through a memoryless q-ary symmetric channel of error 
probability p and decoded by 7 is equal to 

7)'Y(P) = Z \q_---~] ( l _ p ) , - , , ( v ) =  E a  i pn-i ,  
y ~ E .  t i = 0  

where wn  denotes the Hamming weight over GF(q), and ai is the number of 
correctable error patterns of weight i. 


