
A Category-Based Equational Logic Semantics to
Constraint Programming .*

R~zvan Diaconescu

Institute of Mathematics of the Romanian Academy

A b s t r a c t . This paper exploits the point of view of constraint program-
ming as computation in a logical system, namely constraint logic. We
define the basic ingredients of constraint logic, such as constraint models
and generalised polynomials. We show that constraint logic is an institu-
tion, and we internalise the study of constraint logic to the framework
of category-based equational logic. By showing that constraint logic is
a special case of category-based equational logic, we integrate the con-
straint logic programming paradigm into equational logic programming.
Results include a Herbrand theorem for constraint logic programming
characterising Herbraud models as initial models in constraint logic.

1 Introduction

1.1 E x t e n s i b l e C o n s t r a i n t Log ic P r o g r a m m i n g

Constraint logic programming has been recently emerging as a powerful program-
ming paradigm and it has a t t rac ted much research interest over the past decade.
Constraint logic programming merges two declarative programming paradigms:
constraint solving and logic programming. Mathematical Programming, Sym-
bolic Computat ion, Artificial Intelligence, Program Verification and Computa-
tional Geometry are examples of application areas for constraint solving. Con-
straint solving techniques have been incorporated in many programming sys-
tems; CLP [20], PrologIII [5], and Mathemat ica are the best known examples.
The computat ional domains include linear ari thmetic, boolean algebra, lists,
finite sets. Conventional logic programming (i.e., Prolog) can be regarded as
constraint solving over te rm models (i.e., Herbrand universes). In this way, con-
straint logic programming can be regarded as a generalisation of logic program-
ming tha t replaces unification with constraint solving over computat ional do-
mains. In general, the actual constraint logic programming systems allow con-
straint solving for a fixed collection of da ta types or computat ional domains. 2
Constraint logic programming allowing constraints over any data type will be
called e x t e n s i b l e (abbreviat ted E C L P) .

* This research was partially supported by a grant for basic research in information
science and technology from the Romanian Academy of Sciences.

2 A computational domain can be regarded as a model (not necessarily the standard
�9 one) for a certain data type specification.

201

This paper presents a model theoretic semantics for constraint logic program-
ming, without directly addressing the computat ional aspect. 3 Our approach de-
parts from the usual ones by following [19] in proving a Herbrand theorem for
constraint logic, which is the logic underlying ECLP. As with the CLP approach
of Jaffar and Lassez [20], both constraint relations and programs are (sets of)
sentences in the same logical system. But our constraint logics are much more
general than Horn clause logic. Also, the computat ional domain plays a pr imary
rSle in our definition of constraint logic, rather than being axiomatised in Horn
clause logic, as in [20].

When regarded as a model in constraint logic, the computat ional domain
is an initial model. This is mathemat ical ly linked to the semantics of OBJ-like
module systems, the fundamental idea being to regard the models of ECLP
as expansions of an appropriate built-in model A along a signature inclusion

: ~7 ,--* ~7 ~, where 27 is the signature of built-in sorts, operations and relations,
and 27~ adds new "logical" symbols. In practice, the constraint relations (i.e.,
the logical relations one wishes to impose on potential solutions) are limited to
atomic sentences involving both Z-symbols and elements of the built-in model A.
However, at the theory level there is no reason to restrict constraint relations to
be atomic formulae. The models for ECLP are expansions of the built-in model
to the larger signature 27~, and morphisms of constraint models must preserve
the built-ins. Thus the constraint models form a comma category, (AIMoD(~)).

Example 1. Consider the example of a specification of the Euclidean plane as a
vector space over the real numbers.

obj R2 is

pr FLOAT * (sort Float to Real)

sort Vect

op 0 : -> Vect .

op <_,_> : Real Real -> Vect

op _+_ : Vect Vect -> Vect .

op -_ : Vect -> Vect .

op *_ : Real Vect -> Vect .

vazs a b a' b' k : Real .

eq 0 = < 0 , 0 > .

eq < a , b > + < a' , b' > = < a + a' , b + b' >

eqk* < a , b > = < k* a , k*b >

eq- < a , b > = <" a , -b > .

endo

The signature 27 of built-in sorts, operation and relation symbols contains one
sort Real 4 for the real numbers together with the usual ring operat ion symbols

3 However computational aspects are briefly discussed in Section 7.
4 Obtained here by renaming the sort Float of the imported built-in OBJ module
' FLOAT implementing the real numbers as floating point reals.

