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A b s t r a c t .  This paper exploits the point of view of constraint program- 
ming as computation in a logical system, namely constraint logic. We 
define the basic ingredients of constraint logic, such as constraint models 
and generalised polynomials. We show that constraint logic is an institu- 
tion, and we internalise the study of constraint logic to the framework 
of category-based equational logic. By showing that constraint logic is 
a special case of category-based equational logic, we integrate the con- 
straint logic programming paradigm into equational logic programming. 
Results include a Herbrand theorem for constraint logic programming 
characterising Herbraud models as initial models in constraint logic. 

1 Introduction 

1.1 E x t e n s i b l e  C o n s t r a i n t  Log ic  P r o g r a m m i n g  

Constraint logic programming has been recently emerging as a powerful program- 
ming paradigm and it has a t t rac ted  much research interest over the past  decade. 
Constraint  logic programming merges two declarative programming paradigms: 
constraint solving and logic programming. Mathematical  Programming,  Sym- 
bolic Computat ion,  Artificial Intelligence, Program Verification and Computa-  
tional Geometry  are examples of application areas for constraint solving. Con- 
straint  solving techniques have been incorporated in many programming sys- 
tems; CLP [20], PrologIII  [5], and Mathemat ica  are the best known examples. 
The computat ional  domains include linear ari thmetic,  boolean algebra, lists, 
finite sets. Conventional logic programming (i.e., Prolog) can be regarded as 
constraint solving over te rm models (i.e., Herbrand universes). In this way, con- 
straint  logic programming can be regarded as a generalisation of logic program- 
ming tha t  replaces unification with constraint  solving over computat ional  do- 
mains. In general, the actual constraint logic programming systems allow con- 
straint solving for a fixed collection of da ta  types or computat ional  domains. 2 
Constraint  logic programming allowing constraints over any data  type will be 
called e x t e n s i b l e  (abbreviat ted E C L P ) .  

* This research was partially supported by a grant for basic research in information 
science and technology from the Romanian Academy of Sciences. 

2 A computational domain can be regarded as a model (not necessarily the standard 
�9 one) for a certain data type specification. 
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This paper  presents a model theoretic semantics for constraint  logic program- 
ming, without  directly addressing the computat ional  aspect. 3 Our approach de- 
parts  from the usual ones by following [19] in proving a Herbrand theorem for 
constraint logic, which is the logic underlying ECLP. As with the CLP approach 
of Jaffar and Lassez [20], both  constraint relations and programs are (sets of) 
sentences in the same logical system. But  our constraint logics are much more 
general than Horn clause logic. Also, the computat ional  domain plays a pr imary 
rSle in our definition of constraint  logic, rather  than being axiomatised in Horn 
clause logic, as in [20]. 

When regarded as a model in constraint logic, the computat ional  domain 
is an initial model. This is mathemat ical ly  linked to the semantics of OBJ-like 
module systems, the fundamental  idea being to regard the models of ECLP 
as expansions of an appropriate  built-in model A along a signature inclusion 

: ~7 ,--* ~7 ~, where 27 is the signature of built-in sorts, operations and relations, 
and 27~ adds new "logical" symbols. In practice, the constraint  relations (i.e., 
the logical relations one wishes to impose on potential  solutions) are limited to 
atomic sentences involving both Z-symbols  and elements of the built-in model A. 
However, at the theory level there is no reason to restrict constraint  relations to 
be atomic formulae. The models for ECLP are expansions of the built-in model 
to the larger signature 27~, and morphisms of constraint models must  preserve 
the built-ins. Thus the constraint models form a comma category, (AIMoD(~)).  

Example 1. Consider the example of a specification of the Euclidean plane as a 
vector space over the real numbers. 

obj R2 is 

pr FLOAT * (sort Float to Real) 

sort Vect 

op 0 : -> Vect . 

op <_,_> : Real Real -> Vect 

op _+_ : Vect Vect -> Vect . 

op -_ : Vect -> Vect . 

op *_ : Real Vect -> Vect . 

vazs a b a' b' k : Real . 

eq 0 = < 0 , 0 > . 

eq < a , b > + < a' , b' > = < a + a' , b + b' > 

eqk* < a , b > = < k* a , k*b > 

eq- < a , b > = <" a , -b > . 

endo 

The signature 27 of built-in sorts, operation and relation symbols contains one 
sort Real  4 for the real numbers together with the usual ring operat ion symbols 

3 However computational aspects are briefly discussed in Section 7. 
4 Obtained here by renaming the sort Float  of the imported built-in OBJ module 
' FLOAT implementing the real numbers as floating point reals. 


