A Methodology for Hook-Based Kernel Level
Rootkits

Chien-Ming Chen'2, Mu-En Wu®, Bing-Zhe He*, Xinying Zheng!,
Chieh Hsing?, and Hung-Min Sun*

1 School of Computer Science and Technology, Harbin Institute of Technology
Shenzhen Graduate School, Shenzhen, China
dr.chien-ming.chen@Qieee.org, xinying 15@163.com
2 Shenzhen Key Laboratory of Internet Information Collaboration, Shenzhen, China
3 Department of Mathematics, Soochow University, Taipei, Taiwan, R.O.C.
mnasial@gmail.com
4 Department of Computer Sciences, National Tsing Hua University, Hsinchu,
Taiwan, R.O.C.

{ckshjerho, jhsing}@is.cs.nthu.edu. tw,
hmsun@cs.nthu.edu.tw

Abstract. It is easy to discover if there are hooks in the System Service
Dispatch Table (SSDT). However, it is difficult to tell whether theses
hooks are malicious or not after finding out the hooks in the SSDT. In
this paper, we propose a scheme that evaluates the hooks by comparing
the returned results before hooking and after hooking. If a malicious
hook which hides itself by the way of modifying the parameters passed
to the Native API, we can easily detect the difference. Furthermore,
we use a runtime detour patching technique so that it will not perturb
the normal operation of user-mode programs. Finally, we focus on the
existing approaches of rootkits detection in both user-mode and kernel-
mode. Our method effectively monitors the behavior of hooks and brings
an accurate view point for users to examine their computers.

Keywords: Security, SSDT, Rootkits.

1 Introduction

With the rapidly growth of computer system, more and more issues have been
concerned. One of the most concerned issue is security [15,1,3,12]. Rootkits is a
technique used by a malicious program to hide itself. It has been widely used in
software, even in embedded systems. The rootkits have became a serious threat
to our computer. These rootkits can be classified into two primary classes: (1)
User-mode rootkits and (2) Kernel-mode rootkits. User-mode rootkits may hide
itself through High-Level API intercepting and filtering. This kind of rootkits
can easily be detected by existing anti-rootkits software. In this paper, we focus
on Kernel-mode rootkits which are harder to detect. Kernel-mode rootkits are
extremely dangerous because they compromise the innermost of an operation
system.

X. Huang and J. Zhou (Eds.): ISPEC 2014, LNCS 8434, pp. 119-128, 2014.
© Springer International Publishing Switzerland 2014



120 C.-M. Chen et al.

Kernel-mode rootkits often use SSDT (System Service Dispatch Table) Hook-
ing, or DKOM (Direct Kernel Object Manipulation) to achieve information ma-
nipulation. Although there is a lot of existing anti-virus softwares that can detect
malicious code, when deal with rootkits, they cannot determine if its behavior
is suspicious. Besides, several methods for detecting kernel-mode rootkits have
been proposed [6,9,10,11,14,16]. However, if a user employs these softwares (e.g.,
Rootkit Unhookers [2], Rootkit Hook Analyzer [13]) to do the analysis and find
out a suspicious driver, he can remove the driver immediately. However, a wrong
decision may disable the functionality of some programs, such as anti-virus soft-
ware, or some on-line games.

In this paper, we propose a scheme to evaluate the hooks by comparing the
returned results before hooking and after hooking. Through this comparison,
if a malicious hook which hides itself by modifying the parameters passed to
the Native API, we can easily detect the difference. Besides, we use a runtime
detour patching technique to not to perturb the normal operation of user-mode
programs.

2 System Overview

According to our observation of the behavior of a hooked SSDT-based rootkit,
these kinds of rootkits usually hook the SSDT to achieve information manip-
ulation. Normally, a hooked SSDT-based rootkit hooks the SSDT to achieve
information manipulation. Even though existing tools are sufficient to detect
hooks in SSDT; however, we have to make a decision with caution whether to
remove the hook or not. The decision we made will influence the usability of the
computer.

In this section, we first describe design goals and assumptions. Then, we ex-
plain advantages of our scheme.

2.1 Design Goals and Assumption

Since we target at hooked SSDT-based rootkits, user-mode rootkits and other
parts of kernel-mode Rootkit (e.g., DKOM, Inline Function Patch) are beyond
our scope. Our scheme focuses on a machine which is probably infected with
rootkits. TAN [17] proposed a framework to defeat kernel Native API hookers
by SSDT restoration. We are inspired by his idea. In our scheme, we assume that
in the beginning, there is no other kind of rootkits running on this machine.

Our scheme has the following two design goals: (1) Effectively analyzing the
situation in the state before SSDT restoration SSDT <pefore> and the state after
SSDT restoration SSDT <4 fter> [17]. (2) This program should not perturb the
normal operation of the program.

First, the SSDT restoration scheme [17] does not mention how to compare
these two states accurately, because after we executed the SSDT restoration.
We cannot reconstruct exactly the same parameters in the stack for the further
comparison. In other words, when a program executes a non-specific Native API



