
Parallel Combinatorial Optimization

with Decision Diagrams

David Bergman1, Andre A. Cire2, Ashish Sabharwal3,
Horst Samulowitz3, Vijay Saraswat3, and Willem-Jan van Hoeve2

1 School of Business, University of Connecticut, Stamford, CT 06901
david.bergman@business.uconn.edu

2 Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213
{acire,vanhoeve}@andrew.cmu.edu

3 IBM Watson Research Center, Yorktown Heights, NY 10598
{samulowitz,ashish.sabharwal,vsaraswa}@us.ibm.com

Abstract. We propose a new approach for parallelizing search for
combinatorial optimization that is based on a recursive application of
approximate Decision Diagrams. This generic scheme can, in principle,
be applied to any combinatorial optimization problem for which a de-
cision diagram representation is available. We consider the maximum
independent set problem as a specific case study, and show how a re-
cently proposed sequential branch-and-bound scheme based on approx-
imate decision diagrams can be parallelized efficiently using the X10
parallel programming and execution framework. Experimental results
using our parallel solver, DDX10, running on up to 256 compute cores
spread across a cluster of machines indicate that parallel decision dia-
grams scale effectively and consistently. Moreover, on graphs of relatively
high density, parallel decision diagrams often outperform state-of-the-art
parallel integer programming when both use a single 32-core machine.

1 Introduction

In recent years, hardware design has increasingly focused on multi-core systems
and parallelized computing. In order to take advantage of these systems, it is
crucial that solution methods for combinatorial optimization be effectively par-
allelized and built to run not only on one machine but also on a large cluster.

Different combinatorial search methods have been developed for specific prob-
lem classes, including mixed integer programming (MIP), Boolean satisfiability
(SAT), and constraint programming (CP). These methods represent (implic-
itly or explicitly) a complete enumeration of the solution space, usually in the
form of a branching tree where the branches out of each node reflect variable
assignments. The recursive nature of branching trees suggests that combina-
torial search methods are amenable to efficient parallelization, since we may
distribute sub-trees to different compute cores spread across multiple machines
of a compute cluster. Yet, in practice this task has proved to be very challeng-
ing. For example, Gurobi, one of the leading commercial MIP solvers, achieves
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an average speedup factor of 1.7 on 5 machines (and only 1.8 on 25 machines)
when compared to using only 1 machine [18]. Furthermore, during the 2011 SAT
Competition, the best parallel SAT solvers obtained a average speedup factor
of about 3 on 32 cores, which was achieved by employing an algorithm portfo-
lio rather than a parallelized search [20]. In our experimentation, the winner of
the parallel category of the 2013 SAT Competition also achieved a speedup of
only about 3 on 32 cores. Constraint programming search appears to be more
suitable for parallelization than search for MIP or SAT: different strategies, in-
cluding a recursive application of search goals [24], work stealing [14], problem
decomposition [25], and a dedicated parallel scheme based on limited discrepancy
search [23] all exhibit good speedups (sometimes near-linear) of the CP search in
certain settings, especially those involving infeasible instances or scenarios where
evaluating search tree leaves is costlier than evaluating internal nodes. Yet, re-
cent developments in CP have moved towards more constraint learning during
search, for which efficient parallelization becomes increasingly more difficult.

In general, search schemes relying heavily on learning during search (such as
learning new bounds, activities for search heuristics, cuts for MIP, nogoods for
CP, and clauses for SAT) tend to be more difficult to efficiently parallelize. It
remains a challenge to design a robust parallelization scheme for solving combi-
natorial optimization problems which must necessarily deal with bounds.

Recently, a branch-and-bound scheme based on approximate decision dia-
grams was introduced as a promising alternative to conventional methods (such
as integer programming) for solving combinatorial optimization problems [5, 7].
In this paper, our goal is to study how this branch-and-bound search scheme can
be effectively parallelized. The key observation is that relaxed decision diagrams
can be used to partition the search space, since for a given layer in the diagram
each path from the root to the terminal passes through a node in that layer.
We can therefore branch on nodes in the decision diagram instead of branching
on variable-value pairs, as is done in conventional search methods. Each of the
subproblems induced by a node in the diagram is processed recursively, and the
process continues until all nodes have been solved by an exact decision diagram
or pruned due to reasoning based on bounds on the objective function.

When designing parallel algorithms geared towards dozens or perhaps hun-
dreds of workers operating in parallel, the two major challenges are i) balancing
the workload across the workers, and ii) limiting the communication cost be-
tween workers. In the context of combinatorial search and optimization, most of
the current methods are based on either parallelizing the traditional tree search
or using portfolio techniques that make each worker operate on the entire prob-
lem. The former approach makes load balancing difficult as the computational
cost of solving similarly sized subproblems can be orders of magnitude differ-
ent. The latter approach typically relies on extensive communication in order to
avoid duplication of effort across workers.

In contrast, using decision diagrams as a starting point for parallelization
offers several notable advantages. For instance, the associated branch-and-bound
method applies relaxed and restricted diagrams that are obtained by limiting the


