

© Springer International Publishing Switzerland 2015
L. Iliadis and C. Jayne (Eds.): EANN 2015, CCIS 517, pp. 159–168, 2015.
DOI: 10.1007/978-3-319-23983-5_16

Enhanced KNNC Using Train Sample Clustering

Hamid Parvin1(), Ahad Zolfaghari2, and Farhad Rad2

1 Department of Computer Engineering, Mamasani Branch,
Islamic Azad University, Mamasani, Iran

parvin@iust.ac.ir
2 Department of Computer Engineering, Yasouj Branch, Islamic Azad University, Yasouj, Iran

rad@comp.iust.ac.ir

Abstract. In this paper, a new classification method based on k-Nearest Neigh-
bor (kNN) lazy classifier is proposed. This method leverages the clustering
concept to reduce the size of the training set in kNN classifier and also in order
to enhance its performance in terms of time complexity. The new approach is
called Modified Nearest Neighbor Classifier Based on Clustering (MNNCBC).
Inspiring the traditional lazy k-NN algorithm, the main idea is to classify a test
instance based on the tags of its k nearest neighbors. In MNNCBC, the training
set is first grouped into a small number of partitions. By obtaining a number of
partitions employing several runnings of a simple clustering algorithm,
MNNCBC algorithm extracts a large number of clusters out of those partitions.
Then, a label is assigned to the center of each cluster produced in the previous
step. The assignment is determined with use of the majority vote mechanism
between the class labels of the patterns in each cluster. MNNCBC algorithm ite-
ratively inserts a cluster into a pool of the selected clusters that are considered
as the training set of the final 1-NN classifier as long as the accuracy of 1-NN
classifier over a set of patterns included the training set and the validation set
improves. The selected set of the most accurate clusters are considered as the
training set of proposed 1-NN classifier. After that, the class label of a new test
sample is determined according to the class label of the nearest cluster center.
While kNN lazy classifier is computationally expensive, MNNCBC classifier
reduces its computational complexity by a multiplier of 1/k. So MNNCBC clas-
sifier is about k times faster than kNN classifier. MNNCBC is evaluated on
some real datasets from UCI repository. Empirical results show that MNNCBC
has an excellent improvement in terms of both accuracy and time complexity in
comparison with kNN classifier.

Keywords: Edited nearest neighbor classifier · kNN · Combinatorial classifica-
tion

1 Introduction

One of the most important goals of artificial intelligence is to design models with high
recognition rates [30-33]. In pattern recognition, the input space is mapped into the
high dimensional feature space, and in the feature space it is tried to determine the

160 H. Parvin et al.

optimal hyperplane(s), so that the mapped function better approximates the main
function for each unseen data. The mapping that is named classification is an interest-
ing subject in machine learning and data mining communities with a lot of studies
around it [16-18].

Despite the simplicity, k-Nearest Neighbor (kNN) classifier is one of the most fun-
damental classifiers. It is also the simplest classifier. When there is a little or no prior
knowledge about the data distribution, kNN classifier could be automatically the first
choice for a classification study.

In a lot of recent emerging applications, such as text categorization [21-22], mul-
tiple classifier systems (MCS) [23-24], intrusion detection field [25] (an intrusion
detection problem is first converted to a text categorization problem; then it is treated
as a text categorization problem), medical systems such as diagnosis of diabetes dis-
eases [26], thyroid diseases [27] and myocardial infarction [28], and image classifica-
tion [29] and etc., kNN classifier has been successfully applied and proves its effec-
tiveness.

The kNN classifies a test sample x by assigning it the label most frequently
represented among the k nearest samples; in other words, a decision is made by ex-
amining the labels on the k-nearest neighbors and taking a majority vote mechanism.
kNN classifier was developed from the need to perform discriminant analysis when
reliable parametric estimates of the probability densities are unknown or difficult to
determine. In 1951, Fix and Hodges introduced a non-parametric method for pattern
classification that is known the k-nearest neighbor rule [1] and [15]. Later in 1967,
some of the formal properties of the k-nearest neighbor rule have been worked out;
for instance it was shown that for k=1 and the kNN classification error is
bounded above by twice the Bayes error rate [2]. Once such formal properties of kNN
classification were established, a long line of investigation ensued including new
rejection approaches [3], refinements with respect to Bayes error rate [4], distance
weighted approaches [5-6], soft computing [7] methods and fuzzy methods [8-9].

Some advantages of kNN include: the simplicity to use, the robustness to learn in a
noisy training data (especially if it uses the inverse square of weighted distances as
the “distance metric”), and finally the effectiveness in learning at a large scale train-
ing dataset. Although kNN has the mentioned advantages, it has some drawbacks
such as: high computational cost (because it needs to compute distance of each query
instance to all training samples); large memory consumption (in proportion with the
size of training set); ineffectiveness in multidimensional datasets; sensitivity to well-
setting of parameter k (number of effective nearest neighbors); sensitivity to the used
distance metric; and finally ignoring a weighting mechanism for features [10].

The High computational cost of the nearest neighbor algorithm, in both space (sto-
rage of prototypes) and time (distance computation) has received a great deal of anal-
ysis. Suppose we have N labeled training samples in d dimensions, and seek to find
the closest to a test point x (k = 1). In the most naive approaches we inspect each
stored point in turn, calculate its Euclidean distance to x, retaining the identity only of
the current closest one. Each distance calculation is O(d), and thus this search is
O(dN2) [10].

∞→n

