
Defeating Kernel Driver Purifier

Jidong Xiao1(B), Hai Huang2, and Haining Wang3

1 College of William and Mary, Williamsburg, VA 23185, USA
jxiao@email.wm.edu

2 IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA
3 University of Delaware, Newark, DE 19716, USA

Abstract. Kernel driver purification is a technique used for detect-
ing and eliminating malicious code embedded in kernel drivers. Ideally,
only the benign functionalities remain after purification. As many kernel
drivers are distributed in binary format, a kernel driver purifier is effec-
tive against existing kernel rootkits. However, in this paper, we demon-
strate that an attacker is able to defeat such purification mechanisms
through two different approaches: (1) by exploiting self-checksummed
code or (2) by avoiding calling kernel APIs. Both approaches would allow
arbitrary code to be injected into a kernel driver. Based on the two pro-
posed offensive schemes, we implement prototypes of both types of rootk-
its and validate their efficacy through real experiments. Our evaluation
results show that the proposed rootkits can defeat the current purifica-
tion techniques. Moreover, these rootkits retain the same functionalities
as those of real world rootkits, and only incur negligible performance
overhead.

1 Introduction

Modern operating systems are often divided into a base kernel and various load-
able kernel modules. Kernel drivers are often loaded into the kernel space as mod-
ules. The ability to quickly load and unload these modules makes driver upgrade
effortless, as the new code can take an immediate effect without rebooting the
machine. While the base kernel is trusted, kernel drivers are sometimes released
by third-party vendors (i.e., untrusted) in binary format. This creates a problem
as it is much more difficult to detect malicious code at the binary level than at
the source level. Therefore, kernel drivers have been heavily exploited for host-
ing malicious code in the past. Sony’s infamous XCP rootkit in 2005 [1,22] and
its USB device driver rootkit in 2007 [18] have exemplified this risk. In addi-
tion, kernel drivers, which constitute 70% of modern operating system’s code
base [16],are a significant source of software bugs [7,10], making them substan-
tially more vulnerable to various malicious attacks than the base kernel.

During an attack, once an attacker gains root access, rootkits are then
installed to hide their track and provide backdoor access. Rootkits normally
hook to the kernel and modify its data structures such as system call table,
task list, interrupt descriptor table, and virtual file system handlers. Rootkits
can be either installed as a separate kernel module, or injected into an existing
kernel module. To protect against rootkits, different defense mechanisms have
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
B. Thuraisingham et al. (Eds.): SecureComm 2015, LNICST 164, pp. 116–134, 2015.
DOI: 10.1007/978-3-319-28865-9 7



Defeating Kernel Driver Purifier 117

been proposed and can be categorized into two basic approaches: kernel rootkit
detection and kernel module isolation. In the former, various detection frame-
works are created using either an extra device to monitor system memory [23]
or virtual machine introspection techniques [9,15]. And in the latter, strict iso-
lation techniques are introduced to further isolate kernel modules from the base
kernel [5,30].

While the idea of enhancing the isolation of kernel drivers has been exten-
sively studied in the past, it has not yet been widely adopted by mainstream
operating systems. One of the key reasons is that it involves too much re-
implementation effort. Instead of isolating kernel drivers, safeguarding a kernel
driver itself looks more promising. As kernel drivers run at the same privilege
level as the base kernel, one can achieve this goal by detecting and eliminating
malicious code from kernel drivers before they are loaded into the kernel space.
This technique is called kernel driver purification. Based on this design principle,
Gu et al. [11] proposed and implemented a kernel driver purification framework,
which aims to detect malicious/undesirable logic in a kernel driver and elimi-
nate it without impairing the driver’s normal functionalities. Their experimental
results demonstrate that this technique can purify kernel drivers infected by vari-
ous real world rootkits. However, we observe that there are two approaches which
attackers can employ to defeat such a technique. The first approach uses self-
checksum code to protect malicious kernel API calls, and the second approach
is to simply avoid using kernel API calls altogether when writing a rootkit. We
show that both approaches can effectively defeat current kernel driver purifiers.

The major contributions of our work are summarized as follows:
• We first present a self-checksum based rootkit that is able to evade the detec-

tion of current kernel driver purifiers. While self-checksum has long been
proposed as a way to protect benign programs, as far as we know, we are
the first to use it for hiding kernel rootkits. We also develop a compiler level
tool, with which, attackers can automatically re-write existing rootkits and
convert them into self-checksum based variants that are resistant to kernel
driver purifiers.

• We present another approach of creating a more stealthy rootkit, which
avoids using kernel API calls. While our first approach attempts to protect
malicious kernel API calls from being removed by kernel driver purifiers, this
new type of rootkit demonstrates that most kernel API calls can be avoided,
and thus making the kernel driver purifier completely ineffective.

• We evaluate the functionality and performance of both rootkits. Our exper-
imental results show that the presented rootkits maintain the same set of
functionalities as most real world rootkits have and only incur minor perfor-
mance overhead.

2 Background

Kernel drivers have always been a major source of kernel bugs and vulnerabil-
ities, and improving their reliability has drawn significant attentions from the


