
Combinatorial Problems on Strings with
Applications to Protein Folding

Alantha Newman1 and Matthias Ruhl2

1 MIT Laboratory for Computer Science
Cambridge, MA 02139

alantha@theory.lcs.mit.edu
2 IBM Almaden Research Center

San Jose, CA 95120
ruhl@almaden.ibm.com

Abstract. We consider the problem of protein folding in the HP model
on the 3D square lattice. This problem is combinatorially equivalent to
folding a string of 0’s and 1’s so that the string forms a self-avoiding walk
on the lattice and the number of adjacent pairs of 1’s is maximized. The
previously best-known approximation algorithm for this problem has a
guarantee of 3

8 = .375 [HI95]. In this paper, we first present a new 3
8 -

approximation algorithm for the 3D folding problem that improves on
the absolute approximation guarantee of the previous algorithm. We then
show a connection between the 3D folding problem and a basic combina-
torial problem on binary strings, which may be of independent interest.
Given a binary string in {a, b}∗, we want to find a long subsequence of
the string in which every sequence of consecutive a’s is followed by at
least as many consecutive b’s. We show a non-trivial lower-bound on the
existence of such subsequences. Using this result, we obtain an algorithm
with a slightly improved approximation ratio of at least .37501 for the
3D folding problem. All of our algorithms run in linear time.

1 Introduction

We consider the problem of protein folding in the HP model on the three-
dimensional (3D) square lattice. This optimization problem is combinatorially
equivalent to folding a string of 0’s and 1’s, i.e. placing adjacent elements of the
string on adjacent lattice points, so that the string forms a self-avoiding walk on
the lattice and the number of adjacent pairs of 1’s is maximized. Figure 1 shows
an example of a 3D folding of a binary string.
Background. The widely-studied HP model was introduced by Dill [Dil85,
Dil90]. A protein is a chain of amino acid residues. In the HP model, each amino
acid residue is classified as an H (hydrophobic or non-polar) or a P (hydrophilic
or polar). An optimal configuration for a string of amino acids in this model
is one that has the lowest energy, which is achieved when the number of H-H
contacts (i.e. pairs of H’s that are adjacent in the folding but not in the string)
is maximized. The protein folding problem in the hydrophobic-hydrophilic (HP)
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model on the 3D square lattice is combinatorially equivalent to the problem we
just described: we are given a string of P’s and H’s (instead of 0’s and 1’s) and
we wish to maximize the number of adjacent pairs of H’s (instead of 1’s). An
informative discussion on the HP model and its applicability to protein folding
is given by Hart and Istrail [HI95].

Related Work. Berger and Leighton proved that this problem is NP-
hard [BL98]. On the positive side, Hart and Istrail gave a simple algorithm
with an approximation guarantee of 3

8OPT − Θ(
√

OPT ) [HI95]. Folding in the
HP model has also been studied for the 2D square lattice. This variant is also
NP-hard [CGP+98]. Hart and Istrail gave a 1

4 -approximation algorithm for this
problem [HI95], which was recently improved to a 1

3 -approximation algorithm
[New02].

Our Contribution. Improving on the approximation guarantee of 3
8 for the 3D

folding problem has been an open problem for almost a decade. In this paper, we
first present a new 3D folding algorithm (Section 2.1). Our algorithm produces
a folding with 3

8OPT − Θ(1) contacts, improving the absolute approximation
guarantee. We then show that if the input string is of a certain special form,
we can modify our algorithm to yield 3

4OPT − O(δ(S)) contacts, where δ(S)
is the number of transitions in the input string S from sequences of 1’s in odd
positions in the string to sequences of 1’s in even positions. This is described in
Section 2.2.

In Section 3, we reduce the general 3D folding problem to the special case
above, yielding a folding algorithm producing .439 · OPT − O(δ(S)) contacts.
This reduction is based on a simple combinatorial problem for strings, which
may be of independent interest.

We call a binary string from {a, b}∗ block-monotone if every maximal se-
quence of consecutive a’s is immediately followed by a block of at least as many
b’s. Suppose we are given a binary string with the following property: every
suffix of the string (i.e. every sequence of consecutive elements that ends with
the last element of the string) contains at least as many b’s as a’s. What is the
longest block-monotone subsequence of the string? It is easy to see that we can
find a block-monotone subsequence with length at least half the length of the
string by removing all the a’s. In Section 3.1, we show that there always is a
block-monotone subsequence containing at least a (2 − √

2) ≈ .5857 fraction of
the string’s elements.

Finally, we combine our folding algorithm with a simple, case-based algorithm
that achieves .375·OPT +Ω(δ(S)) contacts, which is described in the full version
of this paper. We thereby remove the dependence on δ(S) in the approximation
guarantee and obtain an algorithm with a slightly improved approximation guar-
antee of .37501 for the 3D folding problem. Due to space restrictions, all proofs
are omitted and can be found in the full version of this paper.


