
Combining Formal Specifications
with Test Driven Development�

Hubert Baumeister

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67, D-80538 München, Germany
baumeist@informatik.uni-muenchen.de

Abstract. In the context of test driven development, tests specify the behavior
of a program before the code that implements it, is actually written. In addition,
they are used as main source of documentation in XP projects, together with the
program code. However, tests alone describe the properties of a program only in
terms of examples and thus are not sufficient to completely describe the behavior
of a program. In contrast, formal specifications allow to generalize these example
properties to more general properties, which leads to a more complete description
of the behavior of a program. Specifications add another main artifact to XP in
addition to the already existent ones, i.e. code and tests. The interaction between
these three artifacts further improves the quality of both software and documen-
tation. The goal of this paper is to show that it is possible, with appropriate tool
support, to combine formal specifications with test driven development without
loosing the agility of test driven development.

1 Introduction

Extreme Programming advocates test driven development where tests are used to spec-
ify the behavior of a program before the program code is actually written. Together
with using the simplest design possible and intention revealing program code, tests are
additionally used as a documentation of the program. However, tests are not sufficient
to completely define the behavior of a program because they are only able to test prop-
erties of a program by example and do not allow to state general properties. The latter
can be achieved using formal specifications, e.g. using Meyer’s design by contract [21].

As an example we consider the function primes, that computes for a given natural
number n a list containing all prime numbers up to and including n. Tests can only
be written for special arguments of the primes function, e.g. that primes(2) should
produce the list with the number 2 as its only element, and that primes(1553) is
supposed to yield the list of prime numbers from 2 up to 1533. Actually, a program that
behaves correctly w.r.t. these tests could have the set of prime numbers hard coded for
these particular inputs and return arbitrary lists for all other arguments. One solution is
to move from tests to specifications, which allow to generalize the tested properties. For
example, the behavior of primes would be expressed by a formal specification stating
that the result of the function primes(n) contains exactly the prime numbers from 2
up to n, for all natural numbers n.

� This research has been partially sponsored by the EC 5th Framework project AGILE: Archi-
tectures for Mobility (IST-2001-32747)

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 1–12, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



2 Hubert Baumeister

This example shows that formal specifications provide a more complete view on the
behavior of programs than tests alone. However, while it is easy to run tests to check
that a program complies with the tests, the task of showing that a program satisfies a
given specification is in general more complex. To at least validate a program w.r.t. a
specification, one can use the specification to generate run-time assertions and use these
to check that the program behaves correctly.

The study of formal methods for program specification and verification has a long
history. Hoare and Floyd pioneered the development of formal methods in the 1960s by
introducing the Hoare calculus for proving program correctness as well as the notions
of pre-/postconditions, invariants, and assertions [13, 10]. Their ideas were gradually
developed into fully fledged formal methods geared towards industrial software engi-
neering, e.g. the Vienna Development Method (VDM) developed at IBM [17], Z [23],
the Java Modeling Language (JML) [19] and, more recently, the Object Constraint Lan-
guage (OCL) [25] – which again originated at IBM – used to specify contraints on ob-
jects in UML diagrams. For an overview of formal methods and their applications refer
to the WWW virtual library on formal methods [5].

An important use of formal specifications is the documentation of program behavior
without making reference to an implementation. This is often needed for frameworks
and libraries, where the source code is not available in most cases and the behavior is
only informally described. In general, the documentation provided by a formal speci-
fication is both more precise and more concise compared to the implementation code
because the implementation only describes the algorithm used by a method and not
what it achieves. Not only the literature on formals methods, but also in the literature
on the pragmatics of programming, e.g. [15, 20], recommends to make explicit the as-
sumptions on the code using specifications because this improves the software quality.

The goal of this paper is to show that it is possible, with appropriate tool support, to
combine formal specifications with test driven development without loosing the agility
of the latter. This is done by using the tests, that drive the development of the code,
also to drive the development of the formal specification. By generating runtime asser-
tions from the specification it is possible to check for inconsistencies between code,
specifications, and tests. Each of the three artifacts improves the quality of the other
two, yielding better code quality and better program documentation in the form of a
validated formal specification of the program.

Our method is exemplified by using the primes example with Java as the program-
ming language, JUnit1 as the testing framework, and the Java Modeling Language
(JML) [19] for the formulation of class invariants and pre- and postconditions for meth-
ods. We use JML since JML specifications are easily understood by programmers, and
because it comes with a runtime assertion checker, [6], which allows to check invariants
and pre- and postconditions of methods at runtime.

2 Formal Specifications and Tests

As with test driven development, in our proposed methodology, tests are written before
the code. Either now or after several iterations of test and code development, the prop-

1 www.junit.org


