
 K.-M. Leiw et al. (Eds.): PDCAT 2004, LNCS 3320, pp. 803–806, 2004. 
© Springer-Verlag Berlin Heidelberg 2004  

State Machine Based Operating System Architecture for 
Wireless Sensor Networks 

Tae-Hyung Kim1 and Seongsoo Hong2 

1 Department of Computer Science and Engineering, Hanyang University, Ansan, Kyunggi-Do, 
426-791, South Korea 

tkim@cse.hanyang.ac.kr 
2 School of Electrical Engineering and Computer Science, Seoul National University, Seoul 

151-741, South Korea 
sshong@redwood.snu.ac.kr 

Abstract. A wireless sensor network is characterized as a massively distributed 
and deeply embedded system. Such a system requires concurrent and asynchro-
nous event handling as a distributed system and resource-consciousness as an 
embedded system. State machine based software design techniques are capable 
of satisfying exactly these requirements. In this paper, we present how to design 
a compact and efficient operating system for wireless sensor nodes based on a 
finite state machine. We describe how this operating system can operate in an 
extremely resource constrained sensor node while providing the required con-
currency, reactivity, and reconfigurability. We also show some important bene-
fits implied by this architecture. 

1   Introduction 

Sensor networks consist of a set of sensor nodes, each equipped with one or more 
sensing units, a wireless communicating unit, and a local processing unit with small 
memory footprint [1]. In recent advancement of wireless communication and embed-
ded system technologies, the wireless and distributed sensor networks become a prime 
technical enabler that can provide a way of noble linkage between the computational 
and the physical worlds. Since the precise delivery of real-time data on the spot is an 
essential basis for constructing a context-aware computing platform, the recent ad-
vancement of low-cost sensor node provides an important opportunity towards the 
new realm of ubiquitous computing. Positioned at the very end-terminal from the 
computational world side, wireless sensor nodes convey unique technical challenges 
and constraints that are unavoidable to system developers, which can be characterized 
by three aspects. First, they bear extremely limited resources including computing 
power, memory, and supplied electric power. Nonetheless, a sensor network can be 
perceived as a traditional distributed computing platform consisting of tens of thou-
sands of autonomously cooperating nodes. Third, the computing platform does not 
allow recycling of the network, thus is disposable without having re-programmability.  
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Such characteristics of a networked sensor node call for a unique operating system 
architecture that can not only run on an extremely lightweight device with very low 
power consumption but can also support dynamic reconfigurability to cope with 
changing environments and applications. Such an operating system should also pos-
sess concurrent and asynchronous event handling capabilities and support distributed 
and data-centric programming models. In order to meet such seemingly contradictory 
requirements, we propose a state machine based operating system architecture, rather 
than following a traditional structure of an operating system and adopting it for sensor 
nodes like TinyOS [2]. To provide re-programmability, TinyOS employs the bytecode 
interpreter called Maté that runs on it. In a state machine based operating system like 
ours, each node is allowed to simply reload a new state machine table. Moreover, the 
state machine based software modeling offers a number of benefits: (1) it enables 
designers to easily capture a design model and automatically synthesize runtime code 
through widely available code generation tools; (2) it allows for controlled  
concurrency and reactivity that are needed to handle input events; and (3) it enables a 
runtime system to efficiently stop and resume a program since the states are clearly 
defined in a state machine. In this paper, we explore a state machine based execution 
model as an ideal operating system design for a networked sensor node and present 
the end result named SenOS. 

2   State Machine Based Execution Environment 

While many embedded applications should exhibit a reactive behavior, dealing with 
such reactivity is considered to be the most problematic. To cope with the complexity 
of designing such systems, Harel introduced a visual formalism referred to as state-
charts [3]. Since then, a state machine has been recognized as a powerful modeling 
tool for reactive and control-driven embedded applications. Sensor network applica-
tions are one of those applications that can mechanize a sequence of actions, and han-
dle discrete inputs and outputs differently according to its operating modes. Being in a 
state implies that a system reacts only to a predefined set of legal inputs, produces a 
subset of all possible outputs after performing a given function, and changes its state 
immediately in a mechanical way. Formally, a finite state machine is described by a 
finite set of inputs, outputs, states, a state transition function, an output function, and 
an initial state. When a finite state machine is implemented, a valid input (or event) 
triggers a state transition and output generation, which moves the machine from the 
current state to another state. A state transition takes place instantaneously and an 
output function associated with the state transition is invoked.  

A state machine based program environment is not only suitable for modeling sen-
sor network applications but also can be implemented in an efficient and concise way. 
Since sensor node functionalities are limited, although multi-functional, all those pos-
sible node functionalities are defined statically in a callback function library in ad-
vance. All we need to do as a programmer is simply to define a legal sequence of 
actions in tabular forms. To this end, SenOS has four system-level components: (1) an 
event queue that stores inputs in a FIFO order, (2) a state sequencer that accepts an 
input from the event queue, (3) a callback function library that defines output func-
tions, and (4) a re-loadable state transition table that defines each valid state transition 


