
TIMES: A Tool for Schedulability Analysis

and Code Generation of Real-Time Systems

Tobias Amnell, Elena Fersman, Leonid Mokrushin,
Paul Pettersson, and Wang Yi�

Department of Information Technology
Uppsala University, P.O. Box 337, SE-751 05 Uppsala, Sweden

{tobiasa,elenaf,leom,paupet,yi}@it.uu.se

Abstract. Times is a tool suite designed mainly for symbolic schedu-
lability analysis and synthesis of executable code with predictable be-
haviours for real-time systems. Given a system design model consist-
ing of (1) a set of application tasks whose executions may be required
to meet mixed timing, precedence, and resource constraints, (2) a net-
work of timed automata describing the task arrival patterns and (3)
a preemptive or non-preemptive scheduling policy, Times will generate
a scheduler, and calculate the worst case response times for the tasks.
The design model may be further validated using a model checker e.g.
UPPAAL and then compiled to executable C-code using the Times com-
piler. In this paper, we present the design and main features of Times
including a summary of theoretical results behind the tool. Times can
be downloaded at www.timestool.com.

1 Introduction

In classic scheduling theory, real time tasks (processes) are usually assumed to
be periodic, i.e. tasks arrive (and will be computed) with fixed rates periodically.
Analysis based on such a model of computation often yields pessimistic results.
To relax the stringent constraints on task arrival times, we have proposed to use
automata with timing constraints to model task arrival patterns [1]. This yields
a generic task model for real time systems. The model is expressive enough to
describe concurrency and synchronization, and real time tasks which may be
periodic, sporadic, preemptive or non-preemptive, as well as precedence and re-
source constraints. We believe that the model may serve as a bridge between
scheduling theory and automata-theoretic approaches to system modeling and
analysis. The standard notion of schedulability is naturally generalized to au-
tomata. An automaton is schedulable if there exists a scheduling strategy such
that all possible sequences of events accepted by the automaton are schedulable
in the sense that all associated tasks can be computed within their deadlines.
It has been shown that the schedulability checking problem for such models is
decidable [1]. A recent work [6] shows that for fixed priority scheduling strategy,

� Corresponding author.

K.G. Larsen and P. Niebert (Eds.): FORMATS 2003, LNCS 2791, pp. 60–72, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



TIMES: A Tool for Schedulability Analysis and Code Generation 61

the problem can be efficiently solved by reachability analysis on timed automata
using only 2 extra clock variables. The analysis can be done in a similar manner
to response time analysis in classic Rate-Monotonic Scheduling.

The first main function of Times is developed based on these recent results
on schedulability analysis. Its second main function is code generation. Code
generation is to transform a validated design model to executable code whose
execution preserves the behaviour of the model. Given a system design model
in Times including a set of application tasks, task constraints, tasks arrival
patterns and a scheduling policy adopted on the target platform, Times will
generate a scheduler and calculate the worst-case response times for all tasks.
The model may be further validated by a model-checker e.g. UPPAAL [9], and
then compiled to executable C-code. We assume that the generated code will be
executed on a platform on which every annotated task in the design model will
not take more than the given computing time. Further assume that the platform
guarantees the synchronous hypothesis in the sense that the times for handling
system functions e.g. collecting external events can be ignored compared with the
computing times and deadlines for the annotated tasks. Under these assumptions
on the platform, code generation is essentially to resolve non-determinism in
the design model. In Times, time non-determinism is resolved by the maximal
progress assumption, that is, whenever a transition is enabled, it should be taken.
External non-determinism in accepting events is resolved using priority order.

The rest of the paper is organized as follows: the next section describes
the core of the input Times language and its informal semantics. Section 3
summarizes briefly the main theoretical work on schedulability analysis and code
synthesis. Section 4 describes the main features of Times, the tool architecture
and the main components in the implementation. Section 5 concludes the paper
with a summary of ongoing work and future development.

2 Task Models in Times

The two central concepts in Times are task and task model. A task (or task type)
is an executable program (e.g. in C) with task parameters: worst case execution
time and deadline. A task may have different task instances that are copies of the
same program with different inputs. A task model is a task arrival pattern such
as periodic and sporadic tasks. In Times, timed automata are used to describe
task arrival patterns.

2.1 Tasks Parameters and Constraints

Following the literature [4], we consider three types of task constraints.

Timing Constraints. A typical timing constraint on a task is deadline, i.e. the
time point before which the task should complete its execution. We assume that
the worst case execution times (WCET) of tasks are known (or pre-specified).
We characterize a task as a pair of natural numbers denoted (C, D) with C ≤ D,


