
Multi-objective Improvement of Software Using
Co-evolution and Smart Seeding

Andrea Arcuri1, David Robert White2, John Clark2, and Xin Yao1

1 The Centre of Excellence for Research in Computational Intelligence and Applications
(CERCIA), The School of Computer Science, The University of Birmingham, Edgbaston,

Birmingham, B15 2TT, UK
2 Department of Computer Science, University of York, YO10 5DD, UK

Abstract. Optimising non-functional properties of software is an important part
of the implementation process. One such property is execution time, and compil-
ers target a reduction in execution time using a variety of optimisation techniques.
Compiler optimisation is not always able to produce semantically equivalent al-
ternatives that improve execution times, even if such alternatives are known to
exist. Often, this is due to the local nature of such optimisations. In this paper
we present a novel framework for optimising existing software using a hybrid
of evolutionary optimisation techniques. Given as input the implementation of a
program or function, we use Genetic Programming to evolve a new semantically
equivalent version, optimised to reduce execution time subject to a given proba-
bility distribution of inputs. We employ a co-evolved population of test cases to
encourage the preservation of the program’s semantics, and exploit the original
program through seeding of the population in order to focus the search. We carry
out experiments to identify the important factors in maximising efficiency gains.
Although in this work we have optimised execution time, other non-functional
criteria could be optimised in a similar manner.

1 Introduction

Software developers must not only implement code that adheres to the customer’s func-
tional requirements, but they should also pay attention to performance details. There
are many contexts in which the execution time is important, for example to aid perfor-
mance in high-load server applications, or to maximise time spent in a power-saving
mode in software for low-resource systems. Typical programmer mistakes may include
the use of an inefficient algorithm or data structure, such as employing an Θ(n2) sorting
algorithm.

Even if the correct data structures and algorithms are employed, their actual im-
plementations might still be improved. In general, compilers cannot restructure a pro-
gram’s implementation without restriction, even if employing semantics-preserving
transformations. The alternative of relying on manual optimisation is not always possi-
ble: the performance implications of design decisions may be dependent on low-level
details hidden from the programmer, or be subject to subtle interactions with other
properties of the software.

To complicate the problem, external factors contribute to the execution time of soft-
ware, such as operating system and memory caches events. Taking into account these

X. Li et al. (Eds.): SEAL 2008, LNCS 5361, pp. 61–70, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



62 A. Arcuri et al.

factors is difficult, and so compilers usually focus on optimising localised areas of code,
rather than restructuring entire functions.

More sophisticated optimisations can be applied if we take into account the probabil-
ity distribution of the usage of the software. For example, if a function takes an integer
input and if we know that this input will usually be positive, this information could be
exploited by optimising the software for positive input values.

In this paper we present a novel framework based on evolutionary optimisation tech-
niques for optimising software. Given the code of a function as input to the framework,
the optimisations are performed at the program level and consider the probability dis-
tribution of inputs to the program. To our best knowledge, we do not know of any other
system that is able to automatically perform such optimisations.

Our approach uses Multi-Objective Optimisation (MOO) and Genetic Programming
(GP) [1]. In order to preserve semantic integrity whilst improving efficiency, we apply
two sets of test cases. The first is co-evolved with the program population [2] to test the
semantics of the programs. The second is drawn from a distribution modelling expected
input, and is used to assess the non-functional properties of the code. The original func-
tion is used as an oracle to obtain the expected results of these test cases.

Evolving correct software from scratch is a difficult task [2], so we exploit the code
of the input function by seeding the first generation of GP. The first generation will not
be a random sample of the search space as is usually standard in GP applications, but
it will contain genetic material taken from the original input function. Note that this
approach is similar to our previous work on Automatic Bug Fixing [3], in which all the
individuals of the first generation were equal to the original incorrect software, and the
goal is to evolve a bugfree version. A similar approach has also been previously taken
in attempting to reduce the size of existing software [4].

We present a preliminary implementation of the novel framework, and we validate it
on a case study. We then apply systematic experimentation to determine the most im-
portant factors contributing to the success of the framework. Although our prototype is
still in an early stage of development, this paper gives the important contribution of pre-
senting a general method to automatically optimise code using evolutionary techniques.
We are also able to provide some guidance to other practitioners in applying such an
approach, based on our analysis of empirical results.

The paper is organised as follows. Section 2 describes in detail all the components
of the novel framework, whereas Section 3 presents our case study. Section 4 describes
our results and Section 5 suggets further work.

2 Evolutionary Framework

An overview of our framework is given in Figure 1. The framework takes as input the
code of a function or program, along with an expected input distribution, and then it
applies GP to optimise one or more non-functional criteria. Note that in our exper-
imentation, we chose to parameterise the use of MOO and Co-evolution in order to
assess their impact on the ability of the framework to optimise non-functional prop-
erties of the software. The main differences from previous GP work are how the first
generation is seeded, how the training set is used and generated, the particular use of


