
L. Chen et al. (Eds.): DASFAA 2009 Workshops, LNCS 5667, pp. 182–196, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Predicting Timing Failures in Web Services

Nuno Laranjeiro, Marco Vieira, and Henrique Madeira

CISUC, Department of Informatics Engineering,
University of Coimbra, Portugal

{cnl,mvieira,henrique}@dei.uc.pt

Abstract. Web services are increasingly being used in business critical envi-
ronments, enabling uniform access to services provided by distinct parties. In
these environments, an operation that does not execute on due time may be
completely useless, which may result in service abandonment, and reputation or
monetary losses. However, existing web services environments do not provide
mechanisms to detect or predict timing violations. This paper proposes a web
services programming model that transparently allows temporal failure detec-
tion and uses historical data for temporal failure prediction. This enables pro-
viders to easily deploy time-aware web services and consumers to express their
timeliness requirements. Timing failures detection and prediction can be used
by client applications to select alternative services in runtime and by application
servers to optimize the resources allocated to each service.

Keywords: web services, timing failures, detection, prediction.

1 Introduction

Web services provide a simple interface between a provider and a consumer and are
increasingly becoming a strategic vehicle for data exchange and content distribution
[1]. Compositions, which are based on a collection of web services working together
to achieve an objective, are particularly important. These compositions are normally
defined at programming time as "business processes" that describe the sequencing and
coordination of calls to the component web services. Calls between web service con-
sumers and providers consist of messages that follow the SOAP protocol, which,
along with WSDL and UDDI, form the core of the web services technology [1].

Developing web services able to deal with timeliness requirements is a difficult
task as existing web services technology, programming models, and development
tools do not provide easy support for assuring timeliness properties during web ser-
vices execution. Although some transactional models provide basic support for detect-
ing the cases when operations take longer than the expected/desired time [2], this
usually requires a high development effort. In fact, developers have to select the most
adequate middleware (including a transaction manager that must fit the deployment
environment requirements), produce additional code to manage the transactions, spec-
ify their properties, and implement the basic support for timing requirements. Trans-
actions are actually well suited for supporting typical transactional behavior, but they

 Predicting Timing Failures in Web Services 183

are inadequate for deploying simple time-aware services. Indeed, transactions provide
poor support for timing failures detection and no support for prediction.

Despite the lack of mechanisms and tools for building time-aware web services,
the number of real applications that have to support this kind of requirements is
quickly increasing. Typically, developers deal with these by implementing ad-hoc
solutions to support timing failures (this is, obviously, expensive and prone to fail).
The concept of time has been, in fact, completely absent from the standard web ser-
vices programming environment. Important features such as timing failure detection
and forecasting have been overlooked, although these are particularly important if we
consider that services are typically deployed over wide-area or open environments
that exhibit poor baseline synchrony and reliability properties. In these environments
it is normal for services to exhibit high or highly variable execution times. High exe-
cution times are usually associated with the serialization process involved in each
invocation, coupled with a high amount of protocol information that has to be trans-
mitted per each payload byte (e.g., the SOAP protocol requires a large amount of data
to encapsulate the useful data to be transmitted). This serialization process is particu-
larly important since a given web service can also behave as a client of another ser-
vice, thus duplicating the end-to-end serialization effort. Variable execution times are
essentially related to the use of unreliable, sometimes slow, transport channels (i.e.,
the internet) for client-server and inter web services communication. These character-
istics make it difficult for developers to deal with timeliness requirements.

Two outcomes are possible when considering timing requirements during a web
service execution: either the server is able to produce an answer on due time, or not.
The problem is that, in both cases the client application has to wait for the execution
to complete or for the deadline to be violated (in this case a timing failure detection
mechanism must be implemented). However, in many situations it is possible to pre-
dict in advance the occurrence of timing failures. In fact, execution history can typi-
cally be used to confidently forecast if a timely response will be possible to obtain.
Note that, this is of utmost importance for client applications, that can retry or use
alternative services, but also for servers, that can use this information to conveniently
manage the resources allocated to each operation (e.g., an operation that is predictably
useless can be canceled or proceed executing under a degraded mode).

This paper proposes a new programming model for web services deployment that
allows online detection and prediction of timing failures (wsTFDP: Web Services
Timing Failures Detection and Prediction). By using this model clients are able to
express their timeliness requirements for each service invocation by defining a time-
out value and an associated confidence value for prediction. When timing require-
ments are not possible to satisfy (e.g., because the deadline was exceeded or because
it will predictably be exceeded) the server responds with a well-known and consistent
exceptional behavior. A simple and ready to use programming interface implementing
the proposed model is also provided.

The structure of the paper is as follows. The following section presents background
and related work. Section 3 presents a high level view of the timing failures detection
and prediction mechanism. Sections 4 and 5 detail the design of the detection and
prediction components. Section 6 shows how the mechanism can be used in practice,
and Section 7 presents some experimental results. Section 8 concludes the paper.

