Byzantine Fault-Tolerance with Commutative
Commands

Pavel Raykov!, Nicolas Schiper?, and Fernando Pedone?

! Swiss Federal Institute of Technology (ETH)
Zurich, Switzerland
2 University of Lugano (USI)
Lugano, Switzerland

Abstract. State machine replication is a popular approach to increas-
ing the availability of computer services. While it has been largely studied
in the presence of crash-stop failures and malicious failures, all existing
state machine replication protocols that provide byzantine fault-tolerance
implement some variant of atomic broadcast. In this context, this paper
makes two contributions. First, it presents the first byzantine fault-tolerant
generic broadcast protocol. Generic broadcast is more general than atomic
broadcast, in that it allows applications to deliver commutative commands
out of order—delivering a command out of order can be done in fewer com-
munication steps than delivering a command in the same order. Second,
the paper presents an efficient state machine replication protocol that tol-
erates byzantine failures. Our protocol requires fewer message delays than
the best existing solutions under similar conditions. Moreover, processing
of commutative commands on replicas requires only two MAC operations.
The protocol is speculative in that it may rollback non-commutative com-
mands.

1 Introduction

State machine replication is a popular approach to increasing the availability of
computer services [12]. By replicating a service on multiple machines, hardware
and software failures can be tolerated. Although state machine replication has
been largely studied in the presence of crash-stop failures and malicious fail-
ures, all existing protocols that provide byzantine fault-tolerance (BFT) (e.g.,
[BI5I67]) implement some variant of atomic broadcast, a group communication
primitive that guarantees agreement on the set of commands delivered and on
their order. In this context, this paper makes two contributions.

The first contribution of this paper is a byzantine fault-tolerant generic broad-
cast protocol. Generic broadcast defines a conflict relation on messages, or
commands, and only orders messages that conflict. Two messages conflict if their
associated commands do not commute. For instance, two increment operations of
some variable commute since the final value of z is independent of the execution
order of these operations. Generic broadcast generalizes atomic broadcast—the
two problems are equivalent when every two messages conflict. Previous generic

A. Ferndndez Anta, G. Lipari, and M. Roy (Eds.): OPODIS 2011, LNCS 7109, pp. 329 2011.
© Springer-Verlag Berlin Heidelberg 2011

330 P. Raykov, N. Schiper, and F. Pedone

broadcast protocols appeared in the crash-stop model [SJ9UT0]; ours is the first
to tolerate malicious failures. The difficulty with generic broadcast stems from
the need to deliver commutative commands in two communication delays and
ensure that their delivery order, with respect to non-commutative commands,
is the same at all correct processes. To address this challenge under byzantine
failures we define Recovery Consensus, an abstraction that ensures proper or-
dering between conflicting and non-conflicting messages. The proposed protocol
requires n > 5f 4+ 1 replicas to tolerate f byzantine failures. We use Recovery
Consensus at the core of our generic broadcast protocol.

The second contribution of this paper is a state machine replication proto-
col that generalizes and improves current byzantine fault-tolerant state machine
replication protocols. Our protocol builds on our generic broadcast algorithm. A
naive implementation of state machine replication based on generic broadcast to
propagate commands to servers would lead to a best latency of three communi-
cation delays. We rely on speculative execution to provide an efficient algorithm
that executes commutative commands in two communication delays. The algo-
rithm is speculative in that it may rollback commands in some cases (i.e., when
non-commutative commands are issued). To summarize, the principal advantage
of the proposed state machine replication protocol is to allow fast execution of
commutative commands in two message delays. Moreover, when commands com-
mute servers only need to execute two MAC operations per command.

The remainder of the paper is structured as follows. Section [2] defines the
system model. Sections [and [l respectively, present the Recovery Consensus
and generic broadcast protocols. We extend our generic broadcast protocol to
provide state machine replication in Section [Bl Section [f] discusses related work
and Section [concludes the paper. Correctness proofs of the protocols can be
found in the appendix of the full version of this paper [L1].

2 System Model and Definitions

We consider an asynchronous message passing system composed of n processes
IT = {p1,...,pn}, out of which f are byzantine (i.e., they can behave arbitrarily).
A process that is not byzantine is correct. The adversary that controls byzantine
processes is computationally bounded (i.e., it cannot break cryptographic prim-
itives) and cannot change the content of messages sent by one correct process to
another correct process. The network is fully connected and quasi-reliable: if a
correct process p sends a message m to a correct process g, then g receives mll
We make use of public-key signatures to allow a process to sign a message m [12].
We denote message m signed by process p; as (m),,. We also use HMACs [13]
to establish a bidirectional authenticated channel between any two processes p,
and p,, with the notation (m),,, indicating a message m signed with a secret
key shared between processes p, and p,.

! The presented algorithms can trivially be modified to tolerate fair-lossy links, links
that may drop messages but guarantee delivery of a message m if m is repeatedly
sent. We assume quasi-reliable links to simplify the presentation of the algorithms.

