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Abstract. We review some recent approaches to estimate discrete Gaus-
sian and mean curvatures for triangulated surfaces, and discuss their
characteristics. We focus our attention on concentrated curvature which
is generally used to estimate Gaussian curvature. We present a result
that shows that concentrated curvature can also be used to estimate
mean curvature and hence principal curvatures. This makes concentrated
curvature one of the fundamental notions in discrete computational ge-
ometry.
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1 Introduction

Curvature is one of the most important tools used in mathematics to understand
the geometrical and metric structures of a surface. Gauss-Bonnet theorem [5]
uses curvature to link the metric structure of a surface to its topology in such a
way that the genus of the surface can be deduced from its total curvature.

In combinatorial geometry, the most common discrete representation for a
surface is a triangle mesh. Triangle meshes are generated from sets of points on
the surface by an implicit representation of the surface or by the discretization of
parametric surfaces. Thus, the interest arises in developing discrete techniques
for inferring geometrical, metric and topological properties of a surface from
its discretization as a triangle mesh. The problem of curvature estimation on
a triangulated surface has been extensively studied in mesh data processing,
because of its numerous applications in shape modeling and analysis. Efficiency
and accuracy are the major factors that led to the development of methods for
estimating curvature in the discrete. Almost all methods for curvature estimation
are region dependent and present stability issues while refining a mesh. A survey
on curvature estimators can be found in [10].

In mathematics, concentrated curvature has been developed by Aleksandrov
[3] in the middle of the last century as an intrinsic Gaussian curvature estima-
tor for polyhedral surfaces. Concentrated curvature satisfies a discrete version
of Gauss-Bonnet theorem which makes it an important tool for analyzing tri-
angulated surfaces in combinatorial geometry. In the last decades, concentrated
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curvature returned up to date under some different variants, usually area depen-
dent, and became a very relevant tool for curvature estimation.

The aim of this paper is to present a new method to discretely estimate
mean curvature through concentrated curvature which was used until now to
estimate Gaussian curvature. Consequently, principal curvatures can be deduced
through concentrated curvature. Furthermore, concentrated curvature does not
suffer from errors computation and has no stability issues when refining a mesh.
We also present a review of recent approaches to curvature estimation, and we
discuss their advantages and drawbacks. We also discuss experimental results.

The remainder of this paper is organized as follows. In Section 2, we present
the theoretical background on the analytic definition of curvature. In Section 3,
we present some related approaches to curvature estimation. In Section 4, we
present Gaussian curvature and some related discrete approaches. In Section 5,
we discuss approaches to mean curvature estimation. In Section 6, we describe
how the notion of concentrated curvature applied to polygonal curves can be
used to derive a discrete curvature for polygonal lines and we then define new
Gaussian and mean curvatures by simulating the analytic case. In Section 7,
we describe how concentrated curvature can be generalized to 3-dimensional
manifolds and how its restriction to the boundary surfaces defines a new mean
curvature estimator. In Section 8, we present our main result that describes how
concentrated curvature can be used to compute mean curvature. In Section 9, we
present some experimental results to compare the different curvature estimators.
Finally, Section 10 draws some concluding remarks.

2 Background Notions

In this section, we briefly review some fundamental notions on curvature (see [5]
for details). Let C be a curve having parametric representation (c(t))t∈R. The
curvature k(p) of C at a point p = c(t) is given by

k(p) =
1

ρ
=

|c′(t) ∧ c”(t)|
|c′(t)|3 ,

where ρ, called the curvature radius, corresponds to the radius of the osculatory
circle tangent to C at p.

Let S be a smooth surface (at least C2). Let −→np be the normal vector to
the surface at a point p. Let Π be the plane which contains the normal vector−→np. Plane Π intersects S at a curve C containing p: the curvature kp of C at
point p is called normal curvature at p. When plane Π turns around −→np, curve
C varies. There are two extremal curvature values k1(p) ≤ k2(p) which bound
the curvature values of all curves C. The corresponding curves C1 and C2 are
orthogonal at point p [5]. These extremal curvatures are called principal normal
curvatures. Since the surface is smooth, then Euler formula (also called Dupin
indicatrix) indicates that the curvatures at a point p have an elliptic behavior
described by k(p) = k1(p) cos

2(θ) + k2(p) sin
2(θ), where parameter θ ∈ [0; 2π].

The Gaussian curvature K(p) and the mean curvature H(p) at point p are the


