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1 Introduction

Numerical methods for global atmospheric modeling have been widely studied in
many literatures [5, 7, 9]. It is well-recognized that the global atmospheric flows can
be modeled by fully compressible Euler equations with almost no approximations
necessary [7]. However, due to the multi-scale nature of the global atmosphere and
the high cost of computation, other simplified models have been favorably used in
most community codes.

There are two main difficulties in using fully compressible Euler equations in
atmospheric flow simulations. One is that the fast waves in the equations lead to
very restrictive stability conditions for explicit time-stepping methods; see, e.g., [11].
Another difficulty is that the flow is nearly compressible and the low Mach number
results in large numerical dissipation errors in many classical numerical schemes.

To deal with the fast acoustic and inertio-gravity waves in the fully compressible
model, we develop a fully implicit method so that the time step size is no longer
constrained by the stability condition. And to treat the low-Mach number flow, an
improved version of the Advection Upstream Splitting Method (AUSM+-up, [8]) is
adapted. This technique has been successfully employed for a shallow water model
in [12]. In the fully implicit solver, we use an inexact Newton method to solve the
nonlinear system arising at each time step; and the linear Jacobian system for each
Newton step is then solved by a Krylov subspace method with an additive Schwarz
preconditioner. We show by numerical experiments on a machine with thousands of
processors that the parallel Newton-Krylov-Schwarz approach works well for fully
compressible atmospheric flows.
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2 Governing Equations

Various formulations of the governing equations for mesoscale atmospheric models
can be found in, e.g., [6]. In this paper, we focus on the compressible Euler equations
by restricting the study on two dimensions (the x− z plane) and omitting the Coriolis
terms. The compressible Euler equations for the atmosphere take the following form
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where g = 9.80665m/s2 is the effective gravity on the surface of the Earth. In the
equation, the prognostic variables are the density ρ , the velocity (u,w) and the po-
tential temperature θ of the atmosphere. The system is closed with the equation of
state

p = p00

(
ρRθ
p00

)γ
,

where p00 = 1013.25 hPa is the reference pressure on the surface, R = 287.04 J/
(kg ·K) is the gas constant for dry air and γ = 1.4. For the sake of brevity, we assume
the computational domain Ω is a rectangle and the boundary conditions are given in
Sect. 5. In some cases, a physical dissipation is added to the left-hand-side of the
momentum and velocity equations. The dissipation term is −∇ · (νρ∇φ) for φ = u,
w, and θ .

To recover the hydrostatic solution from the equation, instead of using (1) di-
rectly, the following shifted system is often preferred [6, 11]:
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where
ρ ′ = ρ − ρ̄, p′ = p − p̄, (ρθ )′ = ρθ − ρ̄θ̄

and the variables with ‘bar’ satisfy the hydrostatic condition ∂ p̄
∂ z = −ρ̄g and θ̄ is

obtained from the equation of state. It is clear that the flux Jacobian of the shifted
system (2) in each spatial direction is, respectively,
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where c =
√

γ p/ρ is the sound speed.


