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Abstract. We prove the confluence and strong normalization properties for second order lambda 
calculus equipped with an expansive version of T/-reduction. Our proof technique, based on a 
simple abstract lemma and a labelled A-calculus, can also be successfully used to simplify the 
proofs of confluence and normalization for first order calculi, and can be applied to various 
extensions of the calculus presented here. 

1 Introduction 
The typed lambda calculus provides a convenient framework for studying functional 
programming and offers a natural formalism to deal with proofs in intuitionistic logic. It 
comes traditionally equipped with the fl equality ( A x . M ) N  = M[N/x]  as fundamental 
computational mechanism, and with the q (extensional) equality Ax.Mx = M as a 
tool for reasoning about programs. This basic calculus can then be extended by adding 
further types, like products, unit and second order types, each coming with its own 
computational mechanism and/or its extensional equalities. 

To reason about programs and the proofs that they represent, one has to be able to 
orient each equality into a rewriting rule, and to prove that the resulting rewriting system 
is indeed confluent and strongly normalizing: these properties guarantee that to each 
program (or proof) P we can associate an equivalent canonical representative which is 
unique and can be found in finite time by applying the reduction rules to P in whatever 
order we choose. The/3 equality, for example, is always turned into the reduction rule 
( A z . M ) N  > M I N I @  

Traditionally, the extensional equalities are turned into contraction reduction rules, 
the most known example being the q rule Ax.Mx ~ M,  but this approach raises a 
number of difficult problems when trying to add other rules to the system. For example 
the extensional first order lambda calculus associated to Cartesian Closed Categories, 
where one needs a special unit type T with an axiom M : T  = , : T  (see [CDC91] 
and especially [DCK94b] for a longer discussion and references) is no longer confluent. 
Another example is the extensional first order lambda calculus enriched with a confluent 
algebraic rewriting system, where confluence is also broken [DCK94a]. 

This inconvenient can be fortunately overcome, as proposed in several recent 
works[Aka93, Dou93, DCK94b, Cub92, JG92], by turning the extensional equalities 
into expansion rules: r/becomes then 

M: A --+ B ~ Ax.Mx.  
These expansions are suitably restricted to ensure termination 3, and several first 
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3 We refer the interested reader to[DCK93, DCK94b] for a more detailed discussion of these restrictions. 
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order systems incorporating both the expansive r/rule and an expansive version of the 
Surjective Pairing extensional rule for products can be proven confluent and strongly 
normalizing. In[DCK94b] Delia Kesner and the first author even proved that a system 
with expansions for Surjective Pairing is confluent in the presence of a fixpoint combi- 
nator, while it is known that confluence does not hold with the contractive version of 
Surjective Pairing[Nes89]. 

These recent works raise a natural question: is it possible to carry on this approach 
to extensional equalities via expansion rules to the second order typed lambda calculus? 
The answer is not obvious: for an expansion rule to be applicable on a given subterm, we 
need to look at the type of that subterm, and when we add second order quantification a 
subterm can change its type during evaluation. As we will see, this fact rules out a whole 
class of modular proof techniques that would easily establish the result, and makes the 
study of expansion rules more problematic. 

In this paper we focus on the second order typed lambda calculus and extensionality 
axioms for the arrow type: this system corresponds to the Intuitionistic Positive Calculus 
with implication, and quantification over propositions. 

For this calculus we provide a reduction system based on expansion rules that is 
confluent and strongly normalizing, by means of an interpretation into a normalizing 
fragment of the untyped lambda calculus. 

This result gives a natural justification of the notion of r/-long normal forms used in 
higher order unification and resolution: they can be now defined simply as the normal 
forms w.r.t, our extensional rewriting system. 

1.1 S u r v e y  

The restrictions imposed on the expansion rules in order to insure termination make 
several usual properties of the A-calculus fail, most notably q-postponement, that would 
allow a very simple proof of normalization for the calculus 4, but several proof techniques 
have been developed over the past years to show that the expansionary interpretation 
of the extensional equalities yields a confluent and normalizing system in the first order 
case. One idea is to try to separate the expansion rules from the rest of the reduction, 
and then try to show some kind of modularity of the reduction systems. One traditional 
technique for confluence that comes to mind is the well known 

Lemma 1.1 (Hindley-Rosen ([Bar84], w If R and S are confluent, and commute 
with each other, then R U S is confluent. 

Unfortunately, this technique does not work in the presence of restricted expansion 
rules, because/3 can destroy expansion redexes, but in[Aka93] Akama gives a modular 
proof using the following property, requiring some additional conditions on R and S: 

Lemma 1.2 Let S and R be confluent and strongly normalizing reductions, s.t. 
> S VM, N (M s N)  implies (M R -----4->~NR), 

where M R and N a are the R-normal forms of M and N, respectively; then S U R is 
also. confluent and strongly normalizing. 
In[Aka93] R is taken to be the expansionary system alone and S is the usual non 
extensional reduction relation. 

In[DCK94b], confluence and strong normalization of the full expansionary system 
is reduced to that of the traditional one without expansions using the following: 

4 For a very broad presentation of the properties that fail in presence of restricted expansions, see[DCK94b]. 


