
M O D E L I N G P H Y S I C A L S Y S T E M S BY C O M P L E X S T R U C T U R A L
O B J E C T S A N D C O M P L E X F U N C T I O N A L O B J E C T S

Shamkant B. Navathe and A. Cornetio
Database Systems Research and Development Center

University of Florida, Gainesville, FL 32611, USA
e-maih sham~ufl.edu.esnet

A B S T R A C T

This paper describes the general properties of complex objects in engineering designs. There
are two types of complex objects: (i) the complex structural objects which describe the physical
composition of the design, and (ii) the complex functional objects which describe the behavior of
the design and its components. Data manipulation operations on complex structural objects are
governed by a set of structural invariants. Similarly, the validation of functional abstraction is
governed by a set of functional invariants. The structure-function interactions are represented by
interaction objects that describe a set of mappings. These three object types constitute the
Structure-Function paradigm. The S-F paradigm can be used to represent engineering designs and
active environments, monitor manufacturing operations and industrial processes, and carry out
simulations.

1 I N T R O D U C T I O N

Object-oriented systems are rapidly becoming acceptable for modeling many non business
applications, such as office information systems, [BAN87], engineering CAD/CAM, [KET85,
KEM87], robotic workcell design [JAY88], spatial information, [DAY87], etc. The power of these
modeling systems lies in their ability to represent the semantics of structures by including the
operations along with the data. Inheritance of data and operations reduces the time spent in
developing new applications by sharing previously developed code.

We have adapted the object-orlented paradigm (for engineering design applications) by model-
ing the physical configuration of a design by structural objects, the behavioral aspect of a design by
functional objects and the interface between the structural and functional objects by interaction
objects. We call this modeling principle "as the Structure-Function paradigm, or S-F pa rad igm.
The S-F paradigm preserves the structural and behavioral schemas of an application by modeling
and abstracting the structures and functions independently and relating these schemas by a well
defined interface. This paradigm provides a platform for (a) modeling and analyzing engineering
designs, (b) representing manufacturing tasks, and (c) monitoring industrial processes. The reasons
for proposing the S-F paradigm are briefly described below, [COR89b] provides an indepth analysis
of the S-F paradigm. Our approach applies to any environment with physical objects having visible
interfaces. This includes examples from software engineering, biological systems, and computer
hardware.

In the engineering design domain, there are complex interactions between a system's structure
and behavior. This interaction is further complicated because a structure can serve many functions
(either independently or together) and a function can have many alternate structural implementa-
tions. For example, a resistor (structure) can function as a load, voltage to current converter,

239

current to voltage converter, voltage bias, etc.; on the other hand, the function of lifting an object
can be done by many alternate structures--robot, crane, fork-lift, etc. There is some work in
artificial intelligence, where, for the sake of better reasoning, knowledge is modeled more precisely
by separating functions from structures [DAV84]. In our approach, we explicitly represent the asso-
ciative knowledge between structures and functions by interaction objects [COR89b].

Abstractions in the structural and functional domains for most realistic engineering applica-
tions are not isomorphic, i.e., a set of structures are aggregated according to their physical
configuration and spatial locality, whereas functions are aggregated according to system behavior.
Therefore, in the S-F paradigm, we extend the object oriented principle by autonomously abstract-
ing the structural objects and the functional objects and then relating these domains by a well
defined interface (made of interaction objects). We have shown with a real life robotic workcell
design example in [COR90a] that the system naturally supports engineering design knowledge and
simulation data. The other benefit that accrues from the S-F paradigm is the straight-forward
integration of structural information with domain-specific application programs. This capability
alleviates the most common bottleneck (of incompatible systems) in design automation. The details
of this integration are the subject of ongoing research [COR90b].

An important characteristic of design information is that the structures and functions are
aggregated to form complex structural objects [BAT84, BAT85] and complex functional objects.
[KIM87a, KIM87b, K]M89] describes an object-oriented system for complex objects. In this paper,
we show that the S-F paradigm extends the complex object definition of [K]M87b] by (a) including
Assembly Relations (which are intercounection relationships among structural components) in the
complex structural object definition along with the PART-OF relationship; (b) specifying the
abstraction of complex structural objects in terms of the external features of its sub-structural
objects; (c) defining complex functional objects and complex functional object hierarchies to model
active data; and (d) validating the correctness of functional equivalence between two levels of a
functional hierarchy.

Complex structural objects and complex functional objects are the primary constructs to
model a design's ,structure and behavior in the S-F paradigm. In this paper, we concentrate on the
properties of a complex structural object and propose data manipulation rules that are derived
from a set of structural invariants. These invariants form the basis for inserting, deleting, and
updating complex objects in a structural hierarchy. Similarly, the abstraction of complex functional
objects is described by a set of functional invariants. Functional invariants formally state the
correctness conditions between an abstract functional object and a set of sub-functional objects.

The focus of this paper is the definition and abstraction of complex structural and complex
functional objects in the S-F paradigm. The next section briefly introduces the S-F paradigm. Sec-
tion 3 describes complex structural objects. Section 4 describes complex functional objects. Section
5 is the conclusion.

2 T H E S-F P A R A D I G M

The underlying principle of the S-F paradigm is to have three distinct types of objects: Strue-
turail, Functional, and Interaction. In this paper, our focus will be on the structural and functional
objects.

A S t ruc tu ra l Object~ S, is a two-place tuple of features, S: dEs, I s> where Es are the
external features of S and Is are the internal features of S. The external features are the interface

