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Abstract .  An algebra of theories, signatures, renamings and the operations 
import and export is investigated. A normal form theorem for terms of this 
algebra is proved. Another algebraic approach and the relation with a frag- 
ment of second order logic are also considered. 

1 I n t r o d u c t i o n  

Modularisation is (together with parametrisation) a key feature in order to describe 
and design complex objects in a manageable and comprehensible way. In this paper 
we study the logical aspects of modularisation in formal (programming or specifica- 
tion) languages. This is done by investigating some natural and useful operations on 
r the objects that express the logical semantics of such languages. The usuM 
names for these operations in the jargon of computer science are import (in logical 
terms: combination of theories), export (restricting the signature of a theory) and 
renaming. The results are presented in an algebraic fashion. 

1.1 Relation with Other Work 

Operators on modules and their semantics have been studied in e.g. [1] (in the context 
of CLEAR), [5] (in the context of PLUSS), [3] and [4] (using category theory), [16] 
(using model class semantics). Our main source of inspiration has been [2], where the 
approach is similar to Wirsing's in [16], extended to theory semantics and countable 
model semantics. The role of the interpolation theorem for the theory semantics of 
import and export has been pointed out in [7]. Besides giving a survey of logical 
aspects of modularisation, this paper contains, to the best of our knowledge, the 
following new points: 

- investigation of the behaviour of import and export in combination with non- 
bijective renamings on theories; 

- a normal form theorem for theory terms constructed with these operators; 
- a (trivial) counterexample for interpolation in conditional equational logic; 
- definition of import and export on theories using two orthogonal closure prop- 

erties; 
- relation with the [&, 3J-fragment of second order logic. 

1.2 Su rvey  of  t he  Res t  of  t he  P a p e r  

In Sect. 2 we introduce signatures, theories, renamings and operations defined on 
them. Axioms for these operations are given in Sect. 3, where also the relation of 
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one of these properties with the interpolation theorem is considered, as well as some 
results on interpolation in (conditional) equational logic. Section 4 is about normal 
forms of so-called theory terms. In the last two sections we sketch some related ideas: 
reducing the theory operations of Sect. 2 to two orthogonal closure operators, and a 
theory semantics for the [&, 3J-fragment of second order logic. 
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2 S i g n a t u r e s ,  R e n a m i n g s  a n d  T h e o r i e s  

We assume some logical language L with a derivability relation ~-. L contains signa- 
ture elements, e.g. sorts, functions, predicates. Signature elements can have a type: 
an arity (required number of arguments) or a sort type (a list of input and output 
sorts). We assume that, for every type, there are infinitely many signature elements 
having that type: this will allow us to apply the fresh signature element principle 
(see the end of this section). A signature is a finite set of signature elements; it is 
called closed if it contains all sorts occurring in the types of its elements (observe 
that closedness is preserved under union and intersection). The closure c(Z) of a 
signature is the least closed signature containing ~U. If X is a (collection of) expres- 
sion(s) in the language of L then S(X) is the closure of the collection of all signature 
elements occurring in (elements of) X. 

From now on, we adopt the default convention that Z and H range over closed 
signatures. 

Let F be a collection of sentences of L, ~ a signature, then the closure of F in 
is defined by 

Cl(~, I ~) ~---def {A ] F ~- A and S(A) C Z}  . 

These closures are called theories. The union of two theories is the smallest theory 
containing them, defined by 

T + U --def CI(S(T U U), T U U) . 

It is obvious that + is commutative, associative and idempotent. The restriction of 
a theory to a signature is defined as 

Z [ ]T  =def C l ( Z n  S(T) ,T)  (= {A I A E T and S(A) C Z } ) .  


