
Partial Ordering Derivations for CCS

by Pierpaolo Degano , Rocco De Nicola and Ugo Montanari

@

Dipartimento di Informatica, Universit& di Pisa
**

Istituto di Elaborazione dell'Informazione del CNR, Pisa

Abstract

In this paper we extend CCS transitions, labelled by strings, to concurrent histories,

i.e. to transitions labelled by partial orderings. The two notions are linked by a

theorem which shows that the strings can be obtained by taking all interleavings

compatible with the partial orderings.

i. Introduction

In the last few years many mathematical models of concurrent and communicating

systems have been proposed. If we take a particular standpoint, that of considering the

way they describe the temporal ordering of events, we can classify them in two broad

groups: models based on interleaving and models based on "true" concurrency.

The models based on interleaving describe the fact that a set of events may occur

concurrently (independently from each other) by saying that they may occur in any

order. In this way a total ordering among the possibly spatially separated and causally

independent events is imposed. The proposers of models in this group stress the

simplicity of the underlying mathematics, which offers the possibility of reasoning

about systems, as a sufficient reason to stick to these models /11,12,14,1/.

The models based on true concurrency use, instead, partial orderings to explicitly

describe the fact that events may take place concurrently. According to their proposers

/10,8,9,13,17,15,18,18,3,7/, these models offer a more faithful picture of "reality"

for their sharp distinction between nondeterminism and nonsequentiality. Moreover, some

liveness properties of concurrent systems can be better understood and studied in this

framework /4/.

In this paper we try to make a contribution to this debate by defining the notion of

partially ordered computation for CCS. We chose CCS since it is a well-studied model

based on interleaving and plays the rSle of test language for many proposed models of

concurrency.

In Section 4, we first define reeursively a function 'dec" on CCS terms which

decomposes a term into a set of grapes. A grape represents a sequential process, and

consists of a CCS (sub)term together with an access path, which identifies uniquely

the subterm within the given term.

521

Then we generalize Milner's relation

E 1 --~--~ E 2

introducing the notion of move

L

3 2

Here II, 12 and 13 are sets of grapes such that I 1U I3=dec(E I) and 12 U I3=dec(E2).

Set I 1 represents the grapes of E 1 rewritten into the grapes 12 of E 2, Grapes in 13

stay idle. The label L is a synchronization term expressing the structure of the

synchronization. By evaluating L within CCS synchronization algebra we obtain @.

Moves can be seen as atomic concurrent histories. A concurrent history is a partial

ordering relating head processes, events and tail processes. This is the basic element

of the model for concurrent systems proposed in /4/. An atomic history contains a

single event. A notion of concatenation, called replacement, is defined between

histories. A computation in this model is a sequence of concurrent histories, the

first being atomic and the others obtained by concatenating to the previous one a new

atomic history. We briefly introduce concurrent histories in Section 3, a more

detailed presentation being in /5/.

The results for concurrent histories can now be carried over to CCS, including the

definition and characterization of the limits of infinite computations with respect to

different liveness properties /4/. In particular, we apply in Section 5 a basic

theorem on histories which allows us to show the correspondence between histories

derivable by computations and Milner's many-step derivations E 1 t ~ E2 ' t being a

non-empty string of CCS atomic actions.

In summary, we start from the syntax of a mode] conceived to be based on

interleaving and provide it with a notion of computation based on partial orderings.

The standard notion of derivation can be easily recovered from this new notion. We

hope that this work will help develop a deeper and more concrete insight into the

relationships between the two approaches to modelling concurrency.

2. CCS - A Calculus for Communicating Systems

In this section we review the definition of CCS and its operational semantics. We

use "pure" CCS, i.e. CCS without value passing /ll/, and our version will be close to

that presented in /6/. We refer to /ll/ for the intuition behind the various

operators.

Let X be a set of variables, ranged over by x. Let ~k be a set of operators of

arity k. We use Zto denote UIXkik-~O } . The set of recursive terms over Z, ranged

