
On B 

Jean-Raymond Abrial 

Consultant, 
26, rue des Plantes, 75014, Paris. 

abrial@steria, fr 

In the B-Book [Abr96], an introduction entitled "What is B ?" presents it in 
a few pages. There is no point in reproducing this introduction here. There is, 
however, clearly a need to have in this book a sort of informal presentation of B 
complementing that of the B-Book for those readers who are not familiar with 
this approach. This is the purpose of this short text, where the emphasis will 
be put on the question of the development process with B. At the end of the 
text, I will also cover some more general problems concerning B (tool, education, 
research, future). 

B is a "Debugger". 

The aim of B is very practical. Its ambition is to provide to industrial prac- 
titioners a series of techniques for helping them in the construction of software 
systems. As everyone knows, the complexity of such systems, as well as the con- 
text within which they are developed makes them very prone to errors. Within 
this framework, the goal of B is to accompany the system development process 
in such a way that the inevitable errors, produced either during the technical 
specification phase, or the design phase, or, of course, during the coding phase, 
that all these errors are trapped as soon as they are produced. In a sense, from 
that point of view, B is nothing else but a generalized debugging technology. 

Classical Debugging Techniques are Based on Execution. 

In classical software developments, errors are usually (but partially) discov- 
ered, and hopefully corrected, after the coding phase: this is done by checking 
the final product (or better, some parts of it) against a variety of tests supposed 
to cover the widest range of behaviors. Another technique, which becomes very 
popular these days, is that of model checking by which it is shown that the final 
system satisfies certain properties: this is done by an exhaustive search under all 
possible executions of the program. 

As can be seen, both techniques, testing and model checking, work on the 
final product and are based on some "laboratory" execution of it. Since we be- 
lieve in the great importance of trapping errors as soon as they are produced, 
it is clear that such techniques cannot be used during the technical specification 
and the design phases, where no execution can take place. 



The B Debugging Technique is Based on Proofs. Conceptual Difficulties. 

The debugging technology, which is proposed by B, is thus not based on 
execution, it is rather based on mathematical proofs. This apparently simple ap- 
proach, which is widely used in other engineering disciplines, poses a number of 
specific problems. 

When execution is the criterion, the developer obviously tends to write his 
formal text (his program) with execution in mind. He reasons in terms of data 
that are modified by some actions (assignments), and he constructs his program 
by means of a number of operations on such actions: conditionals, sequencing, 
loop, procedure calls, etc. 

With B, the developer (at least, in the early phases) is not supposed to rea- 
son in terms of execution. Since the basic paradigm is that of proof, he has 
to think directly in terms of properties that have to be satisfied by the future 
system. This shift from execution to properties and proofs constitutes, in fact, 
a great step, which could sometimes represent an insurmountable difficulty to 
some persons. In our experience, it is not so much the manipulation of well de- 
fined mathematical concepts (sets, relations, functions, numbers, sequences, etc) 
that poses a serious problem to certain B practitioners, it is rather the neces- 
sary change of habit consisting in abandoning (for a while) the idea of execution. 

Necessity of Re-writing the Requirement Documents. 

As a matter of fact, some B novices use it as if it were a programming 
language with the classical concepts of discrete mathematics directly at their 
disposal. From our point of view, it is a mistake. We must say, however, that 
people are inclined to do so, since the informal requirements of the system they 
realize are often also written with execution in mind. Very often indeed, such 
requirements are already written in the form of a pseudo-implementation de- 
scribing the future system in terms of data and algorithms acting on them. 

This is the reason why, in our opinion, it is almost always indispensable, 
before engaging in any development with B, to spend a significant time (that is, 
for a large system, several months) to just rewrite these requirements in english, 
say, so as to re-orient them towards the precise statements of the properties of 
the future system. The natural language statements, the diagrams, or the tables 
describing these properties in one form or another must be identified, isolated 
and labeled in order to clearly separate them from the rest of the text (hyper- 
text technology and "literate programming" helps here). 

Such properties may concern either the static aspect of the system (that is, 
the permanent properties of its data), or its dynamic aspect (that is, the prop- 
erties expressing how the data are allowed to evolve). 


