
High Performance Parallel I//O Schemes
Irregular Appl icat ions on Clusters of

Worksta t ions *

for

Jaechun No 1, Jesds Carretero **, and Alok Choudhary * **

jno@ece.nwu.edu
Dept. of Electrical Engineering and Computer Science,

Syracuse University, USA

A b s t r a c t . Due to the convergence of the fast microprocessors with low
latency and high bandwidth communication networks, clusters of work-
stations are being used for high-performance computing. In this paper we
present the design and implementation of a runtime system to support
irregular applications on clusters of workstations, called "Collective I /O
Clustering". The system provides a friendly programming model for per-
forming I /O in irregular applications on clusters of workstations, and is
completely integrated with the underlying communication and I /O sys-
tem. All the performance results were obtained on the IBM-SP machine,
located at Argonne National Labs.

1 I n t r o d u c t i o n

Due to the convergence of the fast microprocessors with low latency and high
bandwidth communication networks, such as ATM, Myrinet, or the Gigabit Eth-
ernet, clusters of workstations are being increasingly used for solving large-scale
parallel scientific applications in cost-effective way. Most of those applications
have tremendous I / O requirements [10, 7], including checkpointing of large-scale
da ta sets, and writing of periodical snapshots for further visualization. Fur-
thermore, a large subset of those applications are irregular applications, where
accesses to data are performed through one or more levels of indirection [12].
Sparse matr ix computations, particle codes, and many CFD applications where
geometries and meshes are described via indirections, exhibit this feature.

In this paper we present the design and implementat ion of our runtime system
for clusters of workstations, collective I//O clustering. The I / O architecture of
clusters of workstations usually relies on a set of I / O servers, having local disks,
and a set of diskless nodes. The design of our runtime system fits this feature, as

This work was supported in part by Sandia National Labs award AV-6193 under the
ASCI program, and in part by NSF Young Investigator Award CCR-9357840 and
NSF CCR-9509143.

** Arquitectura y Tecnolog~a de Sistemas Informs Universidad Polit~cnica de
Madrid, Spain.

* * * Electrical and Computer Engineering, Northwestern University, USA

1118

we distinguish between two kind of processors: I /O servers and compute nodes.
All I /O details, such as data exchange, data distribution, and collective I /O, are
transparent to the application programmer.

The main objectives for the collective I /O clustering are as follows:

- Provide flexibility needed to the various I /O configurations for a cluster o]
workstations. The collective I /O clustering is designed to support two kinds
of I /O configurations: in the first I /O configuration, all processors are clients
and I /O servers, and in the second I /O configuration, a subset of processors
will only be I /O servers.

- Provide user-controllable stripe unit. Appropriate declustering of I /O re-
quests over I /O servers should be addressed to produce high performance
I /O bandwidth [5] and has been successfully implemented in the several file
systems [8, 1,4]. In the collective I /O clustering, we use a user-controllable
stripe unit which is specified by GF(Group Factor) in the file-creation time.

- Provide compression/acility. Compression has been traditionally used to re-
duce disk space requirement [14], but recently it has been applied to parallel
applications managing large arrays with the aim of reducing the total execu-
tion time [11,9]. The collective I /O clustering combines compression facility
to achieve two major goals: reducing disk space requirement, and reducing
total execution time.

The rest of the paper is organized as follows: Section 2 presents an brief
overview of the collective I /O clustering on an irregular application. Section 3
presents the implementation details of the collective I /O clustering operation.
Section 4 presents the performance results on the IBM/SP machine located at
Argonne National Labs. Finally, some conclusions are presented in section 5.

2 M o t i v a t i o n

Figure l(a) describes a typical irregular application, where it sweeps all the edges
of an unstructured mesh. In the application, an input mesh file is read, and then
the edges and nodes are distributed over processors. We used block distribution
to spread them to the processors, no_of_edges_partitioned_per_proc represents the
number of edges partitioned to a single processor. In the nested loops, edge[j]. V1
and edge[j]. V2 are two nodes connected by an edge edge[j]. The reference pat tern
is specified by edge[j]. V1 and edge[j]. V2, called indirection array, and also these
values are used to access to a global array. X is a data array which contains the
physical values associated with each node. In this application, a node has an
array consisting of 3 doubles, and other 2 floats.

Figure l(b) shows an example of the edge and node partitions by using block
distribution. In the processor 0, 4,5,8 are the remote indirection elements whose
physical values mush be fetched from processor i and 2. All the remote values are
fetched before the computation. After the computations are finished, the data
(physical values associated with a node) are written to a global array whose

