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Abstract

We present a machine learning pipeline for
fairness-aware machine learning (FAML) in fi-
nance that encompasses metrics for fairness (and
accuracy). Whereas accuracy metrics are well un-
derstood and the principal ones used frequently,
there is no consensus as to which of several avail-
able measures for fairness should be used in a
generic manner in the financial services indus-
try. We explore these measures and discuss which
ones to focus on, at various stages in the ML
pipeline, pre-training and post-training, and we
also examine simple bias mitigation approaches.
Using a standard dataset we show that the se-
quencing in our FAML pipeline offers a cogent
approach to arriving at a fair and accurate ML
model. We discuss the intersection of bias met-
rics with legal considerations in the US, and the
entanglement of explainability and fairness is ex-
emplified in the case study. We discuss possible
approaches for training ML models while satis-
fying constraints imposed from various fairness
metrics, and the role of causality in assessing fair-
ness.

1. Introduction

Fairness-aware machine learning (FAML) is a critical need
in several areas, such as finance, hiring, criminality assess-
ment, medicine, and college admissions, as shown by sev-
eral recent high profile algorithmic bias incidents O’Neil
(2016). However, establishing fair ML models is not a
natural outcome of a prediction framework, as noted in
Fazelpour and Lipton (2020). ML models that are trained
on data affected by societal biases may learn to exhibit bias.
Analyzing bias and explainability of ML models is growing
in importance for ML-driven products and services, driven
by customer needs, regulatory/legal requirements, and so-
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cietal expectations. Bias and discrimination have been part
of several regulations and legal frameworks including the
US Civil Rights Act of 1964, and the European Union’s
General Data Protection Regulation (GDPR). In addition,
the finance industry has witnessed additional regulations
such as the Fair Credit Reporting Act (FCRA), Equal Credit
Opportunity Act (ECOA), SR-11, and Reg B. Due to these
regulations, there are concerns in the finance industry around
deploying and maintaining more advanced models into pro-
duction, because fairness becomes harder to establish with
more complex models.

We propose a collection of techniques for measuring bias
and mitigating bias on protected characteristics, with a focus
on the finance sector. We present a case study of a FAML
system pipeline applied to a dataset of loans, and show how
to apply bias measurement and mitigation at different stages
in the ML pipeline, namely, pre-training and post-training.
We discuss practical challenges in applying fairness tech-
niques in the financial services industry, pertaining to the
intersection of bias metrics with certain legal considera-
tions, the tension between different fairness notions, and the
assessment and choice of dataset for bias measurement.'

The rest of this paper proceeds as follows. Section 2 pro-
vides the background on algorithmic bias and the need for
fairness-aware machine learning techniques in finance. Sec-
tion 3 outlines various approaches to measuring bias in
ML, before training the model and after training as well
(in Section 4 we discuss the generalization to cases where
the protected characteristic and/or the labels may be non-
binary). Note that we will use the terminology “protected
characteristic” for the variable on which bias may occur,
e.g., gender, and we may also call this the “attribute of in-
terest.” The latter terminology is more general in that it
suggests that bias is bi-directional, e.g., we do not want
a gender imbalance, irrespective of gender, whereas the
former terminology tends to be uni-directional, where one
class is the protected or disadvantaged one, and the other is
advantaged. Alternatively, we may not need to specify that
one class is the protected one, as it is perfectly plausible
that bias in either direction is undesirable. In Section 5,

"None of the metrics and methodologies herein are intended
as assurances of legal compliance, but mere algorithms to guide
fairness in machine learning. In the end, fairness is an ethical
and/or legal question, not an algorithmic one.


https://www.consumerfinance.gov/policy-compliance/rulemaking/regulations/1002/
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we will examine various approaches to mitigating bias in
the machine learning pipeline (with an application in Sec-
tion 6 concerning a dataset of loans). Section 7 discusses
why fairness measures are often in opposition to each other,
and whether measurement should be undertaken on training
datasets or test datasets. These are unresolved issues as of
now in the financial services industry. Finally, Section 8
offers closing discussion and possible future directions.

2. Background: Algorithmic Bias and
Finance

Fairness in Broader Context: This collection of metrics can
be viewed as a component of a broader ecosystem of ma-
chine learning dimensions, including Fairness, Accuracy,
Causality, Explainability, and Trust. Trust includes Security
and Privacy.”> Measuring bias in data sets and models is gain-
ing attention now. On March 28, 2020, a federal court ruled
that research assessing whether online algorithms result in
racial, gender, or other discrimination does not violate the
Computer Fraud and Abuse Act (CFAA).? The topics of fair-
ness and bias in datasets and models are gaining significant
attention from industry, academia, and government - for ex-
ample, fairness and bias is a major topic in the Ethics Guide-
lines for Trustworthy Al published by the EU Commission’s
High Level Expert Group on Artificial Intelligence, as well
as the OECD Principles on Al

Algorithmic Bias and Fairness: There is an antecedent liter-
ature from the 1950s that relates to statistical discrimination,
see Hutchinson and Mitchell (2019) for a survey. This is
connected to the more recent literature on FAML (fairness
aware machine learning), and several ethical black box mod-
els and datasets are available. One approach, as in FairML,
determines if restricted characteristics have high feature im-
portance. There are several open source repositories that
offer various bias management approaches, such as: fair-
ness, Aequitas, Themis, responsibly, IBM’s Al Fairness 360,
which have more than fifty metrics, and themis-ML. Other
references are the UC Berkeley course CS294 titled “Fair-
ness in Machine Learning” and this NIPS17 tutorial, which
is based on the excellent book titled “Fairness and Machine
Learning” by Barocas et al. (2019). In short, unfairness
(bias) can be measured in different ways. The particular
choice of bias metric depends on social and legal considera-
tions and various stakeholders including representatives of
the disadvantaged group can weigh in.

Algorithmic Bias in Finance: Mitigation of unforeseen ef-

>There is widespread interest in this area, and Ama-
zon is supporting the NSF in providing grants for FAML:
https://beta.nsf.gov/science-matters/
supporting-foundation-fairness-ai.

3See  https://www.aclu.org/press-releases/

federal-court-rules-big-data-discrimination-\

studies—-do-not-violate-federal-anti.

fects of bias can help stave off adverse treatment of protected
groups and protect financial companies from the unforeseen
effects of ML models. For example, redlining in mortgage
lending has been a persistent race issue in the US.* Gender
bias may be present in small business lending decisions,
given that fewer women in the historical record who have
taken small business loans leads to models trained on an
unbalanced data set, see Alesina et al. (2013); Chen et al.
(2017); Brock and Haas (2019). Hiring in the finance indus-
try has also been male-dominated for decades (Iris, 2016)
and as hiring is increasingly driven by ML, care will be
needed to make sure that any potential biases are mitigated.’

Fairness in ML Pipeline: There are three broad approaches
to FAML.: (i) Methods that try to manage biases in the data
used for training, (ii) methods that impose fairness during
training, and (iii) methods that mitigate bias post-training.
This paper offers a large set of these fairness measures,
suggests various approaches to resolve the trade off across
different measures, and offers recommendations for end
users on the appropriate selection of fairness metrics during
the machine learning process. We pay special attention to
the implementation of FAML in the finance industry, as
there are several areas in which fairness is both an ethical
and legal requirement. Our goal in this paper is to narrow the
focus to one industry and demonstrate how implementations
of fairness might be undertaken as an ongoing ML approach
in the financial services industry.

Practical Challenges in FAML: The trouble with implement-
ing FAML is that there are too many notions of fairness
and a lack of clarity on the prioritization of these defini-
tions. We hope to catalog most of these measures for the
finance domain, connect them to industry terminology and
regulation, and resolve some conflicting definitions, but not
all. At first glance, it would be comforting to assume that
the more measures of fairness we use, the better, so that all
types of fairness are imposed in, say, a lending algorithm.
However, as we make an algorithm fair on one measure, it
may become unfair on another, since the commonly used
metrics for fairness often conflict with each other. Berk
et al. (2017) present a set of six comprehensive measures
of fairness. This paper shows that it is mathematically dif-
ficult to mitigate bias all measures. The intuition is that
since there are just four numbers in the confusion matrix,
and many more metrics, it is very hard to change these four
numbers in a way in which all metrics change in the same
direction. This behooves the modeler and other stakeholders
to choose just a small set of relevant fairness metrics. Many
more metrics are presented in the survey by Mehrabi et al.
(2019), while a scathing critique of fairness measures is pre-

*As are models that measure the likelihood of criminal recidi-
vism, e.g., the COMPAS algorithm. More recently, fairness in the
use of Al for job interviews is being regulated.

>There are positive signs in this area, cf. Barron’s, “100 Most
Influential Women in Finance”, Leslie Norton, March 9, 2020.
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https://www.barrons.com/women-in-finance?mod=article_inline
https://www.barrons.com/women-in-finance?mod=article_inline

Fairness Measures for Machine Learning in Finance

sented in Corbett-Davies and Goel (2018). However, despite
these critiques, striving for FAML is still an important goal,
especially in the realm of financial services.

Bias may be measured against a “golden truth”, i.e., some
notion of fairness in the population on the chosen restricted
characteristic. For example, bias appears in small business
lending datasets because the historical record reflects the
fact that women in several preceding decades (and even
nowadays) applied for far fewer business loans. As a conse-
quence, ML algorithms may pick up on this attribute as a
decider in who should be granted a loan if gender remains
as a feature in the dataset. It is important that such distor-
tions are detected and corrected, because class imbalance
in the historical record may favor the majority class. In
this case, the dataset may be set closer to a golden truth
by rebalancing classes on gender, while leaving out gender
as a feature during ML training. However, such corrective
actions do not always rule out algorithmic bias, which may
still creep in to the data set for various reasons such as the
use of features that are correlated with gender. Therefore,
achieving a “fair” ML algorithm on a given dimension re-
quires both ex ante and ex post model corrections using
features and labels as inputs. Even with this, the model
algorithm itself may still exacerbate whatever bias remains
after various adjustments are made to the features and labels,
and additional bias mitigation through model adjustments
may be necessary. As these adjustments are undertaken, the
accuracy of the model may suffer, tasking the data scientist
with a difficult trade-off between accuracy and bias, a very
important part of FAML.

3. Bias Metrics

3.1. Sources of Bias

Bias in a model arises in many ways. We provide a six-
category taxonomy of sources of bias.

1. Biased labels. This arises from human biases and accu-
mulates in datasets. It is particularly prevalent in public
datasets with multiple labelers, like police data, public
opinion datasets, etc., see Wauthier and Jordan (2011).

2. Biased features, also known as “curation” bias. Here,
bias arises from selecting some features and dropping
others and can occur directly or indirectly. For example,
in lending, a modeler may choose features that are more
likely to disadvantage one group and leave out features
that would favor that group. While this may be deliber-
ate, it is also possible to have these be done as part of an
unconscious process. O’Neil (2016) gives a great exam-
ple where her model for why children love eating their
vegetables was an outcome of culinary curation, where
they seem to eat all their vegetables given no servings of
pizza, potatoes, meat, etc.

3. Objective function bias, noted by Menestrel and Wassen-
hove (2016). One case in which this occurs is when the
loss function may be overly focused on outliers and if
outliers are of specific types in the dataset, the modeler
may inject bias.

4. Homogenization bias, where machines generate the data
to train later models, perpetuating bias. In these settings,
future outcomes are biased, which create a feedback loop
through the models, making future models, decisions,
and data even more biased.®

5. Active bias. Here the data is simply made up and results
in biases in people’s inferences, opinions, and decisions.
Fake news is the prime example. Such bias may be
managed by considering the source, by reading beyond
the headline, checking authorship, running fact checks’,
verifying dates, making sure that it is really a fact and
not a joke, satire, or comedy. More importantly, care-
fully consider expert credentials, and carefully check for
confirmation bias.®

6. Unanticipated machine decisions. Untrammeled
machine-learning often arrives at optimal solutions that
lack context, which cannot be injected into the model
objective or constraints. For example, a ML model that
takes in vast amounts of macroeconomic data and aims
to minimize deficits may well come up with unintended
solutions like super-normal tariffs leading to trade wars.
This inadmissible solution arises because the solution is
not excluded in any of the model constraints. The model
generates untenable answers because it does not have
context.

No matter how bias originates, it behooves us to measure it
and mitigate it. We consider measurement next.

3.2. Measuring Bias

Measuring bias in ML models is a first step to mitigating
bias and regulatory compliance. Each measure of bias cor-
responds to a different notion of fairness. Even considering
simple notions of fairness leads to many different measures
applicable in various contexts. Consider fairness with re-
spect to gender or race/ethnicity groups, for example, and,
for simplicity, that there are two relevant classes, an advan-
taged class and a disadvantaged one. In the case of an ML
model for lending, we may want small business loans to be
issued to equal numbers of both classes. Or, when process-
ing job applicants, we may want to see equal numbers of
members of each class hired. However, this approach may
assume that equal numbers of both classes apply to these
jobs, so we may want to condition on the number that apply.

%See Wired.com - 12/2011.
"See Factcheck.org.
8Facebook suggestions on fake news.
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Further, we may want to consider not whether equal num-
bers apply, but whether we have equal numbers of qualified
applicants. Or, we may consider fairness to be an equal
acceptance rate of qualified applicants across classes, or,
an equal rejection rate of applicants, or both. We may use
datasets with different proportions of data on the attributes
of interest. This imbalance can conflate the bias measure
we pick. Our models may be more accurate in classifying
one class than in the other. Thus, we need to choose bias
notions and metrics that are valid for the application and the
situation under investigation.

We detail several bias metrics in this section. Bias may be
measured before training and after training, as well as at
inference. Our exposition presents the specific case of binary
classification models for simplicity, but we generalize the
metrics to multi-category classification models and models
where the labels are continuous. We specify the following
simple notation to make presentation of the metrics easier.

The goal of binary classification is to predict an unknown
binary outcome, y given an observed set of features. For
example, in a loan application setting, the outcome could
correspond to whether an applicant will pay back the loan or
not and the observed set of features could include income,
net worth, credit history, and loan amount. Suppose we have
labeled training data where each example consists of the
values of the observed features and the corresponding label,
y (=0 or 1). The classifier maps the observed features to a
predicted label, § (= 0 or 1) that we hope agrees with the
observed label, y. Suppose that there is a restricted feature
(which we also call the demographic group, attribute of inter-
est, or facet) associated with each example (e.g., gender or
race/ethnicity groups), and based on the value of this feature,
we designate the example as part of either the advantaged
group (marked/subscripted by a) or the disadvantaged group
(marked/subscripted by d). Bias may be measured from a
comparison of the original labels (y € {0, 1}) of the data
sample with the predicted labels (§ € {0, 1}). Assume that
4y = 1 is the accepted case and § = 0 is the rejected case
(for example, in the loan application use case). The ML
classifier sets 3j; = 1 for observation ¢ if p(X;) > H, where
p € (0,1) is the probability generated by the classifier oper-
ating on feature set X, and H is a threshold cutoff level of
probability, taken to be H = 1/2 by default.

In the training dataset we may count the number of la-
bels of values 0 and 1, grouped by the restricted feature
(denoted X,.). Denote the number of observed labels of
value 0, 1 as n(9, n(1)| respectively, and the number of
labels of each class as n,,ng. These comprise labels of

the advantaged and disadvantaged class, i.e., nt(lo), nt(ll) and

nfio), nfil), respectively. We also have that ngo) + ngl)

= na
and n&o) + nfil) = ng. Corresponding to this notation for
observed labels, we have a parallel notation for predicted

labels 7, with counts 7(9), 7#(1) etc. This minimal nota-

tion provides several measures of bias (the list is far from
exhaustive).

Therefore, bias measurement is implemented using inputs
{y, X, X, } and outputs {§,p(X)} generated by the ma-
chine learning model. These quantities are then used to
generate several measures of bias. Therefore, bias measure-
ment is model agnostic, because these quantities are not tied
to a specific model. We note, however, that bias mitigation
may not always be model agnostic, though the mitigation
approaches we develop in this paper will be, i.e., we can
treat the ML model as a black box for the purposes of miti-
gation as long as we amend only the five quantities above
and not the structure of the model itself. We treat this is
as our definition of model agnosticity throughout the paper,
both for measurement and mitigation of bias. We note here
that the protected characteristic X, may not always be part
of the model feature set and might be separately required. It
may be available but in the event it is not, the dataset may be
combined with other data to create a protected class variable
for the purpose of assessing bias, see for example Kallus
et al. (2020).

3.3. Pre-Training Metrics

We want to develop metrics that can be computed on the
raw dataset before training as it is important to identify bias
before expending time/money on training, which may also
exacerbate pre-existing bias in the training data. One may
wish to use a survey approach to determine the “golden
truth” and compare it to the dataset to make sure the data
is not too contaminated with bias to be useful. The golden
truth is the joint statistical distribution of model inputs we
would like to have or have deemed to be fair before we train
any model. These distributions may not always be available,
S0 pre-training bias metrics will be measures for comparison
to a golden truth, were it to be available. If not, modelers
and others reviewing the metrics will at least be able to
assess whether the pre-training bias metrics are in violation
of a judgment threshold level. The following pre-training
metrics are of course model-independent.

1. Class imbalance (CI): Bias is often generated from an
under-representation of the disadvantaged group in the
dataset, especially if the desired “golden truth” is equality
across groups. As an example, algorithms for granting
small business loans may be biased against women be-
cause the historical record of loan approvals contains
very few women, because women did not usually apply
for loans to start small businesses. This imbalance can
carry over into model predictions.

We will report all measures in differences and normalized
differences. Since the measures are often probabilities or
proportions, we want the differences to lie in (—1, +1).
We define C1 = #+—"4 ¢ (—1,+1) in normalized form.
We see that C'I can also be negative, denoting reverse
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bias.

Mostly, the proportion difference is what is needed, but
sometimes we may need the normalized difference, as in
the case of the 80% Rule, that may be used to measure
certain types of employment discrimination, see the 80%
rule. In this case, it is the ratio that is important, so the
normalized probabilities are able to capture this.

. Difference in positive proportions in observed labels
1)

(DPL): Letq, = i be the ratio of type 1 for the ad-

Na

(
g

)
vantaged class and g4 = = be the same for the disad-

vantaged class. DPL = q, — q4, and DPL = 7?1133 c

(—1,41). Clearly, DPL measures bias resident in the
dataset at the outset. If DPL ~ 0, then we say that
“demographic parity” has been achieved ex-post (i.e., al-
ready in the historical record). DPL is necessary, but
not sufficient, to claim that the labels in the dataset are
uncorrelated with the protected characteristic. Whereas
here we are considering demographic parity pre-training,
we note that demographic parity is a concept that also
applies to post-training predictions from a model.

. Kullback and Leibler (1951) Divergence (K L): Vasude-
van and Kenthapadi (2020) propose a few pre-training
measures of bias. We adapt the definition in the paper to
our purposes here. We compare the probability distribu-
tion of the advantaged class (P,) with that of the disad-
vantaged class (P;), using KL divergence, i.e., relative
entropy (Kullback in fact preferred the term “discrimi-
nation information”). The following formula measures
how much information is lost when we move from P, to
Py, i.e., the divergence of Py from P,:

KL(Pa, Pa) = 5, Paly)log [ 724] > 0.

For the binary class data we have here, we may compute
the KL divergence for all features one by one, and for
the labels, i.e., the variable y refers to both types of
quantities, whether they are binary, multi-category, or
continuous. In financial services, greater attention would
be paid to K L measurements on the labels, which are in
effect, alternate forms of DPL.

. Jensen-Shannon divergence (JS): if the distribution of
the combined classes is P, then

JS(P,, Py, P) = % [KL(P,,P)+ KL(P;,P)] > 0.

After computing the divergences for all features, we
may re-order them to highlight the features that are most
different across the two classes.

. L, norm (LP): Instead of the entropy differences in KL
and JS, we may consider norm differences. For p > 1,
we have

Ly(PuPa) = [, 1P t) — Paw)l?] " > 0.

We note that this metric cannot be negative, hence, we
cannot distinguish between bias and reverse bias.

. Total variation distance (1'V D): this is half the L dis-

tance:
TVD = 1Ly(P,, Py) > 0.

As with L P, this measure is also non-negative.

. Kolmogorov-Smirnov (K.5), two-sample approximated

version:
KS =max(|P, — Py4|) > 0.

It is possible to evaluate the KS statistical test from the
following distance measure, where the null hypothesis is
rejected at level a:

KS > cla), /7’;‘1;71:?.

The value of ¢(«) is given by c(a) = /—In(%) - 3.

. Conditional Demographic Disparity in Labels (CDDL):

Wachter et al. (2020) developed this measure, which can
be applied pre-training and also post-training. The met-
ric asks the following question: Is the disadvantaged
class a bigger proportion of the rejected outcomes than
the proportion of accepted outcomes for the same class?
We note that just this question alone would lead to an
answer to whether demographic disparity exists (DD),
not CDDL. Conditioning on an attribute is needed to
rule out Simpson’s paradox.’The example arises in the
classic case of Berkeley admissions where men were
accepted at a 44% rate and women at a 36% rate overall,
but when this metric was examined department by de-
partment, the women on average were admitted in higher
proportions. This is because more women applied to
departments with lower acceptance rates than men did,
though even in these departments, women were accepted
at a higher rate than men.

We define
_ No of rejected applicants from the protected facet nfio)
N Total rejected applicants  n(0)
and
A_ No of accepted applicants from the protected facet _ nfil)

Total accepted applicants n(1)

If D > A, then demographic disparity (DD) exists.
CDDL arises when demographic disparity exists on
average across all strata of the sample on a user-supplied
attribute. We will subgroup the sample and compute DD
for each subgroup, and then compute the count-weighted
average of DD. The function is as follows:

1
CDDL = — ;- DD;

‘https://www.britannica.com/topic/
Simpsons-paradox.


https://en.wikipedia.org/wiki/Disparate_impact#The_80_rule)
https://en.wikipedia.org/wiki/Disparate_impact#The_80_rule)
https://www.britannica.com/topic/Simpsons-paradox
https://www.britannica.com/topic/Simpsons-paradox
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where ¢ subscripts each subgroup and n; is the number
of observations in each subgroup, such that ", n; = n.

Therefore, of the eight pre-training bias metrics, the first two
can detect negative bias, whereas the next five are agnostic
to which class is advantaged or disadvantaged. The last one
is positive. As an additional note, we stipulate that each
measure might be compared to a golden truth or judged for
its absolute level, but there is no metric under which we may
undertake a cross-sectional comparison of these metrics, as
they measure different attributes of the distribution of labels
and attributes of interest. If we find that there is a class
imbalance, we may wish to rebalance the sample before
proceeding to train the model (see Appendix 6 where we
considered this intervention in greater detail). We now move
on to consider post-training bias metrics.

3.4. Post-Training Metrics

At this stage we have computed the pre-training metrics and
we may also have rebalanced the sample to address any class
imbalances that may exist. After training the ML model, we
then compute the following bias metrics.

1. Difference in pos1t1ve proportlons in predicted labels
(DPPL): Let g, =

~ (1
advantaged class and gy = Ay be the same for the
disadvantaged class. DPPL = ¢, — 4q € (—1,+1).
A comparison of DPL with DPPL assesses if bias
initially resident in the dataset increases or decreases
after training.

This is also similar to a metric known as Mean Difference
(MD) in the Themis-ML package. There is an alternate
computation for this. Compute g, = FE[j,] and g =
E[§q], i.e., take the mean of the predicted values of both
classes. Then we define M D = ¥y, — yq. A positive
mean difference implies bias against the disadvantaged
class.

This is also known as the Calders and Verwer (2010)
(CV score). The only difference in our measure here is
the additional normalization. Galhotra et al. (2017) call
this the “group discrimination score.” This is also called
“statistical parity” in Berk et al. (2017), Corbett-Davies
and Goel (2018). DPPL has the obvious flaw that it
assumes that the advantaged and disadvantaged classes
are equally qualified (for a loan, job, etc.). Imposing
DPPL legally amounts to affirmative action if one of
the classes is less qualified, however, it may still be
required to correct unfairness. Therefore, it is definitely
a useful measure from a societal point of view, even if it
violates some notions of statistical fairness.

2. Disparate Impact (D1): The ratio version of the DPPL
measure is known as “disparate impact” and is formu-

lated as follows:
DI = 44,
da

In an employment context in the US, regulators will use
80% as a ’rule of thumb” for measuring disparate impact.
This is an ex-ante measurement of demographic parity.
The next measure takes a more nuanced view of this
situation.

3. Difference in conditional outcomes (DCQO): This metric
examines the difference in proportions of acceptance or
rejection between the two classes of qualified observa-
tions. Then we define two measures:

¢ Difference in Conditional Acceptance (DC A): De-

(1)

n( n
fine ¢, = o) and ¢q = (1) , as ratios of observed

labels to predlcted labels DC’A = ¢4 — ¢q. This
metric comes close to mimicking human bias. For
example, when loan applicants from class d are
approved for loans by the model, but the human
overrides these approvals (as in redlining), then
n((il) < ﬁ&l), leading to c¢q < 1, and likewise, we
might have ¢, > 1 (positive bias). This would gen-
erate DCA > 0. DCA is related to equality of
opportunity. It is a way of measuring “active” bias
by a loan officer, where equally qualified applicants
in both classes are treated differently to the detri-
ment of class d. Interestingly, our nomenclature
here may relate DC'A > 0 as “bias” and DC'A < 0
as “affirmative action.”

e Difference in conditional rejection (DCR): This
metric examines the difference in proportions of

rejection between the two classes of qualified obser-
n®

. n®
vations. Define r, = oy and rq = (U) Then we

define DCR = rq — r,. From a termmology point
of view, when both DC'A and DC'R are related to
equalized odds (ex-post, i.e., in practice). When
both DCA and DCR are very close to 0, we can
conclude that the proportion of qualified (as sug-
gested by observed labels) applicants accepted by
the model and the proportion of unqualified appli-
cants rejected are nearly equal across both classes.

4. Recall difference (RD): Here, higher recall for the ad-
vantaged class suggests that the ML model is better at
distinguishing true positives from false negatives than
for the disadvantaged class, i.e., it finds more of the
actual true positives for the advantaged class than the
disadvantaged class, which is a form of bias. We define
RD = Recall, — Recall;. Berk et al. (2017) call this
“conditional procedure accuracy equality.”

5. Difference in Label rates (DL R): The metrics in this
category come in three flavors:

¢ Difference in acceptance rates (D AR): This met-
ric measures whether qualified applicants from the
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advantaged and disadvantaged class are accepted
at the same rates. It is the difference in the ratio of
true positives divided by the predicted positives for
each class.

DAR = T 18
Satisfying DAR = 0 implies members of both
groups are accepted at the same rates. Note that

DAR and DCA are somewhat similar, because

_ TP, _ TPq
we also see that DAR = 75445 — 75,7 Fp;

whereas DC'A = 51;‘; j_l;;g: — ggiigj , which is
also therefore, related to the measure for Treatment
Equality (TE) in adjusted form, below.

DAR may also be interpreted as Precision dif-
ference (PD = Precision, — Precisiong). It im-
plies that more of the predicted true positives are
valid compared to false positives for the advantaged
group. These separate precision values for each
class are computed by dividing the confusion ma-
trix into two parts, grouped on class. Berk et al.
(2017) call this “conditional use accuracy equality”.
It is also denoted as “predictive parity.” This metric
is the same as D AR above.

e Difference in rejection rates (D RR): This metric
measures whether qualified applicants from the ad-
vantaged and disadvantaged class are rejected at
the same rates. It is the difference in the ratio of
true negatives divided by the predicted negatives for
each class.

DRR = THa — TR

ﬁin) ﬁl(LO) .

Also, just as D AR is related to DC' A, we see that
DRR isrelated to DCR.

6. Accuracy Difference (AD): We apply the usual definition

for accuracy, i.e.,

T Pr+T Ny
TP,+TNyp+FP,+FNy’

Accuracy,, = k= {a,d}.
We measure the accuracy of the classifier for each of
the classes (i.e., we split the confusion matrix into two
matrices, one for each class) and then assess which
one is measured more accurately. Here bias is the dif-
ference in classifier accuracy across the classes, i.e.,
AD = Accuracy, — Accuracy,.

. Treatment Equality (TE): Berk et al. (2017) defined this
as the ratio of false negatives to false positives (or vice-
versa). Compute this for both classes, 7, = FN,/FP,,
74 = FNy/FP,;. Then we define TE = 74 — 7,.

. Conditional Demographic Disparity of Predicted Labels
(CDDPL): this is the same metric as in the pre-training
case, except applied to predicted labels rather than ob-
served labels.

9. Counterfactual difference (C'D,,): This measure is coun-

terfactual analysis in economist-speak. The idea is that
if there is no bias on a characteristic, then “flipping the
bit” on the characteristic should make no difference to
the model prediction. We describe three versions of this
metric, CD1,CD5,CDs. An extensive discussion of
the hidden assumptions and usefulness of counterfactual
analysis is provided in Barocas et al. (2020).

It is easy to measure in a binary class situation, simply
flip the dummy variable identifying the advantaged (a)
and disadvantaged (d) classes and see what proportion of
predictions change from O to 1 and vice-versa for each
of the two classes. Let n, be the number of flipped out-
comes for class a and n; for class d. The measure is

CD, = @ € (0,1), where n = n, + ng. Galhotra
et al. (2017) call this the “causal discrimination score.”
Counterfactuals and causality are linked and a good dis-
cussion is in Pearl (2009). For a general description of
causal theory based on counterfactuals, see Menzies and
Beebee (2019).

We add an additional score to discriminate further, i.e.,
we check whether class a is more robust to the protected

characteristic than class d. Let §, = Z—“ be the propor-

tion of predictions of class a that flip and §; = % be
the flipped proportion for class d. Then the bias measure
will be CDy = 64 — 6, and C D3 = 3273 € (=1, +1).
If C D5, C'D3 > 0 then class d is more sensitive to char-
acteristic than class a, which is also a form of bias. This
new measure extends the GBM score to a nuanced one.

We call it “counterfactual sensitivity”.

There is no guarantee that flipping the bit ensures coun-
terfactual fairness, because it may still allow the ML
model to be biased against the disadvantaged class by
using features that are correlated with the protected char-
acteristic. Therefore, it may require the modeler to en-
sure that the model is fair under the counterfactual when
using a matched sample, i.e., for each member of the
disadvantaged class we find a matching member of the
advantaged class that is very close on all variables except
the protected characteristic. Such approaches, known by
different terminology such as propensity score matching
(in econometrics) and optimal transport (in computer
science) are effective and provide a computationally in-
expensive approach to ensuring fairness in ML, see for
example the following approach, denoted FlipTest.

We may also use causal influence quantification to an-
swer fairness questions, see Janzing et al. (2019). For
example, hypothetically speaking, if the rejection rates
for women applying for loans is higher than that for men,
it may be because women apply for loans to set up more
risky businesses, where the rejection rates are higher
than for loans where business risk is lower, to which
more men apply. In such settings, the counterfactual
bias measure looks like it is keying off gender, but if a
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causality-based approach is taken, then we will find that
rejection is not gender based as there will be no causal
link from gender to rejection, but from business type in-
stead. By requiring that a causal link be established from
the protected characteristic to the decision, we are able
to carefully assess unfairness at a deeper level. However,
the information requirements to implement such tests are
more onerous. On the other hand, the FlipTest does not
impose additional information requirements.

10. FlipTest (F'T,): Black et al. (2020) introduced this
method as a black-box technique to detect bias in clas-
sifiers by leveraging an optimal transport framework.
FT evaluates the cardinality of two different sets of ex-
amples: F'*(h,G) = {z € D|h(z) > h(G(z))}, and
F~(h,G) = {z € D|h(z) < h(G(x))}, where h is
our model, D is the discriminative neural network of the
GAN (i.e., generative adversarial network, see Goodfel-
low et al. (2014)) and G, the generator neural network
part, is a transformation from the space of the disad-
vantaged examples to the space of the advantaged ones.
The function G can be learned in different ways. In the
original work, G is a Wasserstein-GAN model from Ar-
jovsky et al. (2017), with a modified loss function that
imposes on the generator to produce artificial examples
from (the distribution of) the advantage class using an
input example from the disadvantage one, and keeping
a small distance (in the feature space) between them. In
our case, we approximate directly h(G(z)) with a kNN
approach on top of the prediction of the model h. In fact,
we infer the label of a disadvantage example by using the
kNN prediction (i.e., the most represented label among
the k closest examples from the advantage class). We
use this prediction as our A(G(z)) in order to populate
the Flipsets. From the two Flipsets, we generate the final
metrics as follow:

o« FT| = |FY (b, Q)| +|F~ (h,G)] e [0,1],

ndg
[P (h.Q) =P~ (RG]
N4

[ ] FT2 = [-1,4‘1]

Our approach is simplified and defines the metric as

Ft—F~
nd

FT = € [-1,+1]

where F'T is the number of disadvantaged group mem-
bers with an unfavorable outcome whose nearest neigh-
bors in the advantaged group received a favorable out-
come, F'~ is the number of disadvantaged group mem-
bers with a favorable outcome whose nearest neighbors
in the advantaged group received an unfavorable out-
come.

We summarized the various metrics and cross-reference the
metrics to the various terminology used in the literature, as
many metrics have multiple nomenclature (see Table 1). We
note that the notion of “total fairness” is achieving all these

metrics, which is not possible. Why? Most of the metrics are
permutations of the four numbers in a binary classification
confusion matrix and it is impossible to satisfy all fairness
metrics with just these 4 numbers. For example, Canetti et al.
(2019) show that there is no general way to post-process
a classifier to equalize positive predictive value (DC A)
or negative predictive value (DC R) for the disadvantaged
class. Therefore, customers will need to choose one or two
metrics that they need to comply with.

Some bias measures are legal artifacts and may be evidenced
by the existence of one or many of the metrics below, such
as “disparate treatment”—a US construct (of intentional dis-
crimination) where someone is treated differently based on
their membership in a protected class, often more strongly
evidenced by counterfactual unfairness, see Kusner et al.
(2018). The measures we consider may not capture all legal
notions of unfairness, because they may be hard to detect,
such as the US notion of “disparate impact” (also known as
unintentional discrimination), which occurs when the dis-
advantaged class experiences bias even when the approach
taken is apparently fair, e.g., when a HR test is required by
all candidates but just happens to be harder for one gender
because of social conditioning. Here this bias does not come
from the ML model, but may still be detected by it. From
a ML point of view, we do not make a distinction between
disparate impact and treatment. In Table 1 below, we specif-
ically identify disparate impact with the definition used in
practice, i.e., metric #10, whereas all metrics that treat peo-
ple of different groups differently are generally described as
examples of disparate treatment.

Table 1 shows a summary of the bias metrics, their defini-
tions, and related nomenclatures.

4. Non-Binary Attributes and Labels

The metrics we examined in Section 3 apply to binary at-
tributes of interest (also known as protected attributes or
classes, e.g., gender male vs female) and binary target vari-
ables (e.g., a loan was approved or not). In this section,
we discuss extending these situations to non-binary settings.
Whereas most cases of fairness assessment relate to binary
cases, we recognize that there may arise a need for non-
binary settings as well.

4.1. Non-Binary Attributes of Interest

Attributes of interest (protected characteristics) need not be
binary. For example, ethnicity may be divided into multiple
categories, such as White, Black, Asian, Latinx, Indigenous
Populations, etc. In this case we may need to aggregate
multiple categories into binary ones for the purposes of
attribution of fairness. Here, for instance, we may collect
Black, Latinx, and Indigenous Populations into a group
called “minority” and the others into a group called “non-
minority.” We then proceed as before to compute metrics
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Table 1. FAML Metrics. Notation: Original labels (y = {0, 1}); predicted labels (§ = {0,1}). The ML classifier sets §; = 1 for
observation ¢ if p(X;) > H, where p € (0,1) is the probability generated by the classifier operating on feature set X, and H is a
threshold cutoff level of probability, taken to be H = 1/2 by default; restricted feature (X,); advantaged group (a); disadvantaged
group (d); number of observed labels of type 0, 1 are n(o) ) , respectively; number of labels of each class are ng, ng; labels of the
© ), nfll) (1) , respectively; predicted labels ¢, with counts 720 A, ratio of type

advantaged and disadvantaged class i.e., Ng and n

1 for the advantaged class (go = ng 0 /na) and ga = ny ) / nd for the disadvantaged class; probability distribution of the advantaged
(dlsadvantaged) class Pg, (Pyg), with average distribution P; G, = g W /M be the ratio of predicted type 1 for the advantaged class and
Ga = My () /M be the same for the disadvantaged class; c, = ng & /n(l) and cq = nfil) / ﬁ;l), as ratios of observed labels to predicted
labels; 7o = ng )/n(o) and rq = n(o)/n(o)' T P: true positives; F'P: false positives; T'N: true negatives; F'N: false negativeS' ratio of
false negatives to false positives (or vice-versa). Compute this for both classes, 7o = FN,/FP,, T4 = F'Na/F Py; n, be the number of

flipped outcomes for class a and n; for class d; §, = —¢ be the proportion of predictions of class a that flip and 64 = n—i be the flipped
proportion for class d. The alternate nomenclature refers to both, exact same measures or related ones.

Metric

Indicative Formula

Related Nomenclature

1. Class Imbalance (C'T)
2. Difference in positive proportions in observed
labels (DPL)

3. KL Divergence (K L)
. JS Divergence (J S)
. Ly norm (L P)

4
5
6. Total Variation Distance (T'V D)
7. Kolmogorov-Smirnov (K .S)

8

. Conditional Demographic Disparity (CDDL)

9. Difference in positive proportions in predicted
labels (DPPL)

10. Disparate Impact (D1I)
11. Difference in conditional acceptance (DC A)

12. Difference in conditional rejection (DC R)
13. Recall difference (R D)

14. Difference in acceptance rates (D A R)

15. Difference in rejection rates (D RR)

16. Precision difference (P D)

17. Accuracy

18. Accuracy difference (A D)
19. Treatment Equality (T'E)

20. Counterfactual difference

2

—_

. Fliptest (FT)

MNag — Nd
9a — 4d

3, Paw)log [ 7235 ]
[KL(PQ,PHKL(Pd,l )
[Zywa(y)—m(y)l ]
1Ly (Pa, Pa)

max(| P, — Pqgl)
-1 . .
CDDL =13 ni-DD;

Ga — q4a

DI=1

da

Cq — Cq

Ta —Td

T Pg TPy
TPa+FNg ~ TPg+FNg

T Pg _ TPd
NO) NO)

na nd
TNy _ TNg
—(0) hﬂo)

T Pg TPy
TPo+FPg ~ TPytFPg
TP+TN
TP+TN+FP+FN
Accuracy,, — Accuracy,
Td — Ta

/ ’
otnl
CDl =
CDs = 6d - 5
i -
FTy = TG G)\:\F (h, &)
+ A
FTy = ET G- |F (h,G)]

ngq

(F* = F7)/(na)

pre-training demographic parity

mean difference, demographic parity, statistical par-
ity, disparate treatment, group discrimination score
disparate impact

equality of opportunity, individual fairness, dis-
parate treatment

equalized odds (includes DCA), disparate treatment

sufficiency, conditional procedure accuracy, false
positive rate, success prediction error, disparate
treatment

equality of opportunity, individual fairness, dis-
parate treatment

equalized odds (includes DCA), disparate treatment

false negative rate, failure prediction error, condi-
tional use accuracy, disparate treatment, predictive
parity

disparate treatment

counterfactual fairness, disparate treatment
counterfactual analysis

counterfactual analysis

counterfactual analysis
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based on this new variable. Of course, we might need to
create more than one protected characteristic variable for
various permutations of the multi-category class variable.

Another case we encounter is that of cross-categories. For
example, we may want to treat under-represented classes
who are senior citizens as a disadvantaged class. In this
case the attribute of interest would be a new feature variable
that is the product of the under-represented feature and the
senior citizen feature. Again, this allows the computation of
bias metrics to proceed seamlessly using the metrics above.
In short, we convert multi-category or continuous class vari-
ables into binary ones for the purpose of bias measurement.

4.2. Non-Binary Labels (target variables)

Again, we may encounter multi-category, and continuous
target variables, in addition to the standard case of a binary
target variable. An example of a multi-category target vari-
able is a credit rating of an individual who borrows money
on a website such as Lending Club. The site assigns a credit
rating that is a discrete one from a multitude of rating levels.
An example of a continuous target variable is the interest
rate offered on a loan or the salary offered in a hiring sit-
uation. In all these cases, we are interested in assessing
whether the disadvantaged class is treated differently than
the advantaged class.

In Table 2, we present how the non-binary case will apply to
each of our bias metrics. For a multi-category target variable
(label) requires that for each label we take the difference
between facets (classes, e.g., male vs female) for each la-
bel and report the maximum difference. For a continuous
variable we report the mean difference in label across facets.
As we see from Table 2, it is feasible to handle non-binary
labels in FAML.

5. Bias Mitigation

Bias corrections can take many forms and may lead to dif-
ferent tradeoffs between fairness and accuracy for each ML
model. Some common corrections that may be applied are
as follows:

1. Removal of the class variable from the feature set.
For example, restricted characteristics such as gender,
race/ethnicity, and age may be part of the feature set and
removal of these will mitigate some or all of the bias
metrics mentioned above. However, as is to be expected,
this will also impact accuracy. Moreover, the real prob-
lem often lies elsewhere, given that protected attributes
are almost always eliminated from feature sets, but not
all features that are correlated with the attribute.

2. Rebalance the training sample pre-training. This corrects

unfairness from differences in base rates. Synthetically

increase the number of observations ngl) if n) > n&l).

Synthetic oversampling is undertaken using standard
algorithms such as SMOTE, available in SkLearn. Like-

wise, decrease n&o) if n§°> < n((io). Both these correc-
tions are in the spirit of affirmative action. Both these
adjustments are intended to result in equal sized classes
across (0, 1) labels. If the class variable truly matters
then rebalancing usually results in a loss in accuracy.
Random perturbation of class labels is also possible in-
stead of using oversampling. But, this approach results
in different results every time. One can also transform
the features such that their joint distribution without the
class variables remains more or less the same, but the
correlation with the class variable is reduced, as close to
zero as possible.

3. Adjust labels on the training dataset and re-train. For
the advantaged class, adjust the ground truth such that
Yo = 0if §, = 1 and p,(X) < H + n for some well-
defined hyperparameter 7. That is, downgrade some of
the borderline positive labels for the advantaged class.
Likewise, set yg = 1 if §3 = 0 and pg(X) > H — 7,
i.e., upgrade some of the borderline negative labels for
the disadvantaged class. Then re-run the ML model fit.
Recompute the various bias and accuracy metrics.

4. Adjust cutoffs post-modeling. The cutoff probability is
usually set at H = 1/2. If bias is present, then the cut-
off for the advantaged class can be adjusted to H + 6,
and the cutoff for the disadvantaged class will be re-
duced to H — §. This will change the predicted counts
ﬁgo), ﬁgl), ﬁgo), ﬁfil), and change many of the bias mea-

sures as well as the accuracy of the model. Hyperparam-
eter  can be tuned appropriately, until a desired level of
fairness and/or accuracy is achieved. The legal milieu
may not accommodate direct alteration of the predic-
tions, so the availability of this mitigation is subject to
the domain of application.

These bias corrections will result in changes in fairness and
accuracy for all of the ML models that are applied to the
training dataset. Since we have several fairness metrics,
and there is a tension amongst them, we train our models
with these fairness metrics as constraints, either applied
ex-post or at training time. With multiple constraints, we
need to either (i) choose one constraint (which is limiting),
(i1) weight the constraints to consolidate them into a single
constraint, or (iii) apply a min-max criterion, i.e., minimize
the maximum bias metric under all the different constraints
we choose to include while training the model.

6. Sequencing FAML in Practice: A Case
Study

Our FAML process has several stages and offers a series of
steps for the ML modeler to decide whether the final model
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Table 2. Treatment of bias metrics for non-binary targets. We note that the outcome variable is denoted “label” and the class variable is
called a “facet”. We will collapse all multicategory and continuous facets to binary and then apply the rules in this table to non-binary

cases of labels.

Metric Multi-category Continuous

DPL diff in proportions of each observed label be-  diff in mean actual label value between facets
tween facets, and report the max diff for each label

KL, JS max divergence across facets for each label max divergence for continuous distributions

across facets

L,,TVD,KS max metric of the absolute diff in distribution metric of the absolute diff in continuous dis-
across facets for each label tribution across Facets

CDDL max diff in proportion of actual rejects and not defined
proportion of actual accepts across facets, con-
ditional on feature subgroup, for each label

DPPL diff in predicted proportions for each label diff in mean predicted label value between
between Facets and report the max diff facets

DI ratio of predicted proportions for each label ratio of mean predicted label for Facets should
across facets should be within (0.80-1.20), re- be in the range (0.80-1.20)
port the max

DCA, DCR diff in ratio of actual labels to predicted labels  diff in ratio of mean actual values to mean
across facets for each label; report max predicted values across facets for each label

RD diff in recall for each label across facets not defined

DAR,DRR, PD

AD

TE

FT

CDDPL

diff in rates of correctly predicted labels for
each facet

(1) diff in accuracy scores from the confusion
matrix; (2) diff in AUC from the ROC analysis

diff in ratio of false positives to false negatives
across facets

avg diff in labels for kNNs across facets
max diff in proportion of predicted rejects and

proportion of predicted accepts across facets,
conditional on feature subgroup, for each label

diff in ratio of mean predicted values to actual
mean values across facets for each label; Note:
cannot be computed for PD in this case

diff in AUC from the ROC analysis

not defined

avg diff in means of kNNs across facets

not defined
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in the training process has achieved desired fairness levels.
The schematic for the model is shown in Figure 1.

Pre-train

Choose
Protected
Characteristic >

SHAP Analysis

EE  reature
-/ Importance
|

Rebalance

Y/N
D\ ‘A LOGIT/
XGBOOST

Predicted oy oy
Probabiliteis AD 012

Post-train

RD 0.11

Conterfactual
Analysis

Post-retrain
DPPP 0.12
DCA -0.02
Change Labels DOR 033

& Retrain AD 0.04
TE -0.01
PD 0.10
RD 0.05

Change Cutoffs
Final Predictions

Figure 1. Fairness aware machine learning pipeline. There are 10
steps in the pipeline show here. (1) Read in data, (2) Choose pro-
tected characteristic, (3) Pre-training bias metrics, (4) Rebalance
the sample if needed, (5) Train with logit or xgboost, and (6) (a)
Show the distributions of predicted probabilities for each class and
(b) the post-training metrics, (7) Counterfactuals using a flipped
class variable, (8) Show distributions with flipped class variable
as counterfactuals, (9) Adjust labels and re-train the model and
then (a) plot probability distributions and (b) metrics, (10) Change
cutoffs for final predictions and plot distributions and metrics.

We implement the model pipeline on a canonical sample, i.e.,
the well-known German credit dataset.'® This small dataset
comprises 1000 loan applicants with 20 features, such as
checking account status, loan maturity, credit history, loan
purpose, loan amount, whether the borrower has a savings
account and how much balance they carry, employment
status, instalments as a percent of income, gender, other
debt, years of residence, property ownership, age, other
instalment plans, rent or own, number of existing loans,
type of job, number of dependents, telephone or not, and
whether the person is a foreign worker. We one-hot encoded
categorical variables as needed and clubbed some others
in a process of standard data engineering. Eventually, we
arrived at 59 features. The label is binary, taking a value 1
if the borrower was classified as a good credit, else it was
given a value of 0. The class variable we chose to examine
was gender, and we coded the gender feature as equal to 1
if female, and O for male. We assess bias metrics on both
training and/or testing datasets. In our example here, we use

10See the German data set in the UCI Machine Learning Repos-
itory, https://archive.ics.uci.edu/ml/datasets.

php.

all the data for training, so bias is measured on the training
data. But we might be better off using a separate test data set
to measure bias on as well. Which one to use is discussed
in greater detail in Section 7.7.

Our first step comprises examining the data with the pre-
training bias measures from Section 3.3. We computed
these and the visualization of these is shown in Figure 2.
For example, we see that class imbalance is C'I = 0.38,
which is because 31% of the sample comprises women and
therefore difference in the percentage of men and women is
0.69 — 0.31 = 0.38. The other metrics of pre-training bias
are milder. D PL shows that imbalance in labels disfavors
women (the bias is positive). The other measures are also
positive but that is because they lie between 0 and 1, so may
not necessarily reflect bias against women.

The next step in the pipeline is to decide whether to rebal-
ance the sample or not. We decide not to do so (we will
consider this later). Moving on, we train the model using
logistic regression, achieving an accuracy level of 0.78 and
an AUC (area under the curve) of 0.83. The model inputs
and outputs are used to compute the various post-training
metrics, and we also plot the distributions of predicted prob-
abilities for mean (type 0) and women (type 1) to see how
these differ. Results are shown in Figure 3. We see that
some bias metrics are positive and some negative, exempli-
fying the point made earlier that bias metrics do not all track
in the same direction.

We see from the D PP L =~ 0 metric that demographic parity
is achieved. However, DC'A = 0.089, i.e., statistical parity
is not well maintained, as this indicates that men are given
9% preference relative to women in acceptances. But on the
other hand, women are 25% disfavored (DC' R = 0.25) in
rejections. A combination of DC'A and DCR suggests that
the trained model is unfair. The other four metrics clearly
do not seem to be adverse to the disadvantaged class. The
difference in distributions of predicted probabilities is mild,
though the distribution for men is shifted more to the right
versus that for women, suggesting some small bias. But the
bias metrics suggest that bias mitigation is predicated.

The next step is counterfactual analysis, where we flip the
gender bit to see if the distributions of predicted probabili-
ties changes, i.e., if the protected characteristic influences
the model, then the difference in distributions should be-
come smaller. The results are shown in Figure 4, but this
does not show much change, suggesting that the protected
characteristic itself does not matter, and that the bias is
arising from other features in the data.

Moving down the system pipeline, we next adjust the labels
and retrain the model. Labels were adjusted using a cut-off
shift of § = 0.05, i.e., we relabeled the training data such
that for women, any labels that were 0, but had predicted
probabilities greater than 0.45 (H — J) were labeled as 1
instead. Likewise, for men, any labels that were 1 were rela-
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Cl: Class imbalance

DPPT: Diff in Prop True Labels
KL: Kullback-Leibler divergence
JS: Jensen-Shannon divergence
L P norm

TVD: Total variation distance

KS: Kolmogorov-Smirnov distance
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Figure 2. Pre-training metrics for the German credit dataset.
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Figure 3. Post-training metrics for the German credit dataset. The blue distribution is the one for men (type 0) and the orange one is

women (type 1).

beled as 0, if the predicted probabilities were less than 0.55
(H — 9). We chose ¢ to bring down DPPL, DCA, DCR
as much as possible. The results are shown in Figure 5.
This is essentially retraining the model on the features in
the training dataset but with new labels.

We can see that we have minimized the bias quite dramat-
ically across all measures, which is interesting. However,
it exemplifies how the ML modeler may be able to use our
framework to create a model that is less biased. Note also
that the difference in distributions is also less than before
bias mitigation.

We now apply the last mitigation approach, though it is hard
to see that we can improve on what we have much further.
Here, we do not adjust the labels and retrain the model, but
instead, we directly adjust the predictions. We do this by
choosing optimally a prediction shift parameter = 0.045
and changing all predictions for women between (H —n, H)
from O to 1, and for men between (H, H + 7) to 0. The
resulting metrics are shown in Figure 6.

We see that the bias has reduced from the original post-
training metrics but not as much as before, though the out-
comes are very close. It’s clear that the best way here is to
adjust labels and retrain the model. We see that bias mitiga-
tion works extremely well in the sequential approach here,

without any rebalancing.

It is useful to ask: Can we do better using a different ML
model? Instead of the logistic regression, we use an xgboost
model and see if we can achieve higher levels of accuracy,
while maintaining satisfactory levels of fairness. When
we retrained the original model using xgboost, we achieved
much higher accuracy levels with just two epochs of training,
i.e., accuracy increased to 0.86 (from 0.78 in the logistic
model) and AUC increased to 0.93 (versus 0.83 in logistic).
The post-training metrics before any bias mitigations are
shown in Figure 7. We also ran counterfactual differences
and noted that the difference in distributions was not reduced
(not shown for parsimony).

We can see that the bias is less than with logistic regression
at the same stage in the pipeline. But we not apply both bias
mitigations optimally: (i) relabel and retain, and (ii) adjust
predictions. Figure 8 shows the results of both mitigations.

In both mitigation approaches, the best values of § and
7 are unable to reduce the DC'A and DCR a lot when
we keep DPPL as low as possible. This exemplifies the
tension between the different bias measures. It also offers
an example of the accuracy-bias tradeoff. We get higher
accuracy from xgboost, but it comes at a cost of fairness.
Ultimately, the user has to choose between the models. In
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Figure 4. Counterfactual analysis. The blue distribution is the one for men (type 0) and the orange one is women (type 1).
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Figure 5. Metrics for the German credit dataset after adjusting labels and retraining the model. The blue distribution is the one for men

(type 0) and the orange one is women (type 1).

the next section, we use this example as a backdrop to
discuss some important issues to be taken into account when
deciding on a final tuned FAML model.

7. Issues in Financial Fairness
7.1. Contradictions amongst Fairness Metrics

As we have seen above, there is a tradeoff between fairness
and accuracy. There are also tradeoffs between the various
fairness metrics. These arise from the limited degrees of
freedom amongst the inputs into the fairness metrics. These
issues are best illustrated with an example.

Assume a dataset of loan applications from 150 customers,
of which 100 are men and 50 are women. Therefore, C'I =
0.33. Of the men (class a), 70 were given loans and of the
women (class d), 27 were granted loans, based on the actual
labels in the data. Therefore, DPL = 0.70 — 0.54 = 0.16.
The confusion matrix with a probability cut off of H = 0.5,
for each class, is shown in the top part of Table 3. The
top third of the table shows the confusion matrices with a
probability cutoff of 0.5. The middle third gives the results
when we move the cutoff to 0.55. The bottom of the table
shows accuracy and fairness measures for both cutoffs. The

combined confusion matrix for the model is the sum of
the two confusion matrices. For illustration, we compute
some of the accuracy and bias metrics off these confusion
matrices, shown in Table 3.

We see that when the cutoff is moved to 0.55, the number of
positive predictions decreases as it should, and the number
of rejections increases for both the advantaged and disad-
vantaged class. The accuracy of the model is attenuated,
falling from 0.82 to 0.79. However, demographic parity
DPPL improves as the bias falls from 0.25 to 0.18. There-
fore, we see that an inverse tradeoff between fairness and
accuracy in terms of this metric. This is also the case for
some other fairness metrics that also improve, i.e., DC A,
DAR, DRR, and AD. But, DC'R, which was negative (re-
verse bias) is now positive. Hence, not all fairness metrics
improve. In financial settings, the fact that disadvantaged
class loan applicants are being rejected in practice more than
that suggested by the algorithm would suggest malicious
rejections by the loan officer. This example illustrates that
it is not possible to improve all fairness metrics together.
This comes from the fact that a small number of values
in confusion matrices are unlikely to span all metrics in a
monotonic manner. Therefore, this suggests that modelers
generate multiple measures across a few different models
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Figure 6. Metrics for the German credit dataset after changing the predictions. The blue distribution is the one for men (type 0) and the

orange one is women (type 1).
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Figure 7. Post-training metrics for the German credit dataset using xgboost. The blue distribution is the one for men (type 0) and the

orange one is women (type 1).

and minimize the bias metric that matches their situation
most appropriately.

7.2. Regulations

The financial services industry has a history of regulation
that imposes fairness. For example, the notion of a level
playing field is embodied in the Truth in Lending Act (TILA,
1968), which protects borrowers against inaccurate and
unfair credit billing and credit card practices. It requires
lenders to provide loan cost information so that borrowers
can comparison shop for loans. The Rumford Fair Hous-
ing Act of 1963 and the Civil Rights Act of 1964 were
initial attempts to address discrimination, followed by the
Fair Housing Act of 1968. According to the Department
of Housing and Urban Development (HUD), examples of
discriminatory practices include: different prices for the sale
or rental of a dwelling, delaying or failing to maintain or
repair homes for certain renters, or limiting privileges, ser-
vices, or facilities of a dwelling based on a person’s gender,
nationality, or racial characteristics. These laws formed the
basis for fairness in lending.

The Consumer Credit Protection Act (CCPA, 1968), Fair
Credit Reporting Act (FCRA, 1970), and the Equal Credit

Opportunity Act (ECOA, 1974) prohibits discrimination in
credit transactions based on race or color, national origin, re-
ligion, sex, marital status, age, whether an applicant receives
income from a public assistance program, and an applicant’s
exercise, in good faith, of any right under the Consumer
Credit Protection Act. These are a set of some but not all
protected characteristics financial services firms need to pay
attention to in FAML. These are anti-discrimination laws
and therefore impose a legal fairness requirement. Some of
these laws also impose an explainability requirement: the
ECOA in conjunction with Reg B require an adverse action
notice (AAN) to be sent to any customer who is denied
credit within 30 days. Reg B implements the ECOA and
is enforced by the Consumer Finance Protection Bureau
(CFPB). Reg B requires no more than 4 reasons—known as
“principal reason explanations”—be provided for rejecting a
loan, and Appendix C of Reg B provides a non-exhaustive
list of reasons that may be provided for a credit denial. Prin-
cipal reason explanations are legal constructs and not neces-
sarily those supported by mathematical notions of feature
importance.


https://www.consumerfinance.gov/policy-compliance/notice-opportunities-comment/archive-closed/equal-credit-opportunity-act-appraisals-regulation-b/
https://www.consumerfinance.gov/policy-compliance/rulemaking/regulations/1002/C/
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Figure 8. Post-mitigation metrics for the German credit dataset using xgboost. The blue distribution is the one for men (type 0) and the
orange one is women (type 1). The upper plot is for mitigation via adjust labels (§ = —0.15) and retrain, and the lower plot shows the

outcome from adjusting the predictions directly (n = 0.04).

7.3. Questions to be asked by a financial user

The various metrics examine different nuances and ways in
which bias may arise. However, because there is a multitude
of metrics, it is not always easy to know which ones apply
in a particular situation or domain. Therefore, Table 4 is
prepared as a checklist of questions that may be helpful to
a financial practitioner in order to gain guidance on which
metric is most applicable to the model.

7.4. Simpson’s paradox

As noted in Wachter et al. (2020), unfairness is an outcome
of aggregation in a protected class and when a stratified view
will show no bias. In the well-known Berkeley admissions
study, see Bickel et al. (1975), the overall admissions rate for
women was much lower than that for men, but when the data
was stratified by department, the results showed on average,
women were admitted at higher rates. The aggregate bias
result emanates from the fact that more women applied to
departments with lower admissions rates, but stratification
clarifies that admissions were fair. This is known as Simpson
(1951)’s paradox.

The metric conditional demographic disparity (CDDL) in
Section 3.3 is designed to reflect bias after accounting for
the possible presence of the paradox. We implemented this
metric as an example of both pre-training and post-training

of the model on the German data set. The class variable
is gender. The group variable is Housing which has three
categories: rent, own, free.

First, pre-training, we find that demographic disparity (D D)
is 0.076, biased against women. When stratified into the
three housing groups, we see that DD is 0.043, 0.057,
0.125, respectively, suggesting that most of the bias against
women comes from the free housing sector. So, we compute
CDDL,i.e., the group wise weighted average of DD, and
this works out to 0.062, therefore, CDDL < DD.

Second, we trained the loan prediction model using logistic
regression and xgboost, and then calculated the DD and
CD DL values post-training. For logistic regression, DD =
0.119 and CDDPL = 0.094, where the three group values
of DD are 0.171, 0.084, 0.0382. We see that most of the bias
in the model changes to emanating from the rent housing
category. For xgboost, DD = 0.107 and CDDPL =
0.079, where the three group values of DD are 0.088, 0.072,
0.111. We see that most of the bias in this model comes
from the free housing category. C'DDPL therefore, not
only offers a check for the existence of Simpson’s paradox,
but it also drills down into the subgroups in which bias may
disproportionately occur, in the pre-training dataset and in
the model as seen in post-training outcomes.
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Table 3. Accuracy and Bias Metrics. The table shows the bias metrics generated from the data in the confusion matrices for the two
classes. The metrics are: difference in positive prediction proportions D P P L; difference in conditional acceptance DC'A; difference in
conditional rejection DC R; difference in acceptance rates D AR; difference in rejection rates D RR; accuracy difference AD. The top
third of the table shows the confusion matrices with a probability cutoff of 0.5. The middle third gives the results when we move the
cutoff to 0.55. The bottom of the table shows accuracy and fairness measures for both cutoffs.

Class a ‘ ACTUAL ‘ Class d ‘ ACTUAL ‘
PREDICTED | 0 1 | Total PREDICTED | 0 1 | Total Metric H =050 H=055
H =0.50: 0 20 5 25 0 18 7 25
7 1 ‘ 10 65 ‘ 75 1 ‘ 5 20 ‘ 25 Accuracy 0.8200 0.7867
DPPL 0.2500 0.1800
Total | 30 70 | 100 Total | 23 27 | 50 DCA -0.1467 -0.1190
Class a ACTUAL Class d ACTUAL DCR -0.2800 0.0431
PREDICTED | 0 1 Total PREDICTEDO | 1  Total DAR 0.0667 0.0200
H = 0.55: 0 25 15 | 40 20 9 29 DRR 0.0800 0.0595
1 5 55 60 3 18 21 AD 0.0900 -0.0647
Total | 30 70 | 100 Total | 23 27 | 50

7.5. Explainability

While this paper focuses on fairness, we should not ignore
the interplay between fairness and model explainability. Us-
ing these features related to protected characteristics in a
lending model may be considered discrimination. We may
detect these features using explainability models, such as
the popular SHAP model, see Lundberg and Lee (2017),
Lundberg et al. (2018). Using the German dataset, we ob-
tain the top ten features by Shapley importance, shown in
Figure 9. The most important determinants of whether the
borrower would be granted credit are whether or not she
has a checking account, the loan maturity, and loan amount.
In order to check for fairness, we correlate the top features
with the gender variable, shown on the right side of Fig-
ure 9. As we see, the correlations are low, except for the
Age variable, which is negatively correlated with the gender,
i.e., women borrowers are younger than men borrowers, on
average. However, this may even suggest that women are
being discriminated against for being younger rather than
on gender. There may thus be a direct effect of Age on
loan approval and only an indirect effect of gender. This
is where the causality-based framework of Janzing et al.
(2019) comes in handy. In our example here, though, we
retained the gender variable in our feature set, and since
it does not appear in the list of top Shapley features, it is
unlikely that unfairness on gender exists, though this is not
sufficient condition to exclude gender bias.

7.6. Disparate Impact and Treatment

Disparate impact occurs when policies are equally applied
but still impact the disadvantaged group more than the ad-
vantaged one. For example, a policy of lending to people
who exceed an income threshold has a disparate impact on
minorities, whose income levels tend to be lower than that
of the average borrower in the US. This would be detected
inour DPPL = §, — ¢4 metric. Legally, this is checked
by computing the measure DI = Gq/g, > 0.80, i.e., the

80% rule. Because of the existence of disparate impact laws,

it is important that all financial FAML be cognizant of the
metrics in Section 3.

Discrimination via disparate treatment is illegal and occurs
when the lender discriminates based on a protected charac-
teristic. This may be done through the model, but also by the
human in the loop post-model decision. It may also occur
when a proxy for the protected characteristic is used, e.g.,
zip code for race, as the two are highly correlated, which
forms the basis for redlining. Both DC'A and DCR are
metrics that may indicate disparate treatment.

The outputs from the pipeline may also be used to deter-
mine whether predatory lending exists. We may find that
reverse bias exists, i.e., the disadvantaged class was given
proportionately more loans, i.e., DPL < 0 and DI > 1.0,
but at a higher interest rate. So the model may appear to
be fair in terms of loan proportions, but one group is being
taken advantage of via usurious loan rates. In our example,
there is no evidence of predatory lending on women, be-
cause DPL > 0, DPPL > 0, DI < 1, and the correlation
of the proxy for interest rates (i.e., Instalment percent of
income) is negatively correlated with gender, i.e., lower for
women. There are several other ways in which one group
may be taken advantage of such as hidden fees, unclear dis-
closures, encouraging borrowers to over-leverage, requiring
additional legal processes, etc. It is hard to detect these other
forms of unfairness in the lending process, but many of our
metrics may provide warning signs for these practices.

7.7. Training vs Testing?

Accuracy of ML models is not assessed on the training set;
we are interested in the performance “in the wild,” not on
training data, and we should be more interested in the behav-
ior of the model on unseen data (test/validation set). Does
this also apply to fairness metrics? Whereas the metrics we
propose here apply equally well to any data set (training,
validation, or testing), it is important to stipulate at which
point in the pipeline we will impose fairness computation.
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Figure 9. Shapley values for the xgboost model. We show the top ten features and also the correlation of these features in the data with

the gender variable.

This is a practical issue that all financial services compa-
nies will need to address in their model development and
deployment.

Fortunately, the logical timing of fairness computation is
easily determined. For pre-training bias measurement (“‘data
analysis”) we believe it is best to look at the entire labeled
dataset (train + validation + test data combined). The rea-
sons are: (1) we would like to measure the representative-
ness of the available labeled dataset to determine if we need
to collect more data or do reweighting/resampling; (2) we
would like to measure any biases with labeling itself, by
measuring the differences in the label distribution across dif-
ferent classes. As our goal is to detect these two issues on the
dataset, we can measure them before the train/validation/test
split. If the train/validation/test split was done randomly, the
observed characteristics are likely to hold on each of these
as well. If at all, we may flag when the above measures
deviate significantly on the test data, which may suggest
that the test data distribution is different from that of the
overall dataset.

For post-training bias measurement (“model analysis”), we
recommend focusing on the test dataset. The reason is that
the test data has not been used as part of the training/tuning
stages, and hence it is better to compute bias metrics and
the effect of bias mitigation over this dataset. In particular,
we can use the bias measures computed over the validation
data as part of bias mitigation algorithms.

Turning to explainability, for global explanations of the
model, we recommend applying explainability algorithms
like SHAP over the test data. This is better from the compu-
tational angle as well since the test data is usually smaller
in size.

8. Concluding Discussion

This paper discusses a family of fairness functions that may
be applied to machine learning models for the financial
services industry. There is a growing base of model-driven
lending and credit card activity, implemented by established
firms and startups. These firms are all required to adhere
to legal regulations imposing fairness (see Appendix 7.2).
Are automated machine learning lending models more or
less fair than traditional ones? Bartlett et al. (2017) find
that FinTech algorithms statistically discriminate just as
face-to-face lenders do, but to an extent that is 40% less.

We provide a large number of fairness metrics, applicable
before model training and after. We link these measures to
the legal environment and attempt to provide a taxonomy
using standard nomenclature. Simple bias mitigation ap-
proaches are also offered and a ML pipeline is described,
illustrating how a lender may arrive at a model that is both
accurate and fair. This can be done in an automated way or
with a human in the loop.

ML models entail an accuracy-fairness tradeoff. We provide
an example of this tradeoff and also show how there may be
a tension amongst the fairness metrics, where an attempt to
reduce bias on one measure may lead to exacerbation of bias
on another. At the simplest level we can optimize a model
for accuracy and check fairness measures and then adjust
the model for mitigation and retrain, through an iterative
process. In general, given a machine learning model, we
can apply fairness metrics as constraints (i) after training
and/or (ii) during training. We note that the former is an
iterated approach to implementing the latter. This is because
in a classification scheme, we train the model, compute bias
metrics, and then use this information to decide the next step
to improve the fairness of our model, until we are satisfied
that the bias levels are acceptable.
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However, we may want to train our models for the highest
level of accuracy (optimization) while simultaneously en-
suring a high level of fairness (regularization). Therefore,
as future work, we will extend our thinking of FAML to
regularization during or after optimization (where the third
option, i.e., before optimization, is part of the pre-processing
of the data, without considering the predictive model itself).

An interesting application of this idea is the following: using
machine learning methods requires us to choose certain
configuration parameters, which have to be selected before
the optimization of our model. Usually these parameters
are called hyper-parameters and they are picked following
different validation procedures, i.e., sequentially repeating
the training of our model with different configurations, and
selecting the one that is more promising with respect to
our goal (in our case, a model that is accurate and fair).
The validation procedure can be made more efficient by
applying hyper-parameter optimization (HPO) techniques
(Feurer and Hutter (2019)) such as those based on Bayesian
Optimization (BO) methods.

BO is a class of global optimization algorithms for mini-
mizing expensive-to-evaluate objective functions. Sequen-
tial BO is performed by building a surrogate model of the
objective function and then sampling a subsequent point
determined from an acquisition function criterion. This is
repeated until either the given budget is exhausted or the
user terminates the loop. Interestingly, it is possible to en-
force a fairness constraint on the BO framework in order
to optimize black-box models for performance subject to
specified fairness metrics. In this sense, the constrained
BO technique is able to explore areas of the space of the
configurations with higher probability of having accurate
and fair models simultaneously. It has recently been demon-
strated that accurate and fair models can be obtained by
tuning a machine learning model’s hyperparameters using
this approach (Perrone et al. (2020)).

Although equalizing error rates is an intuitive and well-
studied group fairness notion, it may be desirable in some
application settings to minimize the largest group error rate.
As an example, for a lending application scenario wherein
most or even all of the targeted population is disadvantaged,
it may be desirable to ensure that the group with the largest
error has as less error as possible. Such approaches have
been explored as part of the recently introduced minimax
group fairness framework (Martinez et al. (2020); Diana
et al. (2020)).

Further, it is important to mention that we may also consider
causal models for determining bias, as noted in Janzing et al.
(2019). Causal models are much harder to implement, for
they often require additional information to be brought into
the analysis and also require stronger statistical conditions
to be met. Causal models may also tease out the difference
between disparate impact and disparate treatment.

Finally, we recognize that the notions of bias and fairness
are highly application dependent and that the choice of the
attribute(s) for which bias is to be measured, as well as the
choice of the bias metrics, may need to be guided by so-
cial, legal, and other non-technical considerations. Building
consensus and achieving collaboration across key stake-
holders (such as product, policy, legal, engineering, and
AI/ML teams, as well as end users and communities) is a
prerequisite for the successful adoption of fairness-aware
ML approaches in practice (Bird et al. (2019)).
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Table 4. Fairness questions that may arise in a financial ML model. This table provides some example questions that arise while checking
for bias. This list is indicative and not exhaustive. It is a checklist of questions that may be helpful to a financial practitioner in order to
gain guidance on which metric is most applicable to the model.

Example Questions

Metrics Related to

Is the data for each class balanced? Signals that bias may occur in the trained ML model if there is not
enough data from a Facet. Example: in small business lending, datasets may contain very few loans to
one group, resulting in a trained model that may disfavor that group.

Is there a big disparity in outcomes in the dataset across the classes? Indicates possible bias in the
dataset if there is a big imbalance in labels across classes. Example: the rates at which various races are
granted parole is very different.

Is a certain facet a bigger proportion of the rejected outcomes than the proportion of accepted outcomes?
Note: just this question would lead to an answer to whether demographic disparity exists. The condi-
tioning on an attribute is needed to rule out Simpson’s paradox. Conditional Demographic Disparity
(CDDL or CDDPL in this paper) is explained in the paper by Wachter et al. (2020). The example arises
in the classic case of Berkeley admissions where men were accepted at a 44% rate and women at a
36% rate overall, but then this metric was examined department by department, the women on average
were admitted in higher proportions. This is because more women applied to departments with lower
acceptance rates than men did, though even in these departments, women were accepted at a higher rate
than men.

Does the model give proportionately more loans to one class than another? Note: (1) this ignores
completely that one class may be more qualified than the other (as suggested by the observed labels).
This metric demands parity irrespective of the fitness of each class. (2) Interestingly, a model that is
purely random, i.e., has accuracy=0.5 in a binary label setting will automatically be fair by DPPL.

Is the ratio of proportions of loans given to each class the same? Does this satisfy the 80% rule, i.e., the
ratio of the minimum proportion to the maximum one should be >= 0.8? Note: this is nothing but
D P PL in ratio form.

The model may grant more or less loans to a certain class than what the observed labels suggested (e.g.,
observed labels contain 50 loans for class 1 and 30 for class 2, predicted labels contain 60 loans for class
1 and 20 for class 2). Is the observed vs. predicted ratio the same for different classes? In the current
example, there is a bias against class 2.

Is the model different across classes in picking up the truly deserving borrowers? This assumes that
the observed labels are unbiased. Given this assumption, here is an example: if the number of truly
deserving borrowers from class 2 is 60 and the model only recommends that 50 get a loan, and the truly
deserving borrowers in class 1 are 50 and the model recommends that 45 get a loan, it is biased against
both classes, but it is more biased against class 2. This difference in bias across the classes is measured
by RD.

Is the model accepting equal proportions of the qualified members of each class? Is the model also
rejecting equal proportions of the unqualified members of each class? These are related to ideas of
equal opportunity and equalized odds.

Does the model predict the labels for one class more accurately than for others? Example: If the
process for granting loans to under-represented populations is much more noisy than for everyone else,
we may be mistreating deserving members of under-represented populations, even when there is no
bias according to many of the other measures. This may be indicative of a more insidious form of
discrimination. It is related to individual fairness.

Even if the accuracy across classes is the same, is it the case that errors are more harmful to one class
than another? T'E measures whether errors are compensating in the same way across classes. Example:
100 people from class 1 and 50 people from class 2 apply for a loan. 8 people from class 1 were
wrongly denied a loan and another 6 were wrongly approved. For class 2, 5 were wrongly denied
and 2 were wrongly approved. T'EE = 0.75 for class 1 and TE = 0.40 for class 2, even though
accuracy = 0.86 for both groups. (This measure was promoted by Berk et al. (2017), but has issues
when FN=0.)

Are a small group of people from class 1, matched closely on all features with a person from class 2,
paid on average more than the latter? Note: when this measure is applied irrespective of class, we can
check if individual fairness is achieved.

CI -

DPL, KL, pre-training demographic parity
JS, LP,
TVD,KS

CDDL, demographic disparity (not to be con-

CDDPL fused with demographic parity); re-
lates to direct discrimination where a
person is treated unequally based on
a protected characteristic, and also to
indirect discrimination where a policy
that appears to be fair, impacts one
class more adversely than others.

DPPL mean difference, post-training demo-
graphic parity, statistical parity, dis-
parate impact, group discrimination

score

DI disparate impact, 80% rule.

DCO, disparate treatment

DCA,

DCR

RD sufficiency, conditional procedure ac-
curacy, false positive rate, success pre-
diction error

DAR, equality of opportunity, equalized

DRR, PD odds, individual fairness, predictive
parity

AD disparate treatment, individual fairness

TE -

FT counterfactual fairness, individual fair-
ness




