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ABSTRACT

When it comes to the task of writing a large-scale, real-world project, programmers rely on a
host of tools: IDEs, debuggers, compiler optimizations, security checkers, test case generation
and more. These tools are invaluable to allow developers to write quality code. However,
tool support varies wildly dependent on which language the developer chooses to write in.
Often, tool support is especially lacking in domains where the language itself makes some
feature of the analysis more complicated or difficult. These domains pose new and interesting
intellectual problems, but more importantly, they represent areas for improvement in developer
tool support. This dissertation focuses on two domains where static analysis is complicated
due to the shortcomings of the programming language itself.

First, we examine the domain of cross-language (or “polyglot”) C programs, specifically
programs that call C from a program written in another language. These programs frequently
lack even the most basic of tool support at the cross-language boundaries, which ironically is
where support is most needed. At cross-language borders, differences between the language
performing the call (the “host” language) and the language the callee is implemented in
(the “guest”) language, can make constructing intuitive APIs challenging. We applied
new techniques to identify developer intent as to how various arrays represent their length
in program APIs. Our tool emits output that can be parsed by the GObjectIntrospection
project[12], which automatically creates efficient, intuitive language bindings for C projects
to a variety of host languages.

Second, we focus on the domain of JavaScript programs. JavaScript has been extremely
popular in the last decade, holding the #1 mostly commonly used programming language
for the past 8 years, according to the Stack Overflow Developer Survey in 2020 [32]. Its
popularity looks likely to continue: in the same survey, it placed second in the list of languages
developers most desired to learn. However, because of JavaScript’s extremely dynamic type
system, writing tools to support JavaScript developers is especially challenging. We identified
one large bottleneck for JavaScript tool support, call-graphs, and applied new techniques to

improve call-graph construction for JavaScript programs.
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1 INTRODUCTION

Ask ten programmers working on different tasks what their favorite language is, and you will
get ten different answers. If the programmers are all in the same room, very likely a lively
debate about the merits (... and pitfalls. .. ) of each will ensue. Comics will be deployed,
famous programmers will be quoted,! and participants will walk away with opinions more
firmly held than when they arrived.

Despite deeply-entrenched opinions about their favorite languages, today’s programmers
typically use more than one programming language: according to the data from the StackOver-
flow Developer Survey in 2020 [32], developers reported using an average of 5.0 different
languages in 2019, and reported that they would like to use 4.4 different languages on average
in 2020.2 Why do developers use so many languages when they care so deeply about which
language they prefer? The answer is complicated. Some languages are simply more suited to
particular tasks. In other situations, existing codebases (“legacy code”) may require developers
to either scrap previously completed-and-tested code and spend many dollars and man-hours
re-implementing it, or work in an older language they may not prefer. At times, it can be
a balancing act of the languages the team is fluent with, the tool support provided by each
language, and the particular quirks and idioms that make a language more suited for one task
or another.

This dissertation focuses on addressing the needs of developers particularly in need
of tool support to accomplish their development aims. All too often, tools are written as
proof-of-concept, and focus on the best-case scenarios, or languages most suited to analysis,
rather than the languages that actually need the support the most. The challenging domains
are very often the domains that most need tool support: where things are challenging to
analyze automatically, generally they serve as fertile breeding grounds for bugs and bog down
developer time and effort.

One particularly large hurdle to static analysis is domains where type information is
extremely limited. Type information confounds static analysis in particular because, when
present, it serves to constrain the space of possibilities. When not present, its lack interferes
with basic needs program analysts have to provide adequate tool support. Its absence often

causes developers difficulty as well. While writing in a language with a compiler that

"“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offense.”
Edsger W. Dijkstra

2When we processed these data, we ignored reports from developers who did not list any languages from
2019.




complains over the slightest infraction has its own disadvantages, weak typing often leads to
mistakes that can introduce bugs. We only wish we could address all such domains, but this
dissertation at least addresses two — improved tool support for connecting modern languages
to C, where the limited type information about pointers makes automatic bindings challenging;
and JavaScript static analysis, where JavaScript’s innately dynamic nature requires that all
type information be constructed by an analysis. This dissertation, therefore, uses static
analysis driven by empirically-proven heuristics to recover missing type information

and support traditional static analysis techniques.

1.1 Why Bother With C?

The first part of this dissertation examines the domain of cross-language (or “polyglot”) C
programs, specifically programs that call C from a program written in another language. These
programs frequently lack even the most basic of tool support at the cross-language boundaries,
which ironically is where support is most needed. Most mono-language programmers take
intuitive method calls for granted. However, at the cross-language borders, differences
between the language performing the call (the “host” language) and the language the callee is
implemented in (the “guest”) language, can make constructing intuitive APIs challenging.
Ideally, developers would work in whichever language is most convenient for the task at hand,
the developer assigned to the task, and the development environment used. If needed, the
developer could simply invoke functions written in legacy code. In the real world, this is
not as simple as it sounds. Weaving together multiple programming languages into a single
coherent program (“polyglot” development), can be very challenging depending on which
languages the developer needs to use. Worse, there are a myriad of ways for extremely subtle
bugs to creep into the program, hiding in unusual corners where the two languages interact in
unexpected ways.

When it comes to unusual modes of interaction, older languages fall prey to this more
often than newer languages, especially low-level languages like C. Data from Two Sigma
Ventures [47] indicates that C appears more commonly used as a secondary development
language, rather than the primary. (See Appendix A for more details on this data.) Imagine
being a modern developer writing, say, a Python program. You come across a task that would
be much more efficient with access to low-level data access that C excels at: in fact, you
even find a C library that does more-or-less what you want. Unfortunately for you, it doesn’t

have an API that allows function calls from Python, only an API accessible from C code.



So you’re faced with a decision: you can try to find a similar library in Python and take the
performance hit, or you can attempt to stitch together your program and the C library. The
second approach has one large problem: the representation of data types in C and Python are
extremely different.

Therefore, to take this approach, you need to manually package up each argument as C
expects. This is even more complicated than it sounds in practice: C represents data very
differently from most modern programming languages, particularly as it does not have a
concept of objects per se. C expects raw pointers to data, rather than a container object
that may have multiple fields. Effectively, types that are represented as objects in object-
oriented languages (and therefore have structured type hierarchies) are left without static
typing and the safety it provides. One place where this difference proves especially stark
is in the representation of arrays. Most modern languages treat arrays as container objects
with indexing allowed, memory checks for safety if an index is out of range, and crucially,
knowledge of the length of the array. C does not distinguish arrays from other pointers. It
simply references a bit of memory, and the programmer can ask for an offset from that, with
no guarantee that it will be valid, if they believe that bit of memory is conceptually part of the
intended array. C developers are left to their own resources to devise conventions to track the
logical and conceptual lengths of the data allocated, rather than having this baked into the
type information provided with the array. Thus, copying a Python array to a new C array is
more involved than simply allocating memory and copying over the data. You also have to
determine how the function you plan to call will treat the array, and how it will decide on the
length. Sometimes this is obvious from the names of the function arguments, but sometimes
these names are unhelpful, even misleading. This problem inspired our approach in Chapter 2.

We focus particularly on the use case of host programs written in any language but C, not
because it is easier to analyze3, but because it is a place of especially great need for developers.
Without array-length information, an automatic technique to extract cross-language bindings
cannot correctly package up arrays and strings from high-level languages, instead requiring
the developer to tediously package up any arrays or strings passed in, and manually copy out
any that may have been changed or returned. We applied new techniques to identify developer
intent as to how various arrays represent their length in program APIs, since program-level

support for array lengths is unavailable. Our tool emits output that can be parsed by the

3“We choose to go to the Moon in this decade and do the other things, not because they are easy, but because
they are hard.”
—John F. Kennedy



GObjectIntrospection project[12], which automatically creates efficient, intuitive language

bindings for C projects to a variety of host languages.

1.2 Aren’t Call-Graphs a Solved Problem?

The second part of this dissertation focuses on the domain of JavaScript programs. Dynamically
typed languages have stood the test of time, and continue to become more relevant and more
important in modern software development. Stack Overflow’s 2020 Developer Survey Results
reports, ‘Unsurprisingly, for the eighth year in a row, JavaScript has maintained it’s stronghold
as the most commonly used programming language.” [32]. Furthermore, the 54% of
respondents who reported using JavaScript in 2015 [31] rose to 68% by 2020 [32]. These
Developer Survey Results also indicate that modern developers want to program in JavaScript:
18.5% of developers who do not currently use JavaScript indicated that they wanted to learn it
in 2020. JavaScript is surpassed in this regard only by Python, another dynamically typed
language, which 30% of developers desire to learn. Data from Two Sigma Ventures [47]
agrees with this, as JavaScript features in 32 of the 100 most popular GitHub projects they
list, and often occurs in very high proportion, indicating it commonly serves as a primary
development language. Yet, despite this, Stack Overflow still finds 41.7% of developers in
2020 as “dreading” JavaScript: these are “developers who are currently using [JavaScript but]
express no interest in continuing to do so.”

In addition to concerns about developer contentedness, as dynamic languages (including
JavaScript) grow ever-more-popular, so do significant security concerns and development
costs for debugging. These concerns are widespread across dynamic languages, but especially
relevant for code that manages secure user data, such as web development. Analysis tools
to help developers find and correct security vulnerabilities can broadly be classified into
dynamic and static strategies. Static approaches for program analysis reason over all possible
executions of the program, while dynamic approaches focus on specific executions of the
program. Dynamic strategies have a broad range of support in dynamically typed languages;
however, the range of support for static program analysis techniques is generally far more
limited. Yet if we wish to gain confidence that our programs are truly secure, an analysis
reasoning about all executions of the program would be incredibly valuable.

Preventing developer dread and avoiding security vulnerabilities are difficult for any
language, but are especially challenging for dynamically typed languages. One reason is the

severe lack of static-analysis support for programs written in dynamically typed languages.



Without the tools they need to effectively debug and understand their program, developers
may become frustrated and wish to switch to a language with better support. The lack of
these tools can also easily lead to security vulnerabilities, which may only be found months or
even years post-release. Yet dynamic languages are here to stay: since its inception in 1995,
JavaScript has become solidly entrenched as an essential component of web development. It
is not reasonable to expect developers to cease using dynamically typed languages, nor would
it be beneficial to lose the many advantages of having dynamically typed languages at our
disposal. Real code is messy, and static-analysis techniques must be robust enough to handle
the realities of our development landscape, not only the most suited to easy analysis.

To that end, we focused on providing developers in dynamic languages the backbone of
static-analysis techniques: call-graphs. Many static-analysis techniques rely heavily on a
call-graph for information regarding interprocedural edges. In a statically-typed language, type
information provides key insights that limits the number of possible callees at any given call
site. In many dynamic languages, however, types are defined entirely dynamically. JavaScript,
for instance, uses a prototype model rather than an object-model; JavaScript developers have
no alternative but to develop their objects piecemeal, adding functions and fields to their
objects on-the-fly. In effect, creating call-graphs becomes similar in nature to a points-to
problem.

Our technique focuses on providing focused bursts of context sensitivity, based on a
rigorous set of empirical tests, and seeks to do additional work upfront to avoid performing
unnecessary work later. See Chapter 3 for details of our implementation. Equipping JavaScript
developers with call-graphs makes it far easier to implement tools that rely on interprocedural
information. Hopefully, this will better equip JavaScript and other developers in dynamic
languages with the ability to write better code in a way that reduces developer dread and

improves the development experience.

1.3 Impactfulness

This section is dedicated to the impacts that our work may have beyond the direct implications
of the features added directly. While we contribute technical knowledge and novel analysis
strategies, the impact of this research has the potential to more broadly impact computer
science and related fields, and this section acknowledges this and lays out some of the
anticipated effects. At a high level, of course, it is our hope that the tools we provide in this

work will inspire more developers to produce tools for domains that are especially challenging



and also particularly in need of tool support. Arguably, all of the work on call-graphs can be
considered part of this section, as the call-graphs themselves are not the piece of the toolbox
developers are missing, but the tools that rely on call-graphs. The work focusing on polyglot
development is more nuanced in terms of benefit, and is explained in more detail below.

Improving developer experience when working with more than one language has benefits
for more than just developers who are already writing polyglot programs and contending with
extra sources of overhead. It will also free all programmers to become polyglot developers,
by reducing the pain in doing so. This will have important effects. Developers will be able
to make better use of all the tools at their disposal. Rather than needing to search Google
and ask StackOverflow about “NumPy for C++” or “Boost for Python,” polyglot developers
could use the libraries they’re familiar with. This can lead to faster development time, since
developers do not need to spend as much time becoming familiar with libraries that are
similar-but-not-quite-identical to the ones they are accustomed to. Also, it may even lead
to fewer mistakes in using the APIs, which can both speed up development time and create
less buggy code. Developers using an almost-identical API can be tempted to treat it as
completely identical, and subtle mistakes can creep into the code. If developers can use the
API they are familiar with, instead of a similar one, these mistakes do not occur. In addition
to the extra library support, more support for polyglot development encourages developers
to switch between languages dependent on the task at hand. Doing so will allow developers
to write more natural code for each task, and will hopefully speed up development time.
Rather than being forced to weigh the relative trade-offs and benefits of possible development
languages on the broad scale of a full project, developers can weigh these trade-offs at a more
fine-grained level, such as the function level. This will allow them to reach a more optimal
development flow, since they are never “locked in” to using a particular language because of
legacy code, library support available, or the most helpful language for the majority of the
project. In a world where polyglot programming is faster and easier, developers will be able
to switch between languages as the task they are working on changes.

Another important benefit of polyglot development is collaboration. Developers developers
work more effectively and efficiently in the language they are most comfortable in and prefer,
but polyglot development also opens the door for collaborations between different areas.
There are many areas of science with pet languages. Fortran is unusually ubiquitous among
meteorologists, for example. Yet most of the programming community shies away from
Fortran, meaning it does not have many of the most up-to-date libraries and techniques that

the rest of programming world is using. Meteorologists are then effectively deprived of many



tools and techniques that should be at their disposal. On the other side, they also develop
interesting frameworks and predictive models that other communities, such as the machine
learning community, might benefit from . . . if they were accessible from a language other
than Fortran. Meteorologists are just one example: many other disciplines have pet languages
and are similarly isolated from programming communities and resources. Many scientific
disciples have one or two favored languages that might isolate them from other scientific
research. Bridging this gap by making polyglot development easier can better equip scientists
for cross-disciplinary research, and allow them to share broader-impact ideas and techniques
that are typically only accessible from one language. Collaboration and idea-sharing are
pillars of modern research that more straightforward polyglot development would directly

support.

1.4 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 discusses our work
on statically analyzing C programs to uncover developer intent about length information for
arrays. Chapter 3 discusses our approach to constructing call-graphs in JavaScript. Both
Chapter 2 and Chapter 3 contain a discussion of their related works and suggestions from the
authors for future work. Chapter 4 summarizes the results from Chapter 2 and Chapter 3, and
presents future directions for work more broadly than discussed in the individual chapters.
We also provide advice for other program analysts facing similarly stymieing experimental
evaluations, and conclude. Appendix A contains data from GitHub projects categorized by

Two Sigma Ventures [47] as the current “most popular” GitHub repositories.
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2 C ARRAY LENGTH INFERENCE

Substantial portions of this chapter are derived a paper by Maas et al. [25]
published in ASE ’16.

In modern programs, writing code in a single language may not always suffice. Developers
may wish to write new code in one programming language yet use legacy code written in
another, or may wish to switch among languages depending on the task at hand. This leads
programmers to produce polyglot programs that mix multiple languages in a single application.
Foreign function interfaces (FFIs) support polyglot developers by letting high-level languages
call into low-level languages through a series of library bindings. These bindings can hide
the tedious details of converting data types from one language to another. In the context of a
cross-language function call, the host language is the language supporting the callee, and the
guest language is the language supporting the caller.

A well-written binding does more than just hide low level details of polyglot programming.
It additionally exposes low-level language functions in a way that is consistent with the style
and idioms of the high-level-language. For example, a C function that accepts an array usually
also requires the array’s length as a separate argument. A well-written, idiomatic binding
hides such details, freeing the programmer to simply pass the array.

However, creating bindings manually is time-consuming and tedious. Additionally,
human-created bindings frequently contain errors (Section 2.4.3.2), resulting in a scarcity of
high-quality bindings. We are concerned with creating high-quality bindings to C, a popular
target for language bindings. However, the C type system lacks high-level type information,
complicating the automatic production of high-quality bindings. For example, most high-level
languages clearly distinguish pointers (references) from lists, and the representation of a list
includes its length. By contrast, C conflates arrays with pointers, which have minimal type
information. A C array is simply a raw pointer to allocated memory that may (or may not)
extend beyond a single element, and the length of an array is not stored as part of its run-time
representation. Even a C string is represented merely as the char* pointing to its first character.

Thus, C developers are left on their own to determine how large a given array is, and may
adopt different strategies in different functions. Three idiomatic strategies are particularly

common:

1. The array ends with a special sentinel value that can never appear as a regular array

element. Such arrays are considered to be sentinel-terminated. Correct C programs
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should not read past this sentinel value. C strings are the most common example. Each
string in C is represented as an array of char ending with the sentinel character '\0', or
ASCII NUL.

2. The length is stored as some other value maintained alongside the array itself. For
example, a function may take two arguments: one for the array, and one for the length.

Likewise, a structure might store an array and its length in a pair of fields.

3. The length of the array is a constant. A fixed-length array of size k requires an implicit
agreement between the caller and the callee: the callee provides an array of at least size

k, and the caller never accesses more than k elements from the array.

In C, there is no way for a function to verify that it has been given an array argument
of the correct length. A library binding written in a high-level language could perform this
task. Ideally, a library binding for a function accepting a C pointer should allow the caller to
present a high-level array or string when appropriate. Our goal is to automate the production
of such language bindings.

The remainder of this chapter is organized as follows. Section 2.1 establishes the
motivations for automating annotation inference, and describes the annotation system that
consumes our analysis results. Section 2.2 reviews related work to set the context for our novel
approach. In Section 2.3 we formalize each length idiom, and present our approach in detail
(for each distinct length idiom as well as for combining results across uses). Experimental
evaluations in Section 2.4 assess the effectiveness of our implementation when applied to
multiple real-world libraries. Section 2.5 discusses options for future work and Section 2.6

concludes.

2.1 Motivation

Our work automatically recovers high-level information about array arguments in C library
functions, enabling automatic production of high-quality, idiomatic language bindings to C.
Specifically, we provide analyses that identify C array arguments and recover their lengths
from LLVM [20] bitcode. Prior work approaches the problem of determining the lengths
of C arrays with the motivation of discovering memory vulnerabilities in libraries, such as
buffer-overflow violations. Our focus on language-binding generation allows us to focus on
extracting programmer intent rather than discovering buggy code. This enables us to recover

more information about the intended-length idiom, which improves language bindings by
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freeing the caller to pass a high-level string or array. Length information required by the callee
can be extracted by the binding, not the developer. This makes the binding more intuitive, and
lessens the risk that the user of the library binding might accidentally provide incorrect length

information.

def foo(array, string, fixedLen): 1 |def foo(array, string, fixedLen):
X = c_expectLenArg(array, len(array) 2 x = c_expectLenArg(array)
) 3 y = c_expectNulTerm(string)
nulSafeArray = string.replace('\0', 4 z = c_expectFixedLen(fixedLen)
D) 5 return (x, y, z)

nulSafeArray.append('\0"')

y = c_expectNulTerm(nulSafeArray) Listing 2.2: Calls using language

z = c_expectFixedLen(fixedLen) bindings from Python to C with length

return (x, y, z) inference

Listing 2.1: Calls using language
bindings from Python to C without
length inference

Listings 2.1 and 2.2 show three calls to language bindings from Python to C. Assume that
array is a list with arbitrary length, string is a NUL-terminated string, and fixedLen is an array
of exactly length 4. In each example, the binding hides some of the more frustrating parts
of making an external call: allocating space for the array and copying all of the elements
over. Notice that Listing 2.1 contains an additional loop and allocation in the form of
the string.replace call. The string must be NUL-terminated and not contain embedded NUL
characters, as the low-level C function expects. Without high-level array type information
available in the binding, the user is forced to handle this manually. If the user is unsure
whether the string ends with a NUL or contains embedded NUL characters, she might have to
manually copy the characters to a separate array to ensure this.

In Listing 2.2, the user directly passes the arrays and string without extracting length
information. In Listing 2.1, she must manually pass the length of each array, even though the
Python object representing each array maintains length information. Extracting the length
information on the Python side is straightforward; the difficulty lies in determining what
length information the C code requires.

Although Listings 2.1 and 2.2 call functions whose names make the expected length
information abundantly clear, this is often not obvious from the API. Programmers who
wish to call a C function must first search for documentation, which may or may not give an

indication as to expected length conventions. Worse, in many libraries, this documentation is
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sparse, out-of-date, or non-existent. Developers may be forced to examine the source code by
hand, searching for evidence of one length convention or another. We address this hidden
work involved in manually creating a cross-language call such as the one in Listing 2.2. To that
end, we automate this process using static analysis. Recovering high-level type information
about C arrays lets us produce language bindings that are more intuitive for users of high-level
languages.

In the case of fixed-length arrays, we offer some benefit beyond a more intuitive binding: we
can produce a more efficient binding by stack-allocating arrays wherever possible. GObject-
Introspection supports annotations providing memory ownership information, and these
annotations can be inferred using work by Ravitch and Liblit [35] (see Section 2.2). This
gives GObject-Introspection the ability to know when it is safe memory management to
stack-allocate arrays. However, only fixed-length arrays may be stack-allocated in C. Stack
allocated arrays avoid memory leaks due to incorrect library usage and also reduce heap
churn, simplifying the job of the garbage collector. Bindings with stack-allocated arrays are
also more amenable to further analysis than bindings that use the heap.

One difficulty in automatically extracting length information concerns the availability
of code which uses the library, or client code. Client code is a natural way to discover
information about the lengths of arrays, both at allocation points and at library API call
sites. Unfortunately, many libraries that would benefit from an automated language-binding
generator do not have easily accessible client code. It might be possible to use test code
instead. However, among the six libraries in our evaluation, gck has no test suite, and 1ibssh2’s
minimal tests do not cover its entire API. The remaining libraries have tests, but we cannot
speak to their thoroughness. Furthermore, we expect that production of language bindings is
most helpful early in a library’s development.At this time, tests are likely to be incomplete or
even missing. Thus, we do not assume client code will be present.

Our high-level goal is to create more automatic, intuitive bindings: more like those in
Listing 2.2 than those in Listing 2.1. We expect this to reduce frustration and ease the learning
curve associated with polyglot programming, for the developer producing the binding and the
developer using the binding. If creating intuitive bindings is made easier for developers, more
developers will create language bindings. If more intuitive language bindings exist, more
programmers will be able to effectively make use of polyglot programming.

To that end, we emit annotations in a format read by GObject-Introspection [12]. GObject-
Introspection provides a suite of tools that read in a series of annotations to provide an

automatic, idiomatic language binding to C. GObject-Introspection can produce language
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bindings to C from many high-level languages, including Python, Java, Perl, and others. In
addition to producing language bindings to each of these languages, GObject-Introspection
streamlines the process of producing language bindings, making it possible to create language
bindings from an arbitrary language more efficiently. Examples in this chapter assume
that the guest language is Python. However, GObject-Introspection’s annotations are more
general, and our tool inherits its generality. While we are limited to GObject-Introspection’s
annotations, their annotations are fairly extensive, and already have many users. The utility
of a ready-made user base and binding generator far outweighs the modest improvement in
precision we could get by creating our own system of more complex annotations. Producing
length annotations automatically bypasses some of the tedious work involved in writing
language bindings, which saves developer time. Further analyses could be combined with
ours to create the full set of GObject-Introspection annotations, which are not limited to just

array length annotations.

2.2 Related Work

Ravitch et al. [36] automatically generate bindings based on static analysis of C, while
Ravitch and Liblit [35] analyze memory ownership in C libraries to produce bindings that
correctly handle memory management. Our work extracts array-length information, not
memory-management models, from C. It could be used in cooperation with these to produce
better bindings. SALInfer [14] statically analyzes C, in part to detect potential buffer overflows.
SALInfer also produces annotations, including a “zterm” annotation for strings, which it
detects by recognizing writes of NUL into buffers. SALInfer operates over a complete program,
and therefore is guaranteed to have access to the source code that writes NUL into each
sentinel-terminated array. We analyze library code, and therefore cannot assume that sentinel
writes are visible to us. Furr and Foster [7] describe a pair of tools that ensure type-safety
of OCaml-to-C and Java-to-C (JNI) bindings. These tools are complementary to ours, as
they statically check produced FFIs for safety, whereas we automate part of the process of
creating those FFIs. Lu et al. [24] perform access correlation in order to hunt concurrency
bugs. In particular, they track constraint specification, which includes symbolic lengths of
arrays. However, they focus only on globals and structure fields, in order to narrow in on
concurrency bugs, while we are interested ultimately in arguments of arrays.

CCured [29] retrofits run-time bounds checks into C code to ensure memory safety.

CCured identifies potentially unsafe accesses by using type-inference rules that follow from



15

physical subtyping and limited manual annotations. We share CCured’s desire to use static
inference to extend the limited type system of C. However, our ultimate goals differ, leading
CCured to add run-time checks for potentially unsafe memory accesses. In contrast, we might
ignore these accesses to extract high-level programmer intent. Further, CCured requires some
hand-crafted annotations; we require none.

A host of other work attempts to recover length information in C, typically with the goal of
statically detecting memory-safety violations. Wies et al.’s shape analysis relies on complex
symbolic predicates to facilitate a precise approach. They require precision in order to accept
only safe memory accesses. Dhurjati et al. [5]’s static analysis enforces memory safety without
(programmer-created) annotations, run-time checks, or garbage collection. They provide a
region analysis to accomplish this. Our approach is more heuristic, which may allow us to
derive more information.

All of these approaches analyze complete programs, not library functions. They assume
that the code being analyzed is untrustworthy, while we assume that library code is correct (at
least in intent). A bug-hunting approach seeks inconsistencies in the way C length information
is treated, and so can only determine that an array is used safely. Our high-level understanding
of the length of an array does not require bug-free implementations. We extract developer
intent, which may still be recognizable despite implementation errors.

Le and Soffa [21] detect user-specified faults, and use path-sensitive data to reduce the
number of false positives presented to the user. They categorize potentially vulnerable
statements into five types, allowing their users to focus on relevant statements. They recognize
the burden on the programmer to provide length information and wish to automate this process.
SoftBound [27] analyzes metadata created at run time in order to catch unsafe memory
accesses. SoftBound uses static analysis to determine where to use metadata at run time, but
they focus on program transformation. They attempt to find every potentially unsafe memory
access. Furthermore, they do not produce symbolic length types evident in the source code;
length information is stored at run time in metadata. We seek a purely static approach, as we
do not assume a complete program.

Rugina and Rinard [38] use an interprocedural bounds analysis to determine memory
safety, and their technique has a wide variety of applications. Their approach is similar to that
of the symbolic range analysis performed by Nazaré et al. [28], which we use to compute upper
and lower bounds of array indices in our tool. Nazaré et al.’s approach is very lightweight,
and appears to scale well to large programs, while Rugina and Rinard’s results indicate that

there may be issues with scaling to larger programs, such as the libraries we intend to analyze.
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Alves et al. [1] provide an optimization technique to disambiguate pointers at run time.
Their focus is towards producing superior optimized code, and to this end they transform the
code to make use of run-time information. Although disambiguation of pointers is useful for
our algorithm, we take a static approach, and thus cannot make use of dynamic information.

SWIG [3] is a very popular tool providing a different set of bindings from GObject-
Introspection, and theoretically could benefit from our provided annotations as well. However,
at this time, SWIG does not support annotations identifying pointers as arrays, nor does it
handle the lengths of arrays. Thus, we target GObject-Introspection instead.

2.3 Approach

This section is organized as follows. Section 2.3.1 describes the formal definitions of each of
our length properties, and Section 2.3.2 introduces the assumptions we leverage to approximate
these length properties. Sections 2.3.3 to 2.3.5 describe the analyses used to recover length
information, and Section 2.3.6 describes our method for merging length properties when
more than one strategy appears to be used for encoding the length. Section 2.3.7 discusses
expanding our analysis to structure fields. Finally, Section 2.3.8 explains sources of false

positives and true negatives in our analyses.

2.3.1 Formal Definitions

Let a be one dynamic instance of a zero-based array in one execution of a function in one
particular run of the code under analysis. Let access(a,i) be true if this specific run ever
accesses a at element i. Let allocated(a) be the total number of elements allocated in the block
of memory containing a. Note that allocated(a) > 0 in all cases. Then define memsafe(a) as
Bi > allocated(a) such that access(a,i). This is the basic memory-safety property, which
requires that a never be accessed beyond its allocated bounds.

We now define the length of an array argument a in the context of a particular execution

of function f. In each of the following cases, assume first that memsafe(a). Then:

Case 1: Let k be the minimum non-negative integer such that access(a,i) — i < k. Then a
has fixed-length «.

Case 2: Let n be an argument to f. If access(a,i) — i < n, then a has symbolic-length 7.
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Case 3: Let w be some sentinel value. If 3n | a[n] = w AV0 < i < n,ali] # w AVi >

n, maccess(a, i), then a is sentinel-terminated by w.

Jointly, we refer to these as the formal length properties of an array. For a to have a
property statically, it must have that property in every possible execution of f. Thus, the valid
static properties of a are the intersection of the properties across all executions of f under
all possible inputs. It is possible for an array to have more than one of these length types
simultaneously. An array might have a fixed-length, and always end with a NUL. Likewise,
perhaps an array has a symbolic-length whose actual value is always a constant. In general,
an array’s length may be some function of other symbolic or constant values. However,
empirically, this is very uncommon, and we do not address this generalization.

All three of the above cases are undecidable in general. For example, access(a, i) is
quantified over all possible runs, on all possible inputs, while allocated(a) requires knowing
the exact sizes of arrays, including those dynamically allocated. In the context of library APIs
lacking client code, this becomes even more challenging: the allocation points may not even
be present. These definitions serve as useful Platonic ideals: perfect but unattainable. With
these in mind, we design static approximations that sacrifice soundness and completeness in

exchange for decidability and greater utility.

2.3.2 Key Ideas

We address the problem of extracting high-level properties about the static lengths of pointers
representing arrays in C. In particular, we recover whether each array argument to a C function
is terminated by a sentinel value, or discover the symbolic or constant value representing the
length. Our approach for doing so necessarily approximates the (undecidable) formal length
properties. Our approach at times over-approximates and at times under-approximates these
properties. In order to more completely analyze libraries, we make three key assumptions,

which introduce these approximations.

1. We assume that functions will not be intentionally obfuscated, and that the developer

intends for each array argument to have at most one formal length property.

2. We assume that library code treats an argument like a sentinel-terminated, symbolic-
length or fixed-length array only if that matches programmer intent. Due to this, if an
argument is ever treated as if it has a length property, it has that property. The

formal definitions (Section 2.3.1) only ascribe a property to an array if it must have that
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property across all possible executions. We ascribe properties to arrays if they have that
property in some execution. Our reasons for doing this are twofold: computing the exact

array length properties is undecidable in the general case; and due to assumption 1.

3. We assume the memory safety property discussed in Section 2.3.1. That is, we assume
that all accesses to elements from an array are safe. Leveraging this assumption, we
recover programmer intent of array length, even in code without the memory safety
property (where behavior is technically undefined). While bug-hunting approaches
analyze the code you have, we analyze the code you think you have.

We do not assume that we have any access to client code that uses a given library.
Analyzing client code would allow us to make use of arguments to malloc indicating the
actual size of the array. However, we intend for our tool to be useful to developers early in the
development process, when there may not yet be any client code to analyze. Furthermore, the
amount of work required for the developer to find client code, verify that it uses the library
code as intended, install the client code and then run our tool may be prohibitive, and our
work seeks to make the process as easy as possible for the library developer. Thus, we do not

currently analyze client code.

2.3.3 Symbolic Range Analysis

Our techniques (especially those in Section 2.3.4) rely heavily on determining upper bounds
on indices into arrays. We accomplish this using static range analysis. Range analyses attempt
to statically infer intervals that conservatively encompass all values a given program variable
can assume. The range analysis we use, which is described and implemented by Nazaré et al.
[28], handles only integer values and allows interval expressions to be symbolic.

For a practical explanation, consider Listing 2.3, with three integer variables (y, sum, and
i) and one array variable (array). Let [[y] represent the statically-inferred interval across
which y ranges, and likewise for [[sum] and [[{]. y is regarded as an input, as are all integer
parameters, since nothing is known about the values they can assume. In a numeric range
analysis, this would typically mean that it resides at the top of the interval lattice, which
denotes the complete absence of information. This can be represented by [—co, c0]. On a
symbolic lattice, however, symbolically representing variable bounds is possible. So, while
very little is known about the actual numeric values y assumes, denoting its interval as
[v,y],y € N is valid and is what the symbolic range analysis does. Naturally, since i is

bounded below by 0 and bounded above by vy, [{]] = [0, y]. Through variable renaming, the
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int symbolicLength(int *array, int y)
{
if (array[3] < 0)
return array[0];

int sum = 0;
for (int i = 0; i < vy; i++)
sum += arrayl[i];

return sum;

}
Listing 2.3: Example function with an argument of symbolic length

analysis also infers that inside the for loop, [{]] = [0, y — 1]. The variable sum is repeatedly
summed with unknown values, so the analysis gives it an abstract state of [—oo, 00].

Range analyses have a variety of applications, such as static branch prediction or proving
safety with regard to memory and integer overflow. Nazaré et al. use their analysis to check
array subscripts against the size of the arrays themselves, in an attempt to statically prove the
safety of load and store operations; i.e., the memory safety property for loads and stores. We
instead use subscript intervals to infer the intended lengths of the arrays they index, as we

explain in Section 2.3.4.

2.3.4 Symbolic- and Fixed-Length Detection

At a high level, we infer that array argument array has symbolic length y if at most the first y
elements are accessed from it. Note the parallel to our definition in Section 2.3.1. We are
attempting to identify exactly the length in case 2. Consider the function in Listing 2.3. This
function accesses the elements O through y — 1 from array. Note that array could actually
have more than y elements; this code would still obey the memory safety property if y were
smaller than the actual length of array. We exploit key assumption 2 when we say that
array has symbolic length y. We cannot recover allocated(array), but we can recognize the
programmer’s intended length.

To find symbolic lengths, we consider the possible range of values for each index into each
pointer argument, array, in a function, £. Assume that y is some integer argument to f. For
our analysis to conclude that array has symbolic length y, some index must have upper bound
y — 1, and all other indices must either have a smaller upper bound or a constant upper bound.
This represents another departure from our definition of symbolic length from Section 2.3.1.

We apply our domain knowledge in order to assume that y will be larger than any constant
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in the general case. We have not empirically found any false positives arising from this
assumption. In Listing 2.3, we can see that the for loop will access precisely elements 0
through y — 1, while element 3 is accessed outside the loop.

With a more sophisticated analysis, we might be able to recover information such as
“array has at least length 3 and at least length y”. However, the utility of this for producing
language bindings is limited to dynamic checks that the binding is being used correctly. While
it provides some benefit, it does not directly make the production of language bindings more
automatic or more intuitive. Further, GObject-Introspection, our target binding generator,
does not currently support annotations that are complex enough to express this. Notice that if
our goal were to statically check for the memory safety property, such information would be
of great use. This would allow us to infer that in order for the array access to be correct, array
must have size at least 3. We could then prove that array always has at least size 3, or find
some input where the size is less than 3.

We use Nazaré et al.’s Symbolic Range Analysis tool (SRA) [28] to determine upper
bounds of array indices. However, SRA only computes the upper bounds of infeger values; it
does not handle pointers ranges. We first transform pointer arithmetic and pointer comparisons
into equivalent array-offset indices, which SRA can then analyze. This transformation replaces
any code that increments a pointer, array, with code incrementing an index, i, by the same
amount. Any operations accessing element j from array are then transformed to access
element j + i. (In most cases, j is 0.) This transformation is interesting in two ways. First,
it is an example of a de-optimization done to make the code easier to reason about and
analyze. Strength reduction, a common class of compiler optimization, may generate code
that increments an array (interpreted as a pointer to its data) rather than using array-offset
indices. We essentially reverse this optimization in order to make more effective use of SRA.
Second, our transformation pass may produce code that is less efficient than the original.
However, this is unimportant as the code is discarded after analysis without being run.

We take an even more lenient approach to determining whether an array may have a
symbolic length in the presence of loops. For each loop, we find code that compares the
address of some element of the array to a fixed offset from the array (y), and branches out of
the loop upon reaching that offset. If each iteration of the loop must complete such a check,
then array has symbolic length y, regardless of what happens outside the loop. For example,
in Listing 2.4, each iteration of the while loop must compare the current value of array to the
initial value of array +y. The while loop terminates once they are equal. This approach is a

heuristic; it causes us to over-approximate the set of symbolic-length arrays compared to the
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int symbolicLoop(int *array, int y)
{
int *end = array + y;
int sum = 0;
while (array < end) {
sum += *array;
array++;

3

return sum;

}

Listing 2.4: Example function with an argument of symbolic length containing a
specialized loop

definition of symbolic-length from Section 2.3.1. This arises because of key assumption 1. In
practice, it appears that C programmers follow this assumption, even though the type system
does not require this. We have found no false positives resulting from this heuristic in our
empirical evaluation.

Fixed-length arrays are a special case of symbolic-length arrays, where every offset from
the array is constrained to be a constant, rather than symbolic. If a symbolic offset from the
array is ever accessed, then the array cannot be fixed-length. The similarity in our approaches
here mirrors the similarity in our definitions of fixed-length and symbolic-length: Items 1
and 2 in Section 2.3.1.

2.3.5 Sentinel-Terminated Detection

Per Section 2.3.1, an array is terminated by a sentinel value if that value lies at the logical end
of the array. Note that this does not necessarily mean that the sentinel value lies at the end of
allocated memory. Rather, any reads past the sentinel value have no semantic interpretation.
Since we assume correct code, we expect not to see any such reads. Listing 2.5 shows a
real-world string hash function that accepts a logical string, and treats it accordingly in the
loop. To identify sentinel-terminated arrays, we search for arrays that are never read past the
sentinel character. In Listing 2.5, the sentinel character is '\0', or ASCII NUL, and after the
function processes a NUL character, it never reads another element from the array.

Our analysis for sentinel-terminated arrays leverages loop structures in order to detect
the sentinel-terminated property. Consider a function, £, with pointer argument array. We
examine each natural loop that accesses offsets of array (directly or transitively), and compute

its set of mandatory sentinel checks of array.
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guint g_str_hash (gconstpointer v)

{

const signed char *p;
guint32 h = 5381;

for (p = v; *p != "\0'; p++)
h=((G«<<5) +h+ *p;

return h;

}

Listing 2.5: Real-world function with an argument sentinel-terminated by NUL, taken
from glib

Let the entry of the loop be Lentry. Let check(array,i,w, b) be an access of array
at offset i/, comparing the value at this offset to w with Boolean result . We consider
check(array, i, w, b) to be a sentinel check of array when control flow exits the loop if b is
true. Thinking in terms of a dynamic execution of the loop, the loop contains a mandatory
sentinel check when every execution from Lentry looping back to Lentry contains at least
one sentinel check.

We determine whether a sentinel check of array is mandatory using a depth-first search
through the loop body. If at least one sentinel check of array must execute on every possible
iteration of the loop, then this loop treats array as sentinel-terminated. Per key assumption 2,
if any loop treats array as sentinel-terminated, then we annotate array as sentinel-terminated.

Notice a deviation from our formal definition of a sentinel-terminated array in Section 2.3.1.
Even with a mandatory sentinel check in a loop, NUL characters may be skipped over in the
course of an iteration. The loop counter could increment by some value other than 1, or reads
and writes outside the loop may occur. In this case, theoretically, sentinel characters might
be passed over. Due to key assumption 3, we ignore this possibility in order to arrive at a
more complete approach. Such an assumption would be unacceptable if we were attempting

to check the memory safety property.

2.3.6 Merging Length Types

To this point, we have discussed how to approximate whether an array has each of the
formal length properties within a single function. Our formal definition of length types in
Section 2.3.1 technically allows for any combination of the three length types. However, our

goal is to produce source-code-level annotations that facilitate cross-language bindings. We
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T = unknown
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(ﬁxed (maxConst))
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notFixed

sentinel(w

symbolic(0) (symbolic(numArgs — 1))

l

L = inconsistent

Figure 2.1: Result lattice for any single array under analysis in a function with numArgs
arguments and no constant index larger than maxConst. Ellipses notwithstanding, the
lattice is finite in both width and height.

are interested in length properties that rely more on developer intent than on the physical layout
of the arrays in memory. For this reason, and due to key assumption 1 (see Section 2.3.2), we
produce at most one annotation per argument, even if more than one could apply. Our goal is
to provide the most helpful language bindings possible, so we make an effort to produce the
most helpful annotation consistent with the analysis. Although multiple length types may
be correct, we attempt to determine the most general one, based on the particular domain of
language bindings for C libraries.

We also extend our analysis beyond individual procedures. In order to address internal
calls from one library function to another, we iterate until we reach a fixed point. As we iterate,
we combine results from different parts of our analysis to select at most one annotation per
array argument. We endeavor to select the most general (still correct) annotation for each array
argument. Figure 2.1 compactly summarizes our scheme for determining which annotations
are the most general. The most general annotation is considered to be the greatest lower bound
of this lattice. Our analysis is guaranteed to terminate, because we only replace an annotation
with a more general annotation and there are a finite number of possible annotations.

Let denote a fixed-length type where n is the fixed length of the array. Similarly,

symbolic(n)) represents a symbolic-length type where n is the argument number of the
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argument representing the length. The sentinel-terminated type with sentinel value NUL is

represented as (sentinel(w)).

We also use three special length types: |[unknown

notFixed

, and |inconsistent|. These

>

types do not correspond to annotations, but represent arrays with intermediate types.
means that the argument is compatible with any length type. Often, this means that there
are no accesses to elements from the array at all. means that the argument is
compatible with any length type except of the form for any n. This can happen
when any non-constant index into the array is present. Often these non-constant indices are
also symbolic length, but it is also possible that the length of the array is determined in some
other way. means that multiple, incompatible length types appear to be present.
For example, the array might be accessed up to locations n and m, which both are additional
arguments to the function. In this event, the most general annotation we can provide is no
annotation at all, since neither piece of length information is truly safe to present. The lattice
is most general at the top, which is consistent with any length type; it is least general at the
bottom, which is consistent with no length type.

For purposes of producing annotations, it is most useful to present only the single most
general length type. Our notion of generality is the one that selects the single binding
that exposes the most functionality. When multiple length types are present, we take the
meet (M) in the lattice depicted in Figure 2.1. For example, (fixed(n)) M (fixed(m)) yields
(fixed(max(n, m))). In general, fixed-length types defer to any other kind of length: an

array that is treated as both fixed-length and sentinel-terminated is assumed to be sentinel-
terminated; an array that is treated as having both fixed and symbolic lengths is deemed
to have symbolic length overall. We choose this to be the most general because a fixed-
length array can always be used where a sentinel-terminated or symbolic-length array is
used. The only requirement is that it be sentinel-terminated or the length be passed as

an argument as appropriate, and the binding can hide this work. Symbolic lengths also

subsume sentinels: for all n, (sentinel(w)) M (symbolic(n)) = (symbolic(n)). We consider

symbolic length to be more general because a sentinel-terminated array has a length that
might be passed as the symbolic length. On the other hand, a symbolic-length array need
not end with a terminating sentinel character, and worse, might contain the sentinel character
well before the logical end. The binding would need to determine how to handle this, and

may make the wrong decision. Finally, mismatched symbolic lengths are incompatible:

(symbolic(n)) N (symbolic(m)) = |inconsistent] unless n = m. In this event, we have no
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recourse: there is no way to determine which of the two symbolic lengths were intended by

the developer, and any assumption may cause a confusing binding to be created.

2.3.7 Structure Information

C structures can contain pointers which have the same ambiguities as argument pointers, and
can be analyzed similarly. Like C pointer arguments, structure elements that are pointers also
require their length to be stored implicitly. This can be done in the form of an additional
structure field representing the length, or the structure field can be sentinel-terminated, or
may have a fixed, known size. A structure field has a length property if any instance of the
structure treats the field that way, as per key assumption 2. Once we have determined a length
property for the structure field, consider that any array arguments stored in it could be accessed
wherever the structure field is accessed. Thus, if a structure field element is ever treated as
fixed-length, sentinel-terminated or symbolic-length, then any pointer arguments stored into
that field must follow the same length idiom (key assumption 1). This potentially allows us
to retrieve length information about array arguments that would otherwise be impossible to
determine, for example, in a setter function taking a pointer to a structure along with the data
to store in the structure. After determining the length properties of structure fields (as in
Section 2.3), we search for store operations that store an array (either an argument or structure
field) into an annotated structure field. We then propagate this length information to the stored
array as well. In theory, this also gives us more information about the structure arguments
to functions, as well. GObject-Introspection currently does not support such annotations on
structures, presumably because most functions that require a structure are not part of the
external API that would require a binding. If structure annotations are available in the future,
our tool should provide these with minimal modification.

We implemented such an analysis and combined it with our argument analyses. This did
allow us to recover length information for a handful of array arguments that had previously not
been recovered, but it also slowed execution time massively. Further details on these results
can be found in Section 2.4.5. This overhead is likely because of the vast number of stores
into structure elements in a sizable library. Furthermore, it seems that many of the functions
benefiting from this new information were not part of the public API of the library, meaning

that the end user will not benefit from annotating these arguments in the first place.
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2.3.8 Notes on Soundness and Completeness

Most length analyses, particularly those for verifying the memory safety property, attempt to be
sound or complete. Soundness requires never reporting an erroneous length type; completeness
requires reporting all length types. We sacrifice both soundness and completeness in favor of

practical utility.

2.3.8.1 Practical Trade-Offs for Useful Bindings

We find a trade-off between two competing concerns. On the one hand, finding the physical
lengths in memory of each array argument produces more useful bindings than finding the
highest-numbered element a function will access. However, this often cannot be statically
determined without introducing unsoundness. On the other hand, finding the maximum
array offset is more frequently statically discoverable. However, this can produce less useful
bindings, since the last used element may or may not correspond to the allocated length of the
array.

A sound analysis would necessarily miss cases where arrays seem to have different types
of lengths in different contexts. We assume this is the result of analysis imprecision, rather
than a violation of key assumption 1: library writers treat arrays as though they have only
a single type of length. This allows us to report length annotations where a sound analysis
could not. A complete analysis, on the other hand, would necessarily retrieve some incorrect
length information, which would produce incorrect bindings. We strive to avoid producing
incorrect annotations, and so cannot take a complete approach, either.

Therefore, we take an approach which is neither sound nor complete, and thus we may
produce both false positives and false negatives. Recall from Section 2.3.6 that each array has
a most general annotation. Consider a false positive to be a function argument annotation
identifying an “incorrect” length: i.e., any annotation but the correct most general one. A
false negative fails to attribute the correct annotation to a function argument that requires an
annotation. Note that a single annotation can be both a false positive and a false negative if it
identifies an incorrect annotation in place of the correct one. For example, if an array has
length (fixed(8)), reporting length both identifies an incorrect annotation and fails
to identify a correct annotation. In one sense, this is the harshest method of assessing false
positives and false negatives that we could use. Not only do we fail to award “partial credit”
for inferring length properties that are less general than the correct one, but this incurs a false

positive in addition to a false negative.
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Table 2.1: Library details. KLoC measures thousands of lines of source code, estimated
with SLOCCount [50].

Number of Function Arguments

Name KLoC #Funcs All Symbolic Fixed Sentinel Time (sec)
glib 151 1,813 4,092 77 12 483 211
gio 188 4,948 11,506 66 11 1,052 286
gck 15 247 719 26 0 12 7
telepathy-glib 151 917 2,016 25 0 155 275
libgit2 151 3,668 8,750 89 16 948 151
libssh2 39 349 1,266 125 6 81 14

2.3.8.2 Sources of False Positives and False Negatives

Even with an unsound and incomplete approach, it is important to clearly identify the kinds
and causes of potential errors, and to mitigate these risks as much as is practical. We find
both false positives and false negatives resulting from our tool, but false positives are much
less common. We intentionally designed our tool to produce more false negatives than false
positives: a false negative creates a binding that is less idiomatic but still usable, whereas a
false positive can render an API unusable. Such annotations may, for example, unnecessarily
hide arguments or overly restrict their types.

Our analysis is subject to imprecision resulting from pointer aliasing, as we do not perform
an alias analysis. This could result in a false positive if the array has inconsistent types across
aliases (violating key assumption 1). For example, if the first y — 1 elements are accessed from
array, and the y'!" element is accessed only through an alias of array, we would incorrectly
report that array has symbolic length y. However, in practice, we have not seen such false
positives, and believe this to be unusual. Thus, the additional time and space overhead required
for alias detection is not merited. Aliasing also could theoretically result in false negatives, if
elements from array are accessed only via an alias. In that case, we will report that no length
information is available for array. This, also, has proved to be rare in practice.

We may incur false negatives in the presence of variadic functions, which do not accept a
fixed number of arguments. The length of a variadic list of arguments is usually determined by
a format string. While many arguments passed into variadic functions like printf are strings,
symbolic-length arrays, or fixed-length arrays, many are not. It is possible to identify variadic
arguments, but it is not possible to determine their types without examining the format string,

which contains more complex type information than we support. Variadic arguments serve as
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Table 2.2: Rates of correct and incorrect analysis results in complete libraries

Rate of True Positives Rate of False Positives
Name Symbolic Fixed Sentinel Symbolic Fixed Sentinel
glib 0.7143  0.9167 0.8903 0.0002  0.0005 0.0044
gio 0.8030 0.7273 0.7814  0.0000  0.0000 0.0061
libgit2 0.7191  0.8125 0.8565 0.0001  0.0006 0.0003
libssh2 0.7280  0.8333  0.8765 0.0000  0.0047 0.0000
Arithmetic Mean 0.7411  0.8224 0.8512  0.0001  0.0015 0.0027

an extreme example of treating arguments as having different types depending on context, so
key assumptions 1 and 2 do not apply.

Our last causes of false positives and negatives arise from external sources. SRA itself is
unsound and incomplete, which may cause us to produce false positives and negatives. Our
approach can also be incomplete if the only evidence for an argument’s length is in a call to
an external library function, whose code is not available to analyze. In that case, we allow the

user to provide as input a set of hand-created annotations.

2.4 Experimental Evaluation

We have implemented the analyses described in Section 2.3 using LLVM 3.7 [20]. Our
implementation focuses on the special case where the sentinel value is a zero of any type, as this
is the standard way to represent C strings. This is motivated by our target for language bindings,
GObject-Introspection, which currently only has annotation-level support for zero-terminated
arrays. Our tool operates on LLVM bitcode, and therefore is easily incorporated into any
Clang-compatible build or analysis tool chain. All experiments were run on one 2.67 GHz
CPU of a desktop workstation with 24 GB of RAM running Red Hat Enterprise Linux 7.

2.4.1 Test Subject Selection

We have evaluated our tool on the following libraries:
* gck v3.18 implements PKCS #11, a form of public key cryptography [10].

* gio v2.46.2 is a virtual file systems API [11].
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* glib v2.46.2 provides a framework for C libraries, including utility functions and a

struct-based object system [8].
* libgit2 v0.23.4 implements the Git core methods as a linkable library [45].

* libssh2 v1.6.1 is an implementation of the SSH2 protocol in an extensible C frame-
work [13].

¢ telepathy-glib v0.23.3 is a D-Bus framework for real-time communication [46].

Most of these libraries are part of the GNOME Project [9] and already have GObject-
Introspection annotations, authored by the library writers. The notable exceptions are 1ibgit2
and libssh2, neither of which is a GNOME library. The version of 1libgit2 we analyzed had
no GObject-Introspection annotations, though annotations appeared in a later release. 1ibssh2
has no GObject-Introspection annotations as of this writing, and no language bindings to our
knowledge. These libraries assess our technique on code that was not specifically written with
these annotations in mind. Table 2.1 provides more details on our test subjects. To determine
ground truth on the number of symbolic-length, fixed-length, and sentinel-terminated arrays,
we manually inspected each library. Identifying whether a C argument is an array or even a
pointer is a difficult task in its own right, and not one we attempt. We therefore do not report
the number of array arguments in each function: instead, the number of arguments listed
under the “all” column indicate the total number of arguments to each function. Those that
are not assigned to symbolic, fixed, or sentinel either are not array types, or follow some other
length convention (variadic type, inconsistent use of our length types, etc). All arguments
that our tool infers to possess a length property must be arrays: however, some arrays may not
follow any of the length types we detect.

For each library, we made a reasonable attempt to identify and analyze any dependencies,
whether manually or with the help of our tool. We were unable to analyze most of libc,
due to many important functions being implemented in assembly rather than C. Therefore,
we manually selected several such important functions and annotated them by hand. When
analyzing each library, we passed along information for all of its dependencies as generated
by our tool, and additionally included our hand-crafted annotations for 1ibc. Thus, some
dependency information may be incorrect where our tool is imprecise. We present the true
positive rate and false positive rate of each type of length information in Tables 2.2 and 2.3.
The true positive rate measures the ratio of correct annotations produced to correct (and most

general) annotations, whether produced or not. The false positive rate measures the ratio of
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Table 2.3: Rates of correct and incorrect analysis results in external library APIs. gck
and telepathy-glib use no fixed-length arrays.

Rate of True Positives Rate of False Positives
Name Symbolic  Fixed Sentinel Symbolic Fixed Sentinel
gck 0.8077 — 1.0000 0.0000 — 0.0014
glib 0.7222 1.0000 0.8904 0.0004 0.0000 0.0056
gio 0.6875 0.5000 0.7051 0.0000  0.0000 0.0010
telepathy-glib 0.8800 — 0.6839 0.0000 — 0.0032
telepathy-glib + hints  0.8800 — 0.7806 0.0000 — 0.0037
Arithmetic Mean 0.7955 0.7500 0.8120 0.0001 0.0000 0.0030

incorrect annotations produced to arguments which should not have that annotation. A higher
true positive rate and lower false positive rate is desirable, though we prioritize a lower false

positive rate per Section 2.3.8.2.

2.4.2 Full Annotation Results

For gio, glib, libgit2, and libssh2, we manually annotated the full library to use as a
baseline for comparison. This provides a complete picture of how many sentinel-terminated,
symbolic-length, and fixed-length arrays are in the libraries, but costs significant time. Indeed,
our experience indicates that libraries comparable in size to these take upwards of eight hours
to annotate manually. Table 2.2 summarizes our findings. Over each of the full libraries,
our automatic analysis achieves a minimum true positive rate of 0.7 for each type of length
property, indicating that we produce at least 70% of the correct annotations. Every false
positive for sentinel-terminated arrays belongs to a class of problems discussed further in
Section 2.4.4. In brief, each arises from a function that accepts an array argument and a
length argument, but treats the array as NUL-terminated if the length is negative. Recall from
Section 2.3.4 that we could introduce false positives if a library writer ever mixes constant
and symbolic indexes in a fixed-length array. However, only one library in our suite contains
such code, 1ibssh2, and manual inspection verifies the two occasions when this occurs as
truly symbolic-length arrays.

Our results for 1ibssh2 are of particular interest. libssh2 appears to have been built
without awareness of GObject-Introspection annotations. We see no evidence that polyglot
interoperability was factored into this library’s design in any way. Yet our analysis performs

about as well here as on the other (hand-annotated) libraries. Furthermore, our true positive
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Table 2.4: Rates of correct and incorrect human-authored annotations in external
library APIs

Rate of True Positives Rate of False Positives
Name Symbolic Fixed Sentinel Symbolic Fixed Sentinel
gck 0.8846 — 1.0000 0.0252 — 0.0028
telepathy-glib 0.8800 — 0.9484 0.0045 — 0.0620
Arithmetic Mean 0.8823 — 0.9742 0.0148 — 0.0324

rate for sentinel-terminated arrays is significantly higher than for most other libraries. These
results indicate that our tool can support even libraries that were not built with language
bindings in mind. Our approach can help developers retrofit GObject-Introspection bindings

onto existing libraries without requiring analysis-friendly design from the start.

2.4.3 API Results

For libraries with existing GObject-Introspection language bindings (gio and glib) and the
remaining libraries (gck and telepathy-glib), we examine the annotations already present in
the source code. These are produced only for the subset of the library intended to be exposed
to the end user in the form of an API. We manually examined those functions in the API where
our tool produced a different annotation than the human did. This method of determining
ground truth is less precise than manually determining the correct annotations for every
function argument in the library, but consumes much less time, and allows us to determine

how well we perform on the parts of a library that ultimately require the annotations: the API.

2.4.3.1 Automated Analysis

Table 2.3 shows our results on these libraries. For the most part, our automated approach
does quite well. Rates for symbolic lengths generally improve upon those for complete
libraries in Table 2.2. The notable exception is the gio library, which exposes only eight
symbolic-length arrays in its public API. Our 67% true positive rate for sentinel-terminated
arrays in telepathy-glib is likewise anomalous. This is due to heavy use of variadic functions
within telepathy-glib. As discussed in Section 2.3.8.2, variadic functions pose a problem for
our analysis, as the type information may be dependent on the content of a format string. Our
tool has no way of reasoning about how to extract type information from format strings. Thus,

we are unable to annotate any arguments whose type information is discoverable solely through
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the use of variadic functions. This accounts for most incorrectly-analyzed sentinel-terminated
arguments in telepathy-glib.

Note that a developer could provide a set of manually annotated functions to recover from
this situation. When we manually annotated ten functions that call variadic functions, the
results improved significantly (see the “telepathy-glib + hints” row of Table 2.3). More
manual annotations could provide a larger benefit, but even this amount improves upon our
results. GObject-Introspection annotations are based on fixed argument positions, and cannot
support annotations of variadic arguments, but the library author could annotate common

functions that make calls to variadic functions.

2.4.3.2 Human Errors

We motivated this work with the claim that creating bindings manually is tedious and
error-prone. The numerous mistakes we found in human-authored annotations support this
claim. To conduct this analysis, we manually determined the correct annotation when the
human-provided annotations differed from the ones our tool provided. This often required
tracking the array arguments as they were passed through numerous function calls. We
blinded ourselves to which answer was emitted by which source, and in some cases determined
that both answers were wrong. While it is possible that our tool and the human annotators
were incorrect in the same way on some arguments, given that they examine the code very
differently, it seems quite unlikely that this would occur commonly.

Humans’ errors are qualitatively different from those produced by our tool. Understanding
this mismatch helps illustrate how our approach can complement human efforts. Errors
by human annotators seem to stem from inattention or misinterpretation of functions in
dependencies. One such mistake is reporting that an argument has a symbolic length when
it 1s only ever passed to a function call in some dependency, which does not treat the
argument this way. This happens especially commonly when the names of the arguments are
misleadingly suggestive of a symbolic length relationship between two arguments. These
mistakes occur even when the documentation does not suggest that the writers of these
dependencies considered them to be symbolic-length. In these cases, it is likely that the
library writer did not find it worth the time to track down the source-level annotations in
each dependency to see what the length type of the argument actually is. Rather, they relied
on the name of the argument. Quantitatively, we can see in Table 2.4 that humans perform
marginally better overall, but have a higher rate of false positives for both symbolic-length

and sentinel-terminated arrays. Humans take much more time to produce these annotations,
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static inline gboolean
contains_non_ascii (const gchar *str, gint len)

{

const gchar *p;

for (p = str; len == -1 ? *p : p < str + len; p++) {
if ((guchar)*p > 0x80)
return TRUE;

}
return FALSE;

}

Listing 2.6: Real-world function with inconsistent treatment of an argument’s length,
taken from glib

while our analysis runs in under five minutes on each library we considered. One bug that we
detected in the library gio was fixed since the time we ran our analysis. We submitted bug
reports for the remainder of the human errors our analysis detected in the library gio, which
was addressed by the developers.12

2.4.4 Empirical False Positives

Most of our false positives arise when an array exhibits multiple length properties (violating
key assumption 1), particularly in the symbolic-length case. For example, in Listing 2.6,
string is treated as sentinel-terminated by NUL when len is —1, and as having symbolic length
len otherwise. This appears quite often in real-world code, evidently for efficiencys; if the
caller already knows the string’s length, it can pass that down to avoid recomputing it in the
library. Technically, these functions can be used by character arrays that are not strings as
well, such as arrays with embedded NULs. By producing a binding that only accepts strings,
we remove functionality. Because our analysis is not path sensitive, we are unable to identify
that string is treated as NUL-terminated only under some circumstances. We see that string is
treated as sentinel-terminated when it is used in the call to strlen, and infer that it must be
sentinel-terminated, although the strlen call is conditional on the value of 1en. We chose
to combine analysis results using our Hasse diagram in Figure 2.1 in order to combat this
issue. By combining our sentinel-terminated and symbolic-length analyses, we produce only

the more general symbolic-length annotation. When our analysis fails to detect that the

'https://bugzilla.gnome.org/show_bug.cgi?id=765063
https://bugzilla.gnome.org/show_bug.cgi?id=787812
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Table 2.5: Change in sentinel-terminated argument counts after adding structure in-
formation analysis

Analysis New True New False
Name Time (min) Positives Positives
gio >5,760 — —
glib 508 0 97
libgit2 2,376 5 10
libssh2 7 3 3

array may have a symbolic length under some conditions, we may produce false positives (of

sentinel-terminated) for these arrays.

2.4.5 Structure Information Results

We extended our implementation to analyze structure fields as described in Section 2.3.7. We
only found different results in the sentinel-terminated case, so we just report these results.
Table 2.5 shows that this does improve some cases, allowing us to discover a few more
sentinel-terminated arrays. However, the sheer number of function arguments to annotate
causes the global impact of these improvements to be quite modest, and we introduce new false
positives as a result of structure fields being treated inconsistently across several functions.
There do not appear to be many arrays whose length information could be recovered by
examining structures.

Furthermore, the analysis now has far more work to do, making performance a serious
concern. We were unable to completely analyze all of the libraries in Section 2.4.1 due to
time constraints and dependency information. Most of the GNOME libraries depend on glib
and gio. gio analysis timed out after four days. Therefore, we could not analyze any libraries
dependent on gio and obtain comparable results to our other experiments. While further
performance tuning of our implementation is possible, the results (see Table 2.5) suggest that

the marginal benefits may not make structure analysis worthwhile.

2.5 Future Work

While our current approach substantially reduces the manual work load of generating high-
quality bindings, further improvements are possible. One possible future direction is to
consider any client code that may be available. This would be optional input that would allow

the user to supply representative client code that uses the library. One source of client code
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might be the library itself, which often calls into its own public API. This analysis would
be substantially different from the one described here, as it could take allocation points into
account in the style of SALInfer [14].

We could also expand our analyses to handle function pointers. Function pointers may be
passed as callbacks into a C function, and the length idiom used by array arguments to the
function may be partially or completely dependent on the definition of the callback. In order
to analyze such functions, we would need to analyze all the callbacks passed to such functions
within a library.

We have been using GObject-Introspection annotations as our ultimate analysis target.
This ensures that our analysis findings can be put to good use, but also limits how much detail
we try to recover. We could track other kinds of length information, such as determining
when a function accepts a start pointer and end pointer. We could also infer predicated type
information, which determines the length information of a particular argument given the
values of other arguments. For example, a predicated description of string from Listing 2.6
would state that it is sentinel-terminated by NUL if len is —1, or has symbolic length len
otherwise. GObject-Introspection can neither express nor use array lengths such as these, but
if they are common enough in practice, that may justify extending GObject-Introspection to

include them as well.

2.6 Conclusions

We have presented a system for automatically inferring developer intent about array argument
lengths. This task bears some similarity to that of checking that all array accesses are memory
safe. However, our focus on language bindings mandates a different design, tuned to allow
different kinds of imprecision and to use heuristics that would be unacceptable when checking
for memory safety violations. Instead of finding mistakes, we are looking for trends in the
kind of length the library developer expects.

Empirical evaluation shows that we produce significantly fewer false positives than existing
hand-written annotations. Our results also indicate that our tool performs well even with
libraries that were not built with the goal of being accessible to other languages.

The challenge of producing high-quality bindings is large. Our inferred array lengths
provide an important piece of that larger puzzle. In cooperation with prior work by others,

these analyses begin to form a comprehensive suite that substantially reduces the manual
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effort needed to cross language boundaries. In so doing, we liberate polyglot programmers to

mix and use the best tools, languages, and libraries available.



Part 111

Dynamic Typing Tools

37



38

3  JAVASCRIPT CALL-GRAPH CONSTRUCTION

This work was done in collaboration between Alisa Maas, Julian Dolby, and Ben
Liblit.

3.1 Motivation

As JavaScript becomes increasingly popular, confidence in JavaScript programs becomes
critical. JavaScript developers need to be able to effectively debug, understand, and prove
safety properties about these programs just as much as developers who work in other languages.
Yet static analysis of JavaScript code is difficult and unscalable. Many of these analyses rely
heavily on call-graphs for information regarding interprocedural edges. JavaScript’s extremely
dynamic nature confounds traditional static analysis approaches to call-graph construction,
however. In a statically typed language, type information provides key insights that limit the
number of possible edges at any given call-site. In JavaScript, types are defined primarily
dynamically.

Traditional approaches to call-graph construction rely heavily on static type information
that JavaScript developers are not equipped to provide. In lieu of static type information, call-
graph construction in JavaScript relies heavily on a points-to analysis for each object containing
a function that might be called. These points-to sets represent an over-approximation of each
object’s type. Any changes to these sets have cascading changes in the call-graph, meaning
that as the points-to set for each callable object grows, so does the work required to generate
the call-graph. Thus, each time imprecision is introduced into one of these points-to sets,
the call-graph not only becomes less precise, but also requires more work to generate. Most
state-of-the-art approaches deal with this issue by improving the points-to sets. Often they
exploit domain knowledge or introduce controlled sources of unsoundness or incompleteness.
Our approach instead focuses on identifying sources of ambiguous points-to sets and the
critical range in the code in which this effect could cascade into a state explosion. Equipped
with this knowledge, we are then able to avoid the state explosion by reanalyzing the critical
range once for each value in the points-to set. By using this approach, our methodology
performs a little extra work up-front to avoid doing much more work later.

The remainder of this chapter is organized as follows: Section 3.2 discusses current
analysis techniques that we will build off of to create our approach and Section 3.3 discusses

related work. We discuss our approach in Section 3.4, and outline our implementation and
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function foo() {} 11 var clone = {};
function bar() {} 12
function extend(a, b) { 13 extend(object, clone);

for (var x in a) { 14 clone.functionl();

b[x] = a[x]; o . .

} Listing 3.1: Common JavaScript function
} where precise points-to sets are not
var object = {}; sufficient for a context-insensitive analysis
object.functionl = foo; to compute a precise graph

object. function2 = bar;

evaluation in Section 3.5. In Section 3.6 we discuss future directions for research, and we

conclude in Section 3.8.

3.2 Background

The vast number of possible paths through JavaScript programs means that a full, context-
sensitive, flow-sensitive approach generally does not scale. As a result, most static JavaScript
or points-to analysis tools are partially context-sensitive and flow-insensitive. We discuss
some of these tools further in Section 3.3. We will be focusing on WALA'’s analysis engine
in particular, as we implemented context-splitting as an extension to WALA. However, we
expect that our techniques (and results) will generalize to similar systems.

In WALA’s intermediate representation (IR) of the program, nodes are (Context, Function)
pairs and are organized into a contextual control-flow graph (CCFG): a control-flow graph
augmented with contextual information. Contexts are containers for any state information that
might add helpful, but limited, context sensitivity. Each node is analyzed just once, but as
the amount of context sensitivity applied to the analysis grows, the number of CCFG nodes
increases as well.

To understand the motivation for why limited context sensitivity may be needed, see
Listing 3.1. Perhaps surprisingly, using contexts at a function-level does not allow most
analysis tools to determine that the value for x is the same on both sides of the assignment in
line 5. Without contextual information, most analyses will assume that all of b’s fields may
alias any of a’s fields, rather than only the corresponding fields. In this example, while a
human analyst could easily determine that the function call in line 14 could only ever call
foo (since it is copied from object’s functionl field), a programmatic approach is likely to

conclude that either foo or bar is called, without being able to distinguish between the two.
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While in this case, only a small amount of imprecision appears to be incurred here,
actually quite a lot of imprecision can arise from loops like this one, as it is a common
pattern in JavaScript for cloning objects, subclassing, or even instantiating new objects of
a conceptual class. The fields being copied tend to represent instance methods. So even a
seemingly-innocuous loop such as this one can be responsible for substantial imprecision in
the call-graph. At worst, this leads to unacceptably high run-times. Even at best, it still leads
to far less useful call-graphs, as it loses crucial information about possible call-graph edges.

Prior work [44] partially addresses this source of imprecision using ‘correlation tracking’.
However, Sridharan et al. [44]’s approach accomplishes this by extracting for-in loop bodies
into their own methods. They then rely on argument sensitivity to achieve the desired precision.
While this does allow the analysis to handle this case, it has a few drawbacks. It introduces
an extra function body per for-in loop, introducing new complexity into the call-graph, and
potentially making it difficult to recover the original line numbers of code near the for-in
loop body.

This approach also does nothing to handle other sources of imprecision in a similar
situation. For example, imagine a similar assignment to the one in line 5, where the field
access has several possible values, yet is the same on both sides of the assignment. Even
though the only difference would be the presence or absence of a loop body, the correlation-
tracking approach would need substantial modifications to identify this new pattern, and
would introduce many, many, new interprocedural edges in the process, complicating analysis
and making the resulting call-graph less useful for the end user. This approach inspired us to
consider whether we could generalize something similar to, but more flexible than, correlation

tracking without modifying the structure of the code.

3.3 Related Work

Call-graph construction for JavaScript is not a new problem, but neither is it a solved problem.
The complicated challenge of state explosion inspires many different approaches. The difficulty
of Andersen-style analysis for JavaScript has motivated work in approximate algorithms, in
which accuracy and completeness are traded for scalability. One approach is a field sensitive
analysis, in which individual properties are modeled with a single abstract location. This can
greatly reduce the amount of propagation needed, especially when combined with deliberate

unsoundness to avoid expensive cases [6].
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Andreasen and Mgller [2] exploit static determinacy information to help with the state-
explosion issue. This technique simplifies code whose execution always results in the same
value, and could be applied alongside our approach to improve precision further. A similar
idea inspired dynamic determinacy analysis [41], which used a combination of lightweight
static analysis and execution traces to find deterministic values, which were applied to improve
analysis. Ko et al. [18] tune their static analysis to a particular set of executions (presumed to
generalize to other important executions); our use case is somewhat different, in that we are
providing fully static call-graphs that always generalize to all executions.

Sridharan et al. [44] focus on improved analysis for for-in loops in JavaScript, by using
loop-sensitivity to distinguish iterations of such loops from one another. This analysis inspired
our approach, but the implementation of their work limited its applicability, as discussed in
Section 3.2. Park and Ryu [33] likewise focus on distinguishing loop iterations from one
another with the aim of reducing imprecision. Our work builds upon this idea to create a
generalized context-splitting framework (see Section 3.4.2 for more details). Park et al. [34]
use regular expressions to better bound the possible values for strings, which can cause the
state space to explode when they are used as keys to access property fields of objects in
JavaScript. This approach is complementary to our own; it focuses on improving the points-to
sets (which we rely on), but is not sufficient on its own to handle large-scale projects where
imprecision creeps into the program through other sources.

Other tools focus on improving precision of different, but related, analyses in JavaScript.
Jensen et al. [15] recover type information for JavaScript. This can partially address the state
explosion by reducing the number of options at callsites, though this may not be effective
when the types are convoluted or difficult to discover. Jensen et al. [16] use a static analysis to
determine the value of strings passed to eval, then refactor the code to remove them, allowing
static analyses to soundly analyze even programs that originally contained eval statements.
Our implementation is in WALA which, like most JavaScript call-graph-construction tools,
assumes that eval statements are no-ops. By replacing eval statements with straight-line code,
this work could serve to make our call-graphs more sound and more complete, but it does not
directly address the issue of scalability.

Some tools focus on points-to analyses. Kastrinis and Smaragdakis [17] mix different
sorts of context-sensitivity to produce better analysis results. Their approach works by first
performing a context-insensitive analysis, using this to identify sources of ambiguity, and
adding selective context sensitivity where there are sources of ambiguity. Our work also

performs selective context sensitivity, but we focus on limiting the range of the sensitivity
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and craft policies to determine sources of ambiguity, and we do not attempt to perform a
context-insensitive analysis to inform our approach. In JavaScript, a fully context-insensitive
analysis of many real-world programs would be infeasible, since the imprecision leads to
drastic runtime costs. Other researchers (such as Smaragdakis et al. [43], Wei et al. [49])
use static analysis to attempt to identify sources of state (and therefore runtime) explosion.
Like Kastrinis and Smaragdakis [17], these tools focus on the points-to analysis component,
and rely on the assumption that it is possible to create a less-precise analysis that terminates.
Unfortunately, this is rarely true for JavaScript call-graph construction. Both tools use their
analyses to offer personalized recommendations for call-graph-construction techniques based
on likely sources of imprecision (as determined by their analysis), which would be very useful
in combination with our approach.

Smaragdakis et al. [42] propose a set-based pre-analysis for points-to analysis. Liu et al.
[23] also work in WALA and improved upon its points-to analysis by using a parallel and
incremental fixed-point iteration. As their work was merged into the WALA source code,
we are able to directly reap the benefits of the improved points-to analysis. Points-to set
construction techniques are complementary to our work, as improved points-to analysis can
improve the precision of call-graphs.

On the other hand, some existing analysis could substantially benefit from an improved and
more flexible call-graph construction algorithm. For example, Wei and Ryder [48] construct a
blended taint analysis built on top of WALA. For programs where the imprecision hinders the
analysis, they may find our techniques beneficial in reducing the number of false positives,
or simply increasing the number of programs they can analyze. Likewise, MinerRay [37]
attempts to identify WebAssembly and JavaScript programs that hide cryptojacking attacks,
and builds a call-graph in order to do so. A more precise and scalable call-graph construction
technique could further boost their results and reduce potential false positives.

In other domains, the Astrée static analyzer uses trace partitioning [26] to more precisely
analyze C programs by partitioning the abstract domain into separate traces, typically
distinguished by control-flow information. Their emphasis is on numerical precision,
particularly on ranges of values, and operates over the domain of C programs, while ours
is designed for JavaScript pointer analyses. Furthermore, our approach need not maintain
control-flow path information, when we do not consider it relevant to the task of pointer
analysis. (It also has the flexibility to maintain select control-flow information as it deems
relevant.) The concept is similar, but because they target a different problem, their strategies

for maintaining partitions (and especially for merging them) differ from ours.
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Inspired by trace partitioning, recent work by Nielsen and Mgller [30] focuses on a special
case of it, value partitioning. Value partitioning, like context splitting, is designed to target
JavaScript analysis, but while we choose to analyze select ranges with partitioned values,
they choose to partition the abstract values themselves. Both approaches have strengths
and weaknesses, but one strength of analyzing the code separately per each abstract value
is the possibility of maintaining control-flow information should it prove helpful. Value
partitioning considers the effect of partitioning based on type, where we do not assume any
type information is present; likewise, we provide data about partitioning (splitting) on phi
nodes, which the current implementation of value partitioning does not address.

Our approach is designed to be sufficiently flexible that new automated strategies for
determining partitions/splits can be performed without modifying the underlying analysis
engine at all, simply by implementing interfaces, and did not require substantial modification
to our underlying analysis engine. In fact, the only changes we made to WALA’s algorithm
was to change the visibility on some methods from private to public or protected, and to
mirror methods with new options where we add flexibility. In contrast, the value partitioning
approach requires modifying the underlying static analysis in order to prepare for adding
value partitioning to a new engine, and again each time a new strategy is constructed. This
may prove daunting to researchers seeking to test out their own strategies, as it would require
them to understand the underlying engine well enough to modity it, and also will cause them
to diverge from the official engine. In effect, our approach strikes a balance between trace
partitioning and value partitioning: we allow, but do not require, contextual information to be
carried along with more precise information about values of interest. We provide a flexible
approach without requiring heavy modifications to a traditional static analysis for JavaScript

in order to further extend our tool.

3.4 Approach

Our ultimate aim was to introduce new, more flexible configurations for context sensitivity
into WALA to test whether contextual information at the level of an abstract value provides

any real-world benefit. The implementation itself required minimal modification to WALA.

3.4.1 Context Splitting

At its core, context splitting is made up of two key components: context splitters, and split

range policies. Conceptually, a context splitter determines which values (which we called
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Figure 3.1: Context splitting in action. The edges represent the dataflow and logical
connection between the split contexts, and the code boxes represent the contexts created
by context splitting.

split points) may be a source of ambiguity, and a split range range policy determines the
critical window of opportunity when this ambiguity may be propagated (which we call the
split range). Split ranges are defined with respect to a particular split point; the code in the
split range is analyzed once for each possible value that the split point may take on.

Formally, we can define a context splitter as a function that accepts a representation
of a JavaScript function and returns a set of split points: abstract object definitions in the
given function. Likewise, a split range policy 1s a function that accepts a representation of a
JavaScript function and a split point, and produces a split range: a subset of instructions from
the function. These instructions must be dominated by the split point, but they need not be
every instruction dominated by the split point. Note that the instructions contained in a split
range need not be contiguous; they must be dominated by the split point and contained in the
same function as the split point, but other than that, we place no restriction on the elements in
the split range. This flexibility allows us to include only the instructions that may propagate
ambiguity and ignore nearby, unrelated instructions, cutting down on the amount of extra
analysis we require.

Prior work tends to analyze each function once per context, which means that each
context represents key state information that requires separate analysis of the entire function.
However, for efficiency, we wish to allow our additional contexts to only hold sway over part
of the function; specifically, the split range described by the split range policy. To split a
function-based context into one with an arbitrary range, we need to do a few things. First,
we must create special contexts (split contexts) for each possible value of each split point.
Next, we must partition responsibility for analyzing the function among these split contexts.
Finally, we must fix up the dataflow between the partitions of the analysis. We will discuss the
creation of split contexts and their use in Section 3.4.1.1, and the dataflow in Section 3.4.1.2.

To understand the benefit that could be gained from context splitting, consider Figure 3.1.
This demonstrates a very simple instance of context splitting, where the split point is the

definition of x, and the split range is simply the second line. The phi () indicates an assignment
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that would be a phi node edge in the IR, which often proves a source of ambiguity. It represents
a definition where the value of x can be either the value for y or the value for z. As with
the for-in loop, an approach with only function-level context sensitivity cannot identify that
the value of the abstract object for x must be the same on both halves of the assignment in
the second line. However, context splitting produces two contexts. Each analyze the second
statement with contextual knowledge of the value of x. Thus, when pooling their combined
information, it becomes clear that there is no situation where the fields from b[y] could be

copied to a[z], so this reduces the state space compared to an algorithm lacking this contextual

information.
function returnY(x, y) { 21 var check;
return y; 22 var i = Math.random(0,1);
} 23 var x = doUnsecret;
function safe(x, y) { 24 var y = doSecret;
return 0; 25 if (4 > 0.5 {
} 26 check = returnY;
function unsafe(x) { 27 y = doUnsecret;
//TODO: make sure doSecret 28 }
//never gets here! 29 else {
x0; 30 check = safe;
} 31 }
function doSecret() { 32 var realCheck = check;
//...NOTE: do not call 33 var realY = y;
//this from unsafe()! 34 unsafe(realCheck(x, realY));
} 35 }
function doUnsecret() { 36
//...code body 37 mainQ;
}

Listing 3.2: Example for demonstrating

function main() { context splitting

3.4.1.1 IR Control

Analysis is usually done at the intermediate representation (IR) level; we will be assuming
that the IR is a directed graph of instructions in SSA form. Unlike past approaches, which
analyze a function’s IR once for every context it has, we wish to delegate the responsibility of
deciding what to reanalyze to the split range policy. To do this for a given function, we create
one partition of that function’s IR for each split point, plus one “root" partition for all parts of

the IR that fall outside of all split points. We organize the split points into a forest of trees
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based on the control-flow dominators graph: that is, a “parent” split point must execute before
any of its “child” split points may. Each node in one of these trees is responsible for analyzing
some portion of the IR.

Let split be a node in the split point forest, IR.nodes be the set of instructions in the
function under analysis, split_range be the split range policy, and descendants(x) be a
function returning x’s descendants in the split point forest. Then we can define the function

determining which portion of the IR that split controls as follows:
IR(split) = {X € IR.nodes |X € split_range(split)A

Vchild € descendants(split), X ¢ split_range(child)}

In the case of two different split ranges that contain the same instruction, the split point closest
to the instruction in the dominators tree gets control of the IR. Any remaining parts of the IR
not controlled by a split site tree is covered by a single, top-level context.

Because the contexts are nested based on control-flow dominance, our context-splitting is
“multiplicative” in the sense that each possible permutation of values from all split points are
explored. If two split points have an overlapping range, each time the overlapping range is
analyzed, the analysis is performed using an abstract value from each points-to set. Therefore,
if one split point has n possible values, and another has m, any instructions in both split ranges
is analyzed n * m times. The complexity our technique adds depends on the number of split
points, how many abstract values are in each of their points-to sets, and how often their ranges
overlap.

We assume that split points are all abstract object definitions, though the only restriction
we place on the abstract objects is that their representation must have finitely many possible
values. For example, WALA'’s abstract objects have only one value for integers; however, our
strategy would still operate the same if we instead used a call-graph construction framework
that has separate abstract values for O and non-zero integer values, or a framework that has
separate abstract values for each possible 32- or 64-bit integer value. As we discover new
abstract values for each split point, we create split contexts for each one. Note that in any
correct, terminating, points-to analysis, there must already be a finite, though unbounded,
number of abstract values for any abstract object definition, so we will only create a finite
number of split contexts. Since we analyze each split range once per split context, the number
of abstract values in the points-to set of each split point bounds the extra analysis passes

we introduce. In many cases, with the correct split range policy and context splitter, our
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extra analysis passes can serve to reduce the total amount of analysis time by preventing the

points-to set and call-graph from growing unmanageably large.

3.4.1.2 Dataflow

In order to properly finish performing context splitting, we must correct the dataflow through

the new contextual control flow graph with the split contexts. For each split context, we must:

* Add a dataflow property defining the split point as the specific value this split context
represents. Although this property is not globally true, we will create a split context
for each possible value for the split point. Therefore, as long as we properly merge the

analysis results, we do not introduce additional unsoundness or incompleteness.

* Add dataflow edges from outside the split range for this split context to inside. Edges
must be added wherever a value defined outside the split range is used within the split
range. This insures that if there are updates during analysis, they are propagated to
the split context; otherwise, we will miss important opportunities to make our analysis

more precise.

* Add dataflow edges from inside the split range for this context to the IR outside. Edges
must be added whenever a value inside the split range is used outside the split range.
Since we expect to have multiple abstract values for each split point (otherwise there
is no point to splitting), we must merge their analysis results at this point. The safest
option is to merge the analysis results by taking the union over all results, as adding
results not in this union would be unsound. It may be possible to prune out some results
that are infeasible, but our technique is not designed to look for infeasible paths, and so

we ignore them, and merge the analysis results by taking the union over all results.

3.4.1.3 Toy Example

To see where context splitting would reduce ambiguity, consider Listing 3.2. Note that lines
32 and 33 are primarily there to illustrate the phi nodes that are created at roughly this point
in the IR: a developer would likely not write these statements directly, but in the code as it is
being interpreted by the context selector, they will exist. Suppose that doSecret() interfaces
with sensitive data, as the name suggests, and doUnsecret() does not. If we notice the TODO
in line 8 and want to ensure that doSecret () never makes its way to unsafe(), we need quite a

bit of contextual information not provided by context sensitivity at the function level. unsafe()
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is only called in line 34, so it really matters whether the value returned from realCheck may
ever be doSecret (). The two possible targets for realCheck are safe() and returnY(). As the
name suggests, safe() does not expose doSecret(), but returnY() does when y is doSecret().
As you can see, the only case in which check could be returnY() is if we have ensured that y
is set to doUnsecret(). Yet, lacking contextual information, WALA (as well as many other
call-graph construction techniques), will not recognize that y is always set to doUnsecret ()
whenever returnY() may be called.

Context splitting can help cut through the ambiguity. In line 32, the value for check
would make an excellent choice for a split site. There’s a relatively small number of possible
abstract objects (in this case, just two: either returnY or safe, depending on which branch was
taken), and the range where precision is needed is quite small. All we really need the range to
include is the instructions in line 34, which most likely will only amount to one basic block.
Furthermore, if we add one more split site for the value of realY with the same range, we can
use the multiplicative effect of nested split sites to determine that there is no path where check
1s returnY and y is doSecret. Although we do no pruning of infeasible paths, because of the
dataflow for each context splitter being stitched together, these two split points are sufficient
to eliminate any paths where y is doSecret and check is returny.

This example seems perhaps rather trivial, but real-world code (though more convoluted)
often contains similar sources of ambiguity, and in practice, developers rely on tools to report
when their code may pass sensitive data to insecure functions. Determining whether this
occurs can rely on contextual information at a finer granularity than the method as a whole (as
in Listing 3.2).

3.4.2 Context Splitters

Each context splitter is responsible for determining a set of split points, which are value-
definition points. Due to WALA’s implementation, we require that split sites all occur at the
top of a basic block or in phi nodes (which are maintained separately, but logically belong at
the top of a basic block). WALA does support editing the CFG during analysis, so if it is
critical that a node not at the top of a basic block be used as a split point, it is possible to split
the existing basic block into two, such that the desired node is at the top. None of the context
splitters below modify the CFG. If any nodes match the policies below, but are in the middle
of a basic block, they are ignored. Control flow will be analyzed separately for each possible
abstract value for the split point, so it is important that these split points represent nexuses of

imprecision. The context splitters we implemented are as follows:
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* Correlation Tracking Splitter. The correlation tracking splitter was modeled after
WALA’s existing technique of the same name [44]. It selects all for-in loop variable
definitions as split points. Prior work on WALA implemented a solution to this
imprecision, [44] but it relied on modification of the call-graph, pulling the loop body
into a new function and relying on its interprocedural analysis. This splitter addresses
the same core problem, but without a need for making the CFG more complex by
introducing a new function. With context splitting, the same goal can be achieved
more reliably and without modifying the call-graph (which could affect other analyses),

simply by identifying for-in loop variables as requiring context sensitivity.

* Field Read Splitter. As the name suggests, the field read splitter selects all definitions
whose RHS is a field-read operation. Depending on the code being analyzed, this
may end up creating many split points. Yet because field reads are commonly sources
of imprecision, the benefit provided by context sensitivity at these program points
might outweigh its costs. The simple reason for this is that often in JavaScript code,
the value from a field read is used to copy a field from one object to another. As
with correlation tracking, stock WALA’s analysis is not context-sensitive enough to
recognize that the field access on the left-hand and right-hand sides will resolve to the
same value. Therefore, adding additional context sensitivity to these values could be of
potential interest. Of course, this selector comes with the drawback that it also may
incur additional cost, as there may be many field reads in the code that do not truly

require context sensitivity.

* Phi Node Splitter. Like the field read splitter, the phi node splitter is very general. The
set of split points connected by this policy is simply the set of all phi node definitions.
Phi nodes often represent sources of imprecision, though due to the sheer quantity of

them, the phi node splitter runs the risk of creating more extra work than it can resolve.

* Special Name Splitter This splitter is primarily intended for users who have specific
value definitions that they know cause imprecision in the call-graph. It examines the
name of each variable, and creates a split site for variables whose names end in “$split.”

We do not present results for this splitter, as it is intended as a diagnostic tool more than

as a general-purpose addition to CFG-construction algorithms.

Each of these splitters are designed to get at particular sources of imprecision, but of course
each is only one piece of the puzzle. Now that we have identified which extra contextual

information we need, we must determine where we need it.
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3.4.3 Range Policies

Split range policies are responsible for determining, given a split site, how long its context
sensitivity should last. Currently, each context splitter must designate its own split range
policy rather than allowing the policies to vary situationally, though this is something we may
revisit in future work (see Section 3.6). A split range policy can be thought of as a map from
split point to a set of instructions for which that split point requires context sensitivity. The

three policies we have implemented are described below, in order from “largest” to “smallest.”

* Dominator Range. For a given split point, the dominator range is all of its children
(transitive or otherwise) in the dominator tree. Effectively, this policy is the most broad,
and will contain the greatest number of instructions compared to the other two policies.
This range contains no “holes,” but may contain instructions that have nothing to do
with the split point, possibly causing the analysis to perform extra work. On the other
hand, due to its size, it is much less likely to miss a piece of the function where the extra
contextual information might have been helpful. We recommend using the dominator
range only for context splitters that are deemed crucial and for which missing contextual
information could lead to a dramatic increase in analysis time. We also recommend

limiting use to a small number of split sites.

* Transitive Must-Use Range. The transitive must-use range is more restrictive than the
dominator range. Given a split point, its transitive must-use range is all instructions
in the call-graph that (directly or indirectly) use the value in the split point. Unlike
the dominator range, the transitive must-use range need not be a contiguous set of
statements; there may be gaps where there are instructions that are unrelated to the
split point. It could miss some places where contextual information might have been
useful, but the most important locations are typically covered. We recommend using
the transitive must-use range for most context splitters, as it provides a good balance

between additional work required and providing contextual information where needed.

* Must-Use Range. The must-use range is very similar to the transitive must-use range.
As the name suggests, the primary distinction is that the must-use range contains only
direct uses of a split point rather than also including anything that transitively uses
one. This does make it more likely to miss some places that contextual information
would have been ideal, but as the smallest of the ranges, it also reduces the amount of
additional work needed to perform the analysis. The must-use range should be used for

situations where context sensitivity is needed only fleetingly.
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3.4.4 Custom Policies

Given the specific needs of a program, a developer may decide that none of the existing
context splitters and range policies properly identify the context sensitivity needed. Likewise,
additional research may reveal new context splitters and range policies that outperform our
existing ones. To take that into account, we provide a Java API to easily construct custom
policies. Context splitters and split range policies can be constructed independently, so the
developer can use a pre-existing splitter with a new range policy or a new splitter with a
pre-existing range policy.

To construct a custom context splitter, we provide a superclass for developers to subclass,
with one method that they must override. It provides the same information that WALA uses to
select contexts at a method-level granularity, with an abstract representation of the following:
(1) The method to provide contextual information for, (2) the actual parameters to the method,
(3) the calling context (method + callsite). Given that information, the method expects a
context to be returned. We provide a handy method which expects a set of instructions,
representing split sites. All the developer needs to do is decide which program points are
possible sources of ambiguity and package them up in a set. This can be decided by any
features of the method they desire, or even based on the calling context.

As for context splitters, we provide a superclass for easy creation of custom split range
policies. Split range policies are required to implement a method that takes as input a split
site and returns a set of basic blocks (the split range for that split site).

Using a custom policy, a developer can have direct control over the amount of context
sensitivity provided by the analysis at a far finer granularity than previously allowed. This
customization allows developers to tailor the context sensitivity used to the specific needs of
their programs. This means they can leverage known sources of imprecision to put context

sensitivity precisely where needed, without overwhelming the analysis.

3.4.5 Combining Policies

When it comes to choosing a context selector, sometimes more than one context selector could
be helpful. Of course, the developer could write a custom context selector that effectively
combines the logic of two or more context selectors, but this is cumbersome and leads to
duplicated work. Thus, we allow the user to specify multiple context selectors when running
the analysis. We require them to specify a split range policy for each, and each context

selector can be chosen no more than once. The split sites used when combining policies are
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the union of all split sites. If multiple context splitters select the same split sites, the only
difference between the two is the associated range policy. We default to whichever range
policy is specified with the context selected first. This allows developers to write simple
context splitters and range policies, specific to particular needs, rather than writing a large

and convoluted policy that may prove far more difficult to test in practice.

3.5 Evaluation

3.5.1 Effective Context-Sensitive Metrics

Comparing call-graphs sounds like a straightforward task. However, in the absence of ground
truth, and with call-graphs that are both under- and over-approximations, this task becomes
more difficult than it initially appears. Thus, to show the correctness of our approach, we
demonstrate that it does not make a call-graph construction algorithm less correct, and
additionally compare the number of completed call-graphs on real-world programs between
different policies and with the standard WALA analysis techniques. Next, we evaluate our
work on a series of 49 popular, real-world websites and compare with WALA without our

technique to demonstrate the empirical benefit gained.

3.5.1.1 Small-Scale Experiments

To ensure that the call-graphs created by our context splitting do not affect correctness of the
call-graph, we compared the call-graphs our modified version of WALA produced with those
the unmodified version of WALA produced. We chose 7 real-world websites primarily for 3

important features.

* We wanted to make sure the websites were human-readable. Many modern websites
obfuscate their JavaScript code in an attempt to make their websites load more quickly,
and/or to improve security. Of course, the developers who would need the call-graphs,
those actually writing the code, are not operating on such deliberately mangled code.
As it is important to assess whether any edges that context splitting adds or removes are

accurate, we wanted code that we could manually inspect to verify correctness.

* We also ensured that the amount of JavaScript present in the chosen websites was

non-trivial. If the only JavaScript in a given webpage was a few simple calls to
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framework methods, it does not demonstrate anything if both call-graphs are identical,

given that they would be nearly empty.

* Finally, we wanted to make sure that the websites were chosen after we finished our
implementation of context splitting, to reduce the possibility of overfitting to those

specific websites.

To that end, we chose 7 websites. In order to attempt to find websites matching these criteria,
we looked through numerous lists of old websites that are still in operation, as many such
old websites did not obfuscate code. For each that we found, we examined the source code
manually to ensure that a sufficient amount of JavaScript code was present, and that it was
human-readable. We also did not conduct this search, or analyze these websites, until after
our context-splitting approach was fully implemented. While it is theoretically possible that
the use of older JavaScript code may not capture errors our approach will only cause on more
modern JavaScript features, we attempted to mitigate the likeliness of this using unit tests
to cover more modern features. In every case, WALA with and without context splitting
produced identical call-graphs. Given that the scale of these websites was much smaller
than the typical modern project, this is not a surprising result, nor does it disparage any help
context splitting could provide in other websites. We intentionally sought out simple enough
websites that WALA was able to finish and print out a call-graph in under a minute. We
also chose a website from our list at random, and manually verified about a quarter of the
control-flow edges the analyses found (chosen at random). All edges we examined were valid.

To ensure that our context splitting even occurred, we tracked the amount of contexts
created as a result of context splitting, and each website had several hundred contexts. In this
case, they did not yield any benefit, as the call-graph edges identified were identical, but they
did not appear to impact the performance of the analysis or its correctness.

Now that we have established that our implementation does not empirically appear to affect
correctness, we can consider the question of whether it correctly performs context splitting.
We manually authored a suite of test programs targeted at situations where a traditional
approach simply does not contain enough contextual information to properly identify edges
that cannot truly occur, but where context splitting in the right place would help. These
contain several limitations that may not extend to real-world programs. They are targeted at
the particular use cases that our context splitters are expected to handle, and they are of course
far smaller-scale than real-world programs. Still, they demonstrate that our implementation
can pick up on the context sensitivity it is designed to. In Section 3.5.1.2, we will discuss our

experiments demonstrating that these context splitters provide benefit in the real world.
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In the process of performing these tests, especially the hand-authored test programs, we
uncovered several issues in the underlying WALA code. We promptly communicated these to

the WALA developers, and they were able to fix the bugs with the help of our test cases.

3.5.1.2 Large-Scale Experimental Setup

To assess whether our approach provides any empirical benefit, we sought out the publicly
available list of Alexa Top 50 websites,! both in the US and globally. Because many of these
websites change over time, and some perform A/B testing[19] (presenting one version of the
website to some users, and a different version to others, in order to track the effectiveness
of a new layout), we archived versions of these websites so that we could ensure that each
analysis operated over identical JavaScript code. Our versions of the Top 50 Global websites
and the top 50 US websites are archived as of 09/12/2019, which is the same date we accessed
the Alexa Top 50 listings. Some sites were excluded due to containing adult content, some
were excluded because WALA cannot correctly parse them (and thus no analysis could be
performed on them using WALA), and some were excluded because they were too similar to
other websites already on the list (i.e., google.com vs google.co.jp). Of those with parsing
errors, we notified the WALA developers of these issues, and they were able to resolve some
of them, but some are the result of newer, more lax, versions of JavaScript than WALA is
currently equipped to handle, and some are the result of syntactic errors in the JavaScript code.
We also added 2 variants of the popular JavaScript library, jQuery (version 3.4.1), one that
has been obfuscated/minimized, and one that has not. While not a website, it is a necessary
pre-requisite for properly computing a full call-graph for many real-world websites. In the end,
we arrived at a curated list of 49 websites to perform our experiments on. The websites span a
large spectrum of use cases, from search engines, to banking websites, streaming websites,
and forums.

Next, we settled upon a number of configurations to test. For each website, we ran the

following configurations:
1. Standard WALA, including the correlation tracking heuristic discussed in Section 3.3.
2. Standard WALA, but with correlation tracking disabled.

3. Each possible combination of context splitters and split range policies. This includes
each context splitter with each range policy, as well as all combinations of combined

policies in all possible orders.

Ihttps://www.alexa.com/
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There are 9 individual context selectors (3 split ranges * 3 splitters). When it comes
to combining policies, we restricted ourselves to only use each splitter twice, as it is
contradictory to specify each multiple times. Thus for pairs of context selectors, there
are 9 options for the first item in the pair, and 6 for the second item (as 3 of the 9
individual policies would use the same context splitter). This is a total of 9 x 6 = 54
possible pairs. For triples, take the 54 pairs and add one policy. Since two context
selectors have already been specified, the only possible option for the third element of
the pair is the remaining one, with any of the 3 range policies: thus, 3 possible choices

for the last element in the triple. Therefore there are 3 * 54 = 162 triples.

All told, there are 9 + 54 + 162 = 225 combinations of context splitting using the 3
context splitters and 3 range policies described in Section 3.4.2 and Section 3.4.3. We

disabled WALA’s version of correlation tracking when running these configurations.

Obviously, this is a sizeable number of configurations to test, a total of 11,123 individual
analysis runs (49 * 225 + 49 =2 = 11,123). It was not feasible to manually examine the output
of each, nor to run them on a single machine. We used HTCondor [22] to run these jobs in
parallel, on machines of comparable power. We requested SOOMB of storage on each machine,
and 13.5 GB of memory for each. If any jobs ran out of memory, we requested twice the
memory up to two times, limiting our memory usage to a maximum of 54GB. Each job was
run in a Unix-based Docker container [4], to ensure as similar an environment as possible.
For all external dependencies, we fetched the exact same versions, to prevent a mismatch in
version number causing unfair differences between analysis runs.

We gave each job a 5 hour window (measured in CPU-time) to complete, upon which
we notified the job and attempted to halt it gracefully, dumping any output if it was in the
process of outputting results. After 2 further CPU-hours, we terminated the job. This proved
ample time for all of the jobs that did manage to produce a call-graph: the longest-running
successful job ran a total of 21, 652.41 CPU-seconds, which is roughly 6 hours, well within

our grace period. Most jobs (= 50%) finish in under 30 minutes.

3.5.2 Results

We recorded the CPU time, wall-clock time, and memory usage of each job. Unfortunately,
these numbers vary too much depending on the website to be adequately summarized per-
strategy. In fact, for most strategies, the standard deviation of the CPU time used was the

same order of magnitude as the CPU time itself. This actually makes sense, as we have a
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diverse array of JavaScript code among our 49 websites. Some websites contain minimal
JavaScript code, almost none, while others contain a sizable amount of JavaScript. The same
holds true for memory usage. Additionally, while we took every measure we could to ensure
our runtime environments were as similar as possible, HTCondor cannot guarantee that jobs
are run with a similar workload on the physical device being used to run each job, and not all
machines had the same hardware. Due to the sheer volume of jobs, we were unable to record
the call-graphs produced by each job, and therefore do not compare their accuracy, only the
quantity of websites they were able to successfully analyze.

For that reason, we will focus on comparing the number and names of finished websites
with each strategy. Table 3.1 compares the two WALA configurations we tested with our
context splitting approach. Of course, we are unable to present all of the context splitting
configurations given the sheer quantity. We instead present some of the best and some of
the worst context splitters. Note that 3 of the context splitting configurations listed actually
represent multiple possible orderings. (As a reminder, the ordering for context splitting only
matters when multiple splitters would choose the same split site with different split ranges.)

The first thing to compare is the number of websites that finished call-graph construction.
Notice the difference between WALA with and without correlation tracking. Perhaps
surprisingly, WALA performs better without correlation tracking. However, notice the list of
websites that were unable to finish: the only one they have in common is tumblr. We looked
into the issue here, and it turns out that correlation tracking sometimes fails to extract the
for-in loop body into a new method, and often halts with an error when this occurs, which
of course counts as an unfinished website result. When it works, it does enable WALA to
analyze several websites that otherwise proved impossible. In fact, if we take the union of the
websites they finish, WALA could finish 48 of the 49 websites we looked at.

When context splitting is at its best, it is able to analyze all 49 websites. 9 configurations
are able to tackle all the websites in our test suite, and 10 can finish 48 websites (the latter
omitted from Table 3.1 for brevity). Even at its worst, it performs similarly to WALA
with its version of context splitting. There are a few patterns in context splitting that may
prove interesting to explore. First, notice that none of the best or the worst context splitting
configurations involve only a single context splitter. We will discuss singular context splitters
more when examining Table 3.2, but for now it is interesting to note that they do not tend
to stand out. Another interesting data point is that the context splitting implementation of
correlation tracking appears to be necessary in order to analyze all 49 websites. All of our best

context splitters use correlation tracking. But correlation tracking on its own does not appear
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sufficient, either. Phi node splitting does not appear to hinder completing all 49 websites, but
it also does not seem to provide much advantage, since correlation tracking and field read
splitting finish all websites, but correlation tracking and phi node splitting cannot.

Next, take a closer look at the split ranges. The most important piece to highlight here
i1s where the dominators range shows up. .. and where it does not. The dominators range
occurs in none of the best configurations, and in all of the worst configurations. As our
broadest range, this makes some sense — perhaps the additional overhead of maintaining
context sensitivity over a larger range simply does not provide sufficient benefit.

As for the websites each strategy cannot finish, there is a lot of commonality among the
worst context splitters. This makes sense as well, as the strategies themselves are not very
distinct. Each uses all three policies, each uses the dominators range at least once, and while
the order of each does vary, the dominators range does seem to be highest priority quite often.

To separate out the performance of each context splitter, Table 3.2 contains the number of
finished websites using each individual context splitter and each range. Overall, the correlation
tracking splitter tends to perform best, while the field read splitter performed worst. The one
surprise was the phi node splitter, which manages to analyze 47 of 49 websites when given
the must-use range policy. Despite its excellent solo performance, it seems likely that it adds
too many split points that do not provide sufficient benefit, especially in tandem with another
context splitter. This may explain why the must-use range performs so much better than the
other range policies with the phi node splitter.

While the field read splitter does not perform nearly as well as the correlation tracking
splitter, it complements the correlation tracking splitter especially well. The field read splitter
can handle all of the websites the correlation tracking splitter cannot. That explains why they

work so well jointly.

3.5.3 Summary

Overall, both sets of experiments together demonstrate that context splitting provides substantial
benefit over an approach with context sensitivity only at the level of the function. Even in the
worst case, context splitting does not appear to make the odds of analyzing any given website
much worse.

Due to the improvement demonstrated here, the WALA developers have agreed to
incorporate the context splitting framework into their open-source project. This will allow a
greater number of developers to benefit from this technique without changing the platform

they use to construct call-graphs.
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Table 3.2: Single Context Splitters

Configuration Finished count Websites Unfinished

(FR, DR) 43 t.co, baidu, espn, nytimes, tumblr, twitch.tv

(FR, MU) 43 jquery, alipay, craigslist.org, espn, hulu, quora
(FR, TM) 44 alipay, baidu, espn, jd, quora

(PN, DR) 42 baidu, bing, espn, imdb, ok.ru, providr, twitch.tv
(PN, MU) 47 imdb, ok.ru

(PN, TM) 43 alipay, baidu, craigslist, espn, imdb, nytimes
(CT, DR) 46 bankofamerica, imdb, live

(CT, MU) 46 diply, imdb, zillow

(CT, TM) 44 apple, bankofamerica, blogspot, diply, imdb

All websites are .com unless otherwise specified. Field read splitter is abbreviated FR, phi node splitter is
abbreviated PN, and correlation tracking splitter is abbreviated CT. Must-use range is abbreviated MU,
transitive must-use range is abbreviated TM, and dominators range is abbreviated DR.

Based on the empirical data, the most general purpose context selectors seem to contain
the correlation tracking splitter and the field read splitter and do not use the dominators range.
If a developer has a particular sense of the sources of ambiguity present in their program, they
may opt to choose their configuration based on their inside knowledge. Future researchers can
use our API to construct their own context selectors, should evidence arise of new sources of

imprecision.

3.6 Future Work

To reduce the amount of analysis, it may be possible to also perform an “additive” split, which
would maintain separate copies of the function’s IR in both split ranges rather than nesting
them. Instead of exploring each combination of possible values from the split points, each
split would be performed independently. This would result in analyzing shared instructions
n + m times, but would potentially lose some precision.

This work compared hand-created policies based on an intuitive sense of where state
explosions tend to occur, and how to prevent them. Future work could extend this by
empirically studying where state explosions occur and designing policies to address those
particular program points. Alternatively, a machine learning analysis could direct the creation
of policies based on call-graph construction time and precision for real-world websites.

This work only addresses contextual information within a single method. It is possible

that it may be useful to retain contextual information between methods, in particular with
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contextual information about globals. Future work could explore how to further extend context
splitting to handle cross-method contextual information.

WALA has a number of options for running, many of which are heuristics designed to
sacrifice correctness for completion. It would be useful to compare how well context splitting
interfaces with each of them, and whether the extra precision added by context splitting can
help counteract the imprecision introduced by heuristics.

While the number of websites completed using context splitting is impressive, they still
take more time than developers may be prepared to allow, depending on the task at hand.
Future work could explore ways to restrict the split sites to smaller sets, or focus on a larger
quantity of context splitters that each create a far smaller number of split sites. These context
selectors could do more sophisticated logic, perhaps contingent on how the values are used in
the future, rather than simply pattern matching on the source of the value.

So far, the framework we have built applies the same range policy to each split site
depending on what context splitter was used. Further work could experiment with instead
determining the appropriate split range for a split site based on features of the call-graph and

dataflow.

3.7 Stronger Together

We hope that our approach will not be in contrast to other solutions to the large problem of
JavaScript static analysis, but rather, serve as a locus of cooperation. Because the primary
issue is effectively a points-to analysis, many avenues for reducing ambiguity work extremely
well together, improving the results of both analyses. Likely no single analysis technique
will ever be fully able to address the breadth of all the complications of analyzing JavaScript
code. Instead, many techniques must work together in the same analysis framework in order
to combat the complexity of JavaScript.

We would like to highlight the way few techniques may prove symbiotic to context splitting,
though these are by no means the only such techniques. As discussed in Section 3.3, one area
of ongoing work is that of recovering the possible values of strings [16, 34, 39, 40], particularly
those passed into eval statements. Some approaches focus on a traditional static points-to
analysis, while others focus on a symbolic execution approach. While the aim is different,
the tasks are similar enough to impact one another. The more precisely we understand these
string values, the more precise the analysis can be about edges eval statements may or may not

introduce, or updates to state information that it may perform, which allows us to reduce the
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number of possible call targets at some call sites. Likewise, the more precise the call-graph
becomes, the less ambiguity there will be for string values. Improving either analysis improves
both, as they are interdependent in nature. Another avenue of future collaboration lies in the
area of incremental typing analyses, which use optional type annotations when provided, as
well as a static analysis, to provide as much type information as possible, which can augment
call-graph and other points-to-related analyses. Reducing the state explosion caused by an
imprecise call-graph can reduce the number of possible types for objects, while at the same
time, improved typing information may further restrict call-site targets.

Because context splitting can be easily layered over other static analysis techniques without
requiring extensive modifications to the underlying analysis engine, it allows cooperation
between these analysis strategies with minimal effort (as long as the strategies themselves
are implemented on the same engine). Big problems require many minds and many tools

working together in harmony in order to succeed.

3.8 Conclusion

JavaScript call-graph development has a long way to go. Due to the way that any imprecision
can spiral and lead to the algorithm completely stalling, any and all tools working towards the
end of improving precision need to work together. Context splitting opens up a new space to
explore in curbing the imprecision that JavaScript tends to create. Context splitting has the
potential to drastically improve the performance of JavaScript call-graph analysis algorithms.
Our experiments with WALA have demonstrated that context splitting provides much-needed
clarity to reduce the state space and prevent the analysis from becoming infeasibly expensive
in terms of time and memory. While there are still many promising directions to explore,
our novel technique performs better than the standard techniques on real-world JavaScript
programs currently powering well-known websites. The flexibility to craft context splitters
and split range policies based on the needs of a particular program will allow developer need
to drive decisions made by call-graph constructions. Its placement in WALA will allow
it to be accessible to developers who are already on the hunt for a call-graph construction

algorithm that can successfully analyze their code.
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4 CONCLUSIONS

This dissertation has laid out our work addressing areas where type information for tool
support is both scarce and most critical. In both domains that we focused on, we have
provided novel alternatives to the traditional approaches that outperform existing techniques
and alleviate developer frustration.

Of course, there is still much work to do to provide tools for such domains: it is as
impossible to address all these domains in the way that it is impossible to read every book ever
written. Not only is the sheer number overwhelming, more constantly crop up as computer
science advances. The goal of this work has never been to address every such problem, nor
even to address every problem in the two domains we focused on. Even so, we wish to draw
attention to future avenues for improvement, both in the areas we directly address, and in
other areas we are aware of, but have not (yet) had the ability to explore. A discussion of
these possible future areas of research are laid out in Section 4.1.

Section 4.2 is included for other program analysts who find themselves facing similar
challenges we did when it comes to evaluating their tool. When exploring an under-researched
topic, quite often it is difficult to know exactly how to compare one’s work to existing work,
or how to gauge its effectiveness. Section 4.2 discusses our experience, recounts how we
addressed concerns about evaluation, and presents our advice for future program analysts.
Finally, Section 4.3 recaps our accomplishments, addresses the current space of program

analysis for domains lacking type information, and concludes.

4.1 Future Work

Of course, the area of program analysis in the face of limited type information is vast, and no
one work can fully encompass it. To that end, we wanted to highlight some specific areas that
deserve particular attention moving forward, in hopes of better equipping developers with
the tools they need to write and maintain well-written code. While this section focuses in
particular on areas related to those discussed in this dissertation, we urge readers to keep
an eye out for other areas where developer tool support is neglected due to limited type
information. More often than not, this section will contain questions rather than answers. In
our experience, a good research project begins with a question. “Why,” “how,” and “what”

are both the most useful tools for a researcher to have, and the most frustrating ones.
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Our array length inference technique discussed in Chapter 2 makes an important step
forward in automating the creation of language bindings to C libraries, but more work remains.
The first step forward is likely conducting a survey among polyglot developers, to determine
what the current pain points are. What parts of connecting two languages together might put
developers off even attempting? And are there ways that tools can make that process less
painstakingly difficult?

It may also be helpful to explore more different conventions programmer use in different
languages (such as how array-length information is represented for C programs), and identify
places where developer intention can be leveraged to make better heuristics for program
analysis in difficult spaces. During our research, we discovered that C developers frequently
use pointers in a way that indicates their intended use in the data itself. One example is
discussed in Section 2.5, but because we were specifically looking for length information,
there may be all sorts of other predicated types that we simply did not come across. With the
limited type information baked into C pointers, developers have learned to be very creative
with it, and unfortunately, this can introduce a barrier when connecting C to other languages,
as other languages have more structured pointer types. Are there other kinds of predicated
types in common use? What do developers currently do to match predicated types to types in
languages other than C? How can this be partly or entirely automated, to remove the burden
from developers who just want to use a C library without any fuss?

In Chapter 3, we discussed our flexible, context-sensitive approach to constructing
JavaScript call-graphs. While our technique provides call-graphs for a number of JavaScript
programs that have previously defied analysis, there remains much work to be done in this realm
to truly equip JavaScript developers with the same tool support as those in statically-typed
languages.

We have identified some sources of runtime explosion, but many more remain to be
discovered. We believe a machine learning technique may be especially helpful here, though
certainly many questions need to be answered in order to properly train an algorithm for
deciding the appropriate amount of context sensitivity to apply. What should the features be?
How should we compare two algorithms if neither succeeds in producing a call-graph in a
timely fashion? Can one be “better” than another if neither finishes? Call-graph-construction
techniques are iterative, but the number of iterations is unbounded (though theoretically finite);
they do not come with a progress bar.

Our experience indicates that generally a call-graph-construction algorithm experiences

something of a snowball effect when imprecision creeps into the call-graph under construction.
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The more unnecessary edges are in the graph, the bigger the state that needs to get explored
grows, and the greater the number of iterations that need to be made. Worse, all of those
unneeded edges don’t stop there: generally, they continue creating more and more edges, none
of which can actually exist. Thus, one very promising candidate for a metric in this space is
whichever partially finished call-graph has the fewest edges. Of course, to use this metric,
one has to have some basic assumptions about the way in which the algorithms function:
monotonicity, that an algorithm encountering an error will not just stop but will report it, etc.
There also will likely need to be a way to temper this value: another possible explanation
for two call-graphs being vastly larger is that the algorithm producing it was simply more
efficient and got closer to the true call-graph.

One benefit of the call-graphs we produce is that they contain embedded context-sensitive
information used to create them. This could potentially be of great use to static analyses using
these call-graphs. We leverage this information to determine call targets, but this is really a
more general technique that benefits the pointer analysis as well. Static analysts who want a

call-graph, then, could take advantage of this contextual information to improve their analysis.

4.2 Advice for Program Analysts

In the course of constructing our program analysis techniques, we ran into several hurdles
that we believe are both common and not frequently discussed. We provide these notes for
readers who may find themselves in a similar situation to us, who are working in a challenging
space where benchmarks and ground truth simply do not exist yet. This section will lay out
our experiences and how we resolved to handle them, and each subsection wraps up with a

discussion of our recommendation for program analysts in similar circumstances.

4.2.1 Notes on Evaluating Without Benchmarks

In both Chapter 2 and Chapter 3, we found ourselves unexpectedly without a set of benchmarks
to compare our results and determine whether our tool was effective or not. This can make a
rigorous analysis difficult, since it is unclear whether any particular analysis is sufficient to
show the success of an approach. But sometimes, there is no standardized benchmark to use,
whether because the problem is sufficiently novel, or because existing work does not agree
upon a standardized set of test cases. In those cases, it is even more important than usual to
demonstrate the efficacy of your approach, even though how to do so is less clear than usual.

So, how does one handle such a lack of experimental benchmarks?
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In the case of Chapter 2, no previous tool had been written to produce these annotations,
so there was no standard suite of benchmark code to compare our approach on. But because
the annotations were already in use by many users, there were several large-scale, real-world
programs with human-created annotations. As discussed in Section 2.4.3.2, these annotations
were not perfect, but they provided excellent guidance as to a set of programs to use. We
couldn’t treat these annotations as ground truth (see Section 4.2.2), but we ensured that the
bulk of our experiments were run on programs with hand-authored annotations, since these are
programs that users took the time to craft annotations for. We could have chosen any set of C
programs, but that space is incredibly vast, and we specifically wanted to look for library code
that makes heavy use of arrays and/or strings. Code with these annotations already in place
was much more likely to make use of arrays and strings, and by definition was library code
rather than a complete program. This allowed us to narrow our search, but we made certain to
also include in our analysis a few experimental candidates that did not have annotations at the
time. Adding some programs without existing annotations to our experimental suite enabled
us to verify that our approach generalized to datasets not written with annotations in mind.

With Chapter 3, while other tools existed, there simply was no existing agreed-upon set
of benchmarks: various tools used different tests, and not all were entire programs. We
tried several approaches before arriving at the one described in Section 3.5. We knew we
wanted a large-scale set of tests on real-world code, and we knew we wanted that code to
be entire program code, not library code. (In Chapter 2, we intentionally sought out library
code because it was more challenging, and also more important, to have length annotations
for arrays in library code rather than entire program code; in Chapter 3, the more difficult
analysis is of whole program code, where the additional code provides more scalability
challenges.) Because we based our approach on an existing framework (WALA: see Chapter 3
for details), we had a natural way to compare our approach to that of WALA’s standard
analysis. Unfortunately, incorporating other tools’ results proved to be too time-consuming,
but comparing the difference between WALA with and without our changes helps indicate
the improvement our analysis provided. Given that the general process for constructing a
call-graph is similar at a very high level, it seems likely that these gains would also apply to
other call-graph construction techniques, not simply WALA’s. A few complications that we

considered when choosing our test base:

* If we simply chose our own programs, we ran the risk of accidentally selecting programs
that aligned well with our assumptions, causing our results not to generalize to real-world

developers. Thus, we settled on using the Amazon Alexa listing of the top-100 US and
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Global websites, which uses website traffic to determine the most “popular” websites.
This has the advantage of being far more objective than simply selecting websites the

authors like, and reflects real-world websites that have prospered.

* Yet, at the same time, most of these real-world websites do not have open-source
versions. Many of them are heavily obfuscated or minimized, techniques that make
the code far less readable. Of course, non-human-readable code is perfectly valid to
analyze, but determining correctness of our analysis becomes virtually impossible.
Knowing whether our analysis removes any edges that ought to exist in the call-graph is
an incredibly important question to determine whether our analysis makes an otherwise-
correct call-graph construction algorithm incorrect. Because we do not have ground
truth (see Section 4.2.2), we cannot simply compare our result to the correct answer.
Therefore, we found a secondary compilation of websites, primarily ones originally
written in the 1990s. We manually examined this list and distilled it down to 7 websites
from the original list that were human-readable, reasonably complex (i.e., contained at
least 200 lines of non-trivial JavaScript), but simple enough that both standard WALA
and our context splitting approach finished in under 10 minutes of analysis time. The
websites used varied greatly in scope and purpose. After obtaining call-graphs using
both WALA’s analysis approach, and WALA + context splitting, we sorted the edges in
the call-graphs and compared them using a diff. In every case, the context-splitting

approach was verified to be identical to standard WALA’s call-graph.

* We could not directly fetch the website anew each time we ran a test, due to the potential
for A/B testing. This was relatively easily resolved: we simply cached existing versions
of the websites. For those doing analysis on websites, we recommend caching any
websites used for analysis if using live, production versions, so as to guarantee the exact

same website is analyzed each time.

In general, we advise following the general guidelines below when you must select your
own set of benchmarks, rather than use existing ones. Of course, if existing benchmarks
exist and are compatible with your analysis, this is to be preferred, since it will allow your

experimental results to be more directly compared to others’ results.

1. Note versions, release dates/times, and the original input files wherever possible so that

future scientists can reproduce your results exactly and compare their results to yours.

2. Select inputs that are as objective and as similar to the intended use case as possible.
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3. If necessary, verify your results using a separate dataset, and take care to select this

dataset as objectively as possible.
4. Ensure that your inputs are sufficiently complex and diverse to generalize.

5. Make use of public information about popularity of inputs, where possible.

4.2.2 Notes on Evaluating Without Ground Truth

In both Chapter 2 and Chapter 3, we found ourselves without a true gold standard to compare
our results against. This complicates evaluation, as not only did we lack a standard benchmark
(see Section 4.2.1), we also lacked the ability to easily determine whether our analyses
produced incorrect results.

When attempting to evaluate our array-length-inference analysis (see Chapter 2), the
closest we had to ground truth was human-emitted annotations. As discussed in Section 2.4.3.2,
these annotations were incorrect a surprising amount of the time, so they could not truly be
relied upon as ground truth. Instead, we (rather painstakingly) manually compared times
when our algorithm and the human annotators disagreed. Fortunately for us, the number of
differences was not as large as it could be. Naturally, this does not give us a perfect metric:
there may be plenty of places where both human authors and our analysis were incorrect in
the same way. However, because our strategy was decidedly different from that of human
authors (who primarily used documentation and variable names, while our analysis ignores
these), this seems reasonably unlikely to occur at scale.

During the work covered in Chapter 2, finding ground truth at the scale of real-world
programs was practically impossible. Many of the programs we wished to analyze had not had
any analysis successfully complete previously, so there was no way to compare the two sets of
call-graphs. And the programs were generally complex enough that constructing call-graphs
by hand was not feasible, either. Thus, we used a series of smaller, hand-authored programs
to verify whether the call-graphs produced exhibited known problems (for example, a portion
of the code that does not exist in the final call-graph), and also a series of human-readable
programs that were simple enough that we could produce call-graphs using an existing
technique and compare the two. We found no issues with the call-graphs produced, and
verified that they were identical to those produced by the unmodified version of WALA.
This allowed us to gain confidence in our results on larger programs, where we did not have
ground truth, and the original code was difficult or impossible to manually verify. Effectively,

we were attempting to demonstrate that we had followed what we dubbed the “Hippocratic
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Oath for Program Analyses:” an analysis based on an existing analysis should not make
the result less correct. (Of course, correctness itself can be a tricky concept, but for our
purposes, “less correct” means that the output provides misleading or false information, not
simply overapproximations of the truth.) We also pondered potential metrics for comparing
partially-completed call-graphs, discussed further in Section 4.1: these are intended for use
not only when ground truth is unavailable, but also to predict which algorithm is “more
scalable” when neither algorithm is able to finish.

In general, the first step is to look at what developers do when faced with this problem. In
most cases, even if there is not a “state-of-the-art,” people must be getting around the lack of
tool support in some way, even if that way is manual rather than automated. Search for places
where you can compare the results of your technique to the results of the existing workaround
or state-of-the-art. Even if they may not scale to the degree that yours does, first ascertain that
you outperform or match them on smaller inputs. If necessary, manually compare output on a
random subset of results. Then, when you test at scale, verify some of your results (selected

at random) manually, even if only a subset.

4.3 Conclusion

Our tools were designed with the developer in mind, to alleviate frustration and improve the
code that developers write, even in spaces where limited type information complicates this.
Although this space certainly has room for future research, our contributions address real
and present problems for developers in the realm of polyglot development and JavaScript
development, both of which are growing in popularity.

In the polyglot domain, we offer relief in the form of an automated suite of analyses,
designed to enhance the quality of automatically produced bindings. These analyses recover
high-level array-length information that is missing from C’s type system. We emit annotations
in the style of GObject-Introspection, which produces bindings from annotations on function
signatures. We annotate each array argument as terminated by a special sentinel value,
fixed-length, or of length determined by another argument. These properties help produce
more idiomatic, efficient bindings. We correctly annotate at least 70% of all arrays with these
length types, and our results are comparable to those produced by human annotators, but
take far less time to produce. In many cases, we found our results to be more reliable than

human annotators, who relied on heuristics that prove unexpectedly faulty (such as the name
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of a method or variable). Our results perform admirably on both code designed for these
annotations, and code that was not written with such annotation in mind.

JavaScript call-graph analysis is also complicated by a quirk of its type system, its
object model, which only encourages properties to be added on-the-fly, as opposed to a
static class hierarchy. In many real-world JavaScript programs, call-graph construction has
been frustratingly out of reach, making it difficult for JavaScript developers to find static
program analysis support. To address this issue, we constructed a novel, flexible, context-
sensitive technique (context splitting) to be applied alongside existing call-graph construction
techniques. Generally, context sensitivity in JavaScript analysis is provided at the granularity
of the function. With our approach, context sensitivity can be applied to a finer granularity,
allowing users to identify sources of imprecision in the call-graph and the portions of the
code in which context sensitivity is needed. We have implemented several policies for context
splitting (predefined for convenience and testing), but users can also define arbitrary policies.
Our technique provides significant improvement in call-graph construction without harming
correctness of the resulting graph. We were able to analyze all 49 of the real-world, popular
websites we considered, while the underlying call-graph construction algorithm we used,
WALA, could analyze only 43. Our implementation is expected to be incorporated into a
future release of WALA, and can be used in conjunction with existing call-graph analysis
techniques without interfering with them and without modifying the call-graph.

Developers who are not given the tools to succeed struggle to find workarounds and often
simply find another way when they do not have the resources they need to do things the right
way. By addressing two significant and popular areas where tool support is lacking, we hope

to empower developers to write better, more reliable code with far less frustration.
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A GITHUB DATA

Two Sigma Ventures maintains a list of the top 100 GitHub projects [47], updated daily. We
visited each website and recorded the list of languages by prevalence in the project, as reported
by GitHub. This list is ordered by popularity score, provided by Two Sigma Ventures. The
list is included in Table A.1 for completeness.

Languages that report “0.0%” prevalence do so because the percentage is less than 0.1%,
and thus rounded to 0 by GitHub. Thus their prevalence is higher than the reported 0%, but
very minimal. Entries with “Other” languages reported consist of either several different
languages comprising very small amounts of the project, or represent files with extensions
that GitHub was not able to recognize and map to a language.

Note that very few projects (5%) report only a single language, and the overwhelming
majority (73%) report at least 3 languages, with an average of 4.5 languages used per project.
While some of the “languages” reported actually amount to build scripts (Makefile, CMake,
etc), generally they represent a very small portion of each project when they are present.
There are also some languages commonly paired together, such as JavaScript, HTML, and CSS,
or variations on similar languages like JavaScript, Typescript and CoffeeScript; CSS and
Scss; or C++ and C. Despite this, it seems clear that a significant percentage of popular, current
open-source projects use more than one programming language.

9% of the projects use C in some capacity. Of those, redis is the only project primarily
comprised of C: for projects using ¢, the average percent of the project developed with C is
15.4%. If redis is ignored as an outlier, this average drops to just 7.2%. This indicates that
while C is still an important development language in modern projects, it serves as a secondary,
rather than a primary language, for most projects. JavaScript appears in 32 projects, and
averages 46.1% of projects it is used in, indicating it is far more often used as a primary

development language.



Table A.1: List of top 100 GitHub Projects [47] as of 06/07/2021

Project

Languages

https://github.com/twbs/bootstrap

JavaScript: 41.7%
HTML: 31.6%
SCSS: 14.4%
CSS: 12.2%
PowerShell: 0.1%

https://github.com/tensorflow/tensorflow

C++: 61.6%
Python: 25.6%
MLIR: 3.1%
Starlark: 2.9%
HTML: 2.7%
Go: 1.2%
Other: 2.9%

https://github.com/twbs/bootstrap

JavaScript: 41.7%
HTML: 31.6%
SCSS: 14.4%
CSS: 12.2%
PowerShell: 0.1%

https://github.com/facebook/react

JavaScript: 95.1%
HTML.: 2.0%

CSS: 1.2%

C++: 0.8%
TypeScript: 0.4%
CoffeeScript: 0.3%
Other: 0.2%

https://github.com/vuejs/vue

JavaScript: 97.6%
Other: 2.4%
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Table A.1 continued from previous page

Project

Languages

https://github.com/kubernetes/kubernetes

Go: 96.6%

Shell: 2.9%
PowerShell: 0.3%
Makefile: 0.1%
Dockerfile: 0.1%
Python: 0.0%

https://github.com/angular/angular.js/

JavaScript: 98.1%
HTML: 1.2%
Other: 0.7%

https://github.com/apple/swift

C++: 51.2%
Swift: 44.2%
Python: 2.3%
CMake: 0.7%
Objective-C: 0.5%
C: 0.4%

Other: 0.7%

https://github.com/moby/moby

Go: 96.6%

Shell: 2.0%
PowerShell: 0.9%
Dockerfile: 0.2%
Makefile: 0.2%
Python: 0.1%

https://github.com/angular/angular

TypeScript: 82.6%
JavaScript: 12.9%
Starlark: 1.6%
HTML: 1.5%
CSS: 0.8%

SCSS: 0.3%
Other: 0.3%
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Project

Languages

https://github.com/spring-projects/spring-framework

Java: 98.5%
Kotlin: 1.2%
Groovy: 0.1%
Aspect]): 0.1%
FreeMarker: 0.1%
CSS: 0.0%

https://github.com/microsoft/vscode

TypeScript: 94.0%
JavaScript: 3.3%
CSS: 1.5%

Inno Setup: 0.7%
HTML: 0.4%
Shell: 0.1%

https://github.com/spring-projects/spring-boot

Java: 98.9%
HTML: 0.3%
Kotlin: 0.3%
Shell 0.2%
JavaScript: 0.2%
Groovy: 0.1%

https://github.com/rails/rails

Ruby: 95.4%
HTML: 3.2%
JavaScript: 0.9%
CSS: 0.3%
CoffeeScript: 0.2%
Shell: 0.0%

https://github.com/ohmyzsh/ohmyzsh

Shell: 98.7%
Other: 1.3%

https://github.com/microsoft/TypeScript

TypeScript: 100.0%
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Project

Languages

https://github.com/symfony/symfony

PHP: 98.8%
Twig: 1.0%
CSS: 0.1%
JavaScript: 0.1%
HTML: 0.0%
Shell: 0.0%

https://github.com/mrdoob/three.js/

JavaScript: 99.2%
Other: 0.8%

https://github.com/facebook/create-react-app

JavaScript: 98.3%
Shell: 1.3%

CSS: 0.1%
HTML: 0.1%
AppleScript: 0.1%
TypeScript: 0.1%

https://github.com/apache/dubbo

Java: 99.5%
Other: 0.5%

https://github.com/scikit-learn/scikit-learn

Python: 97.8%
C++: 1.4%
Other: 0.8%

https://github.com/webpack/webpack

JavaScript: 99.9%
WebAssembly: 0.1%
CSS: 0.0%
CoffeeScript: 0.0%
HTML: 0.0%

Less: 0.0%
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Project

Languages

https://github.com/angular/angular-cli

TypeScript: 95.7%
Starlark: 1.8%
JavaScript: 1.6%
EJS: 0.5%

HTML: 0.2%
Shell: 0.2%

https://github.com/jquery/jquery

JavaScript: 93.8%
HTML: 5.3%
Other: 0.9%

https://github.com/dotnet/aspnetcore

C#: 87.6%
JavaScript: 3.9%
C++: 2.8%
HTML: 2.4%
TypeScript: 1.3%
Java: 0.8%
Other: 1.2%

https://github.com/redis/redis

C: 81.4%

Tel: 17.4%
Ruby: 0.4%
Shell: 0.4%
Makefile: 0.3%
C++: 0.1%

https://github.com/denoland/deno

Rust: 59.7%
JavaScript: 21.2%
TypeScript: 19.0%
Other: 0.1%




Table A.1 continued from previous page

Project

Languages

https://github.com/ant-design/ant-design

TypeScript: 44.3%
JavaScript: 31.1%
Less: 24.4%
Other: 0.2%

https://github.com/pallets/flask

Python: 99.9%
Other: 0.1%

https://github.com/apache/superset

Python: 48.8%
TypeScript: 27.5%
JavaScript: 19.6%
HTML: 1.4%
Less: 1.3%

Shell: 1.2%
Other: 0.2%

https://github.com/photonstorm/phaser

JavaScript: 99.6%
Other: 0.4%

https://github.com/ansible/ansible

Python: 88.2%
PowerShell: 7.4%
Shell: 2.0%

C#: 1.9%

Jinja: 0.4%
Makefile: 0.1%

https://github.com/laravel/framework

PHP: 99.2%
Other: 0.8%
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Table A.1 continued from previous page

Project

Languages

https://github.com/bitcoin/bitcoin

C++: 66.6%
Python: 18.9%
C: 9.2%

M4: 1.6%
Shell: 1.6%
Makefile: 1.0%
Other: 1.1%

https://github.com/electron/electron

C++: 55.7%
TypeScript: 24.7%
JavaScript: 6.7%
Objective-C++: 6.7%
HTML: 3.3%
Python: 2.1%

Other: 0.8%

https://github.com/SeleniumHQ/selenium

Java: 34.8%

C#: 16.8%
JavaScript: 14.0%
C++: 12.4%
HTML.: 8.5%
Python: 5.1%
Other: 8.4%

https://github.com/gohugoio/hugo

Go: 99.1%
Other: 0.9%

https://github.com/atom/atom

JavaScript: 88.2%
Less: 8.7%
CoffeeScript: 3.0%
Shell: 0.1%
Batchfile: 0.0%
Dockerfile: 0.0%
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Table A.1 continued from previous page

Project

Languages

https://github.com/apache/spark

Scala: 65.9%
Python: 12.1%
Jupyter Notebook
2 7.5%

Java: 7.2%
HiveQL: 3.3%
R:2.2%

Other: 1.8%

https://github.com/flutter/flutter

Dart: 99.2%
Objective-C: 0.2%
Java: 0.2%

C++: 0.1%

Shell: 0.1%
CMake: 0.1%
Other: 0.1%

https://github.com/PowerShell/PowerShell

C#: 86.0%

PowerShell: 12.9%
Roft: 0.6%

Shell: 0.2%

Rich Text Format: 0.1%
Dockerfile: 0.1%
Other: 0.1%

https://github.com/ApolloAuto/apollo

C++: 83.8%
Python: 5.1%
Starlark: 4.3%
Shell: 3.4%
JavaScript: 1.8%
Cuda: 1.0%
Other: 0.6%




81

Table A.1 continued from previous page

Project

Languages

https://github.com/pingcap/tidb

Go: 99.7%
Other: 0.3%

https://github.com/netty/netty

Java: 98.6%

C: 1.1%

HTML: 0.1%
Shell: 0.1%
JavaScript: 0.1%
Makefile: 0.0%

https://github.com/animate-css/animate.css

CSS: 70.0%
HTML: 18.2%
JavaScript: 11.8%

https://github.com/google/guava

Java: 100.0%

https://github.com/ethereum/go-ethereum

Go: 89.1%

C: 5.4%
JavaScript: 3.5%
Assembly: 0.8%
Java: 0.2%
Sage: 0.2%
Other: 0.8%

https://github.com/grafana/grafana

TypeScript: 60.0%

Go: 31.0%

HTML: 2.2%

Rich Text Format: 1.9%
JavaScript: 1.9%
SCSS: 1.4%

Other: 1.6%

https://github.com/foundation/foundation-sites

HTML: 56.6%
SCSS: 28.7%
JavaScript: 14.7%
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Project

Languages

https://github.com/psf/requests

Python: 99.7%
Makefile: 0.3%

https://github.com/x64dbg/x64dbg

C++: 84.9%

C: 13.8%
QMake: 0.6%
CSS: 0.5%
Batchfile: 0.2%
Assembly: 0.0%

https://github.com/d3/d3

JavaScript: 100.0%

https://github.com/ReactiveX/RxJava

Java: 99.9%
Other: 0.1%

https://github.com/apache/incubator-mxnet

C++: 45.9%

Python: 36.2%

Jupyter Notebook: 8.7%
Cuda: 6.0%

CMake: 0.9%

Shell: 0.7%

Other: 1.6%

https://github.com/hashicorp/terraform

Go: 99.3%
Other: 0.7%

https://github.com/etcd-io/etcd

Go: 96.0%
Shell: 2.4%
Jsonnet: 0.8%
Makefile: 0.4%
Python: 0.2%
Dockerfile: 0.1%
Other: 0.1%
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Project Languages

JavaScript: 92.3%
CSS: 3.5%

https://github.com/TryGhost/Ghost HTML: 2.4%
Handlebars: 1.7%
2 0.1%

Ruby: 71.0%
Gherkin: 22.7%
JavaScript: 3.9%
https://github.com/jekyll/jekyll HTML: 1.2%
Shell: 0.8%
Dockerfile: 0.2%
Other: 0.2%

Go: 88.7%
TypeScript: 6.5%
JavaScript: 1.7%
https://github.com/prometheus/prometheus HTML: 1.4%
Yacc: 0.7%
SCSS: 0.3%
Other: 0.7%

C: 56.9%

C++: 37.1%

CMake: 2.3%
https://github.com/obsproject/obs-studio Objective-C++: 1.6%

Objective-C: 1.4%

Shell: 0.3%

Other: 0.4%
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Project

Languages

https://github.com/MaterializeInc/materialize

Rust: 91.4%
Python: 4.8%
Shell: 1.8%
Dockerfile: 0.8%
HTML: 0.4%
JavaScript: 0.3%
Other: 0.5%

https://github.com/pandas-dev/pandas

Python: 95.6%
HTML.: 2.4%

C: 1.9%

Shell: 0.1%
Smarty: 0.0%
Dockerfile: 0.0%

https://github.com/bcit-ci/Codelgniter

PHP: 97.3%
HTML.: 1.4%
Python: 0.6%
JavaScript: 0.3%
Makefile: 0.2%
CSS: 0.1%
Shell: 0.1%

https://github.com/gogs/gogs

Go: 90.6%
Less: 4.1%
JavaScript: 3.3%
Shell: 1.7%
Makefile: 0.1%
Dockerfile: 0.1%
Batchfile: 0.1%
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Table A.1 continued from previous page

Project

Languages

https://github.com/apache/kafka

Java: 72.9%
Scala: 23.7%
Python: 2.9%
Shell: 0.3%
Roft: 0.1%
Batchfile: 0.1%

https://github.com/ElemeFE/element

Vue: 59.1%
JavaScript: 26.6%
SCSS: 14.0%
Other: 0.3%

https://github.com/puppeteer/puppeteer

TypeScript: 72.2%
JavaScript: 26.3%
HTML: 1.4%
Other: 0.1%

https://github.com/h5bp/html5-boilerplate

JavaScript: 80.7%
HTML: 19.3%

https://github.com/square/okhttp

Java: 50.0%
Kotlin: 49.9%
Shell: 0.1%

https://github.com/chartjs/Chart.js

JavaScript: 98.7%
Other: 1.3%

https://github.com/AFNetworking/AFNetworking

Objective-C: 96.8%
Swift: 1.7%
Ruby: 1.2%
Other: 0.3%

https://github.com/mui-org/material-ui

JavaScript: 80.0%
TypeScript: 20.0%
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Project

Languages

https://github.com/mozilla/pdf.js/

JavaScript: 97.4%
CSS: 1.6%
Other: 1.0%

https://github.com/Semantic-Org/Semantic-UI

JavaScript: 62.9%
CSS: 36.4%
HTML.: 0.7%

https://github.com/pixijs/pixijs

TypeScript: 72.4%
JavaScript: 26.3%
Other: 1.3%

https://github.com/adobe/brackets

JavaScript: 83.9%
HTML: 13.1%
Less: 1.4%

CSS: 1.2%

PHP: 0.2%

Shell: 0.1%
Other: 0.1%

https://github.com/axios/axios

JavaScript: 93.3%
TypeScript: 3.9%
HTML.: 2.8%

https://github.com/gin-gonic/gin

Go: 99.6%
Makefile: 0.4%

https://github.com/ColorlibHQ/AdminLTE

JavaScript: 77.2%
HTML: 16.8%
CSS: 4.5%

SCSS: 1.5%

https://github.com/expressjs/express

JavaScript: 100.0%

https://github.com/shadowsocks/shadowsocks-windows

C#: 94.5%
JavaScript: 5.5%
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Project

Languages

https://github.com/apache/echarts

TypeScript: 90.5%
JavaScript: 9.3%
Other: 0.2%

https://github.com/gulpjs/gulp

JavaScript: 100.0%

https://github.com/google/material-design-lite

HTML: 36.6%
CSS: 34.3%
JavaScript: 29.1%

https://github.com/socketio/socket.io

JavaScript: 52.7%
TypeScript: 47.3%

https://github.com/PanJiaChen/vue-element-admin

Vue: 69.4%
JavaScript: 26.0%
SCSS: 4.1%
Other: 0.5%

https://github.com/deepfakes/faceswap/

Python: 98.8%
Other: 1.2%

https://github.com/vercel/next.js/

JavaScript: 83.5%
TypeScript: 16.0%
CSS: 0.3%

Shell: 0.1%
SCSS: 0.1%
Dockerfile: 0.0%

https://github.com/ApolloAuto/apollo

C++: 83.8%
Python: 5.1%
Starlark: 4.3%
Shell: 3.4%
JavaScript: 1.8%
Cuda: 1.0%
Other: 0.6%
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Project

Languages

https://github.com/square/retrofit

Java: 96.4%
Kotlin: 1.8%
HTML: 1.4%
Other: 0.4%

https://github.com/grpc/grpc

C++: 44.6%

C: 19.7%

Python: 12.2%
C#: 8.3%

Ruby: 3.5%
Objective-C: 2.2%
Other: 9.5%

https://github.com/ariya/phantomjs

C++: 39.3%
JavaScript: 29.4%
C: 24.4%

Python: 5.8%
HTML.: 0.7%
Shell: 0.2%
Other: 0.2%

https://github.com/Alamofire/Alamofire

Swift: 99.9%
Ruby: 0.1%

https://github.com/alibaba/fastjson

Java: 99.9%
Other: 0.1%

https://github.com/Netflix/Hystrix

Java: 98.5%
Clojure: 1.4%
Other: 0.1%

88



Table A.1 continued from previous page

Project

Languages

https://github.com/nwjs/nw.js

JavaScript: 42.9%
C++: 34.7%
Python: 14.2%
HTML: 3.7%

Objective-C++: 2.8%

Objective-C: 0.6%
Other: 1.1%

https://github.com/tesseract-ocr/tesseract

C++: 95.8%
C:1.1%
CMake: 1.0%
Java: 0.9%
Makefile: 0.9%
Shell: 0.3%

https://github.com/zxing/zxing

Java: 96.0%
HTML: 3.9%
CSS: 0.1%

https://github.com/adam-p/markdown-here

JavaScript: 87.2%
CSS: 9.5%
HTML.: 3.3%

https://github.com/necolas/normalize.css/

CSS: 100.0%
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This dissertation uses I&TEXfor the text formatting, BIBTEX for the bibliography, and TikZ for
figures and code formatting. I&TgXtemplate for this dissertation adapted from one graciously

provided by Will Benton.! Edited in the Overleaf cloud editor environment.

1https ://github.com/willb/wi-thesis-template
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