
APPLICATIONS OF STATIC ANALYSIS AND PROGRAM STRUCTURE

IN STATISTICAL DEBUGGING

by

Piramanayagam Arumuga Nainar

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2012

Date of final oral examination: 8/17/2012

The dissertation is approved by the following members of the Final Oral Committee:

Benjamin R. Liblit, Associate Professor, Computer Sciences

Susan B. Horwitz, Professor, Computer Sciences

Shan Lu, Assistant Professor, Computer Sciences

Thomas W. Reps, Professor, Computer Sciences

Xiaojin Zhu, Associate Professor, Electrical and Computer Engineering

Copyright © 2012 Piramanayagam Arumuga Nainar

All Rights Reserved

i

To amma and appa

ii

Acknowledgments

I thank my advisor Ben Liblit for his guidance and constant support. He has been a great mentor and guide

both academically and personally. Ben has given me a lot of freedom to explore my interests, while still

steering me towards achievable goals. His patience with me, especially during periods of fruitless ideas,

has been unimaginable.

I would like to thank professors Susan Horwitz, Shan Lu, Tom Reps, and Jerry Zhu for their valuable

feedback and comments as a part of my final oral committee. Comments from Susan helped bring a better

structure and clarity to the chapter on identifying failure-inducing changes.

I am grateful to Anne Mulhern, Cindy Rubio González, Steve Jackson, Tristan Ravitch, Suhail Shergill,

Mark Chapman, and Peter Ohmann for the discussions and their feedback during our group meetings.

I am thankful to Jake Rosin and Ting Chen for their collaboration in the Compound Predicates project.

Special thanks to Gogul Balakrishnan, Akash Lal, Nick Kidd, Junghee Lim, Evan Driscoll, Aditya Thakur,

Matt Elder, Bill Harris, Tushar Sharma, Prathmesh Prabhu, and Venkatesh Srinivasan for their feedback,

especially during my practice talks.

Several research groups supported this research by generously providing us with their tools and support.

Our binary instrumentor is built using Dyninst. Prof. Bart Miller, Drew Bernat, and Matt Legendre,

helpfully responded to our queries, issues, and feature requests regarding Dyninst. Grammatech generously

provided us with licenses to CodeSurfer, which is used extensively by this research. The UWCS Condor

pool, maintained by the Condor project, has been very useful for conducting the numerous experiments

in this dissertation. Cathrin Weiss helped set up performance measurements on Condor. I would like to

thank all the members of Dyninst, Grammatech, and Condor for their help and support.

iii

I am thankful to all my friends for making my stay at Madison enjoyable, and the winters bearable.

Special thanks to Arunachalam, Aditya, Asim, Cindy, Gautam, Giri, Jayaram, Jayashree, Keerthi, Leo,

Nilay, Rathijit, Sayani, Sridhar, Srinath, Sriram, Swami, Tushar Khot, and Tushar Sharma for their

friendship over the years. Sriraam, I enjoyed all the hours we spent following cricket, as well as our

impromptu road trips. Ashok, you are all one can ask for in a roommate — a great friend, understanding

roommate, and a great cook. Siddharth, I cherish our friendship that is forged in our mutual love for coffee,

tennis, music, biking, and “humor”.

I dedicate this dissertation to my parents for their love and affection, and for inspiring me during every

step of my life. Karthi and Paru, our journey together over the years has been wonderful. Thank you!

iv

Contents

Contents iv

List of Tables viii

List of Figures x

Abstract xii

1 Introduction 1

1.1 Cooperative Bug Isolation . 1

1.1.1 Relevance of Static Program Information . 4

1.2 Offline Analysis of Compound Predicates . 4

1.3 Adaptive Instrumentation . 5

1.4 Identifying Failure-inducing Changes . 7

1.5 Contributions . 8

2 Background 10

2.1 Instrumentation Schemes . 10

2.2 Sampling . 12

2.3 Statistical Bug Isolation . 13

2.3.1 Scoring Predicates . 14

2.3.2 Iterative Bug Isolation . 15

v

2.4 Evaluation of the Output of Fault Localization . 15

3 Compound Predicates 17

3.1 Compound Predicates: Formalization . 18

3.1.1 Deriving Compound Predicates . 19

3.1.2 Pruning Computation of Scores . 21

3.2 Usability Metric . 30

3.3 Case Studies . 32

3.3.1 exif . 32

3.3.2 print_tokens . 35

3.4 Experiments . 36

3.4.1 Top-scoring Predicates . 37

3.4.2 Bug-relevance of Compound Predicates . 38

3.4.3 Experiments on Larger Benchmarks . 41

3.4.4 Effectiveness of Pruning . 42

3.4.5 Effect of Effort and Sampling . 44

3.5 Summary . 48

4 Adaptive Bug Isolation 50

4.1 Overview of Adaptive Bug Isolation . 52

4.1.1 Practical Considerations . 54

4.2 Binary Instrumentation . 57

4.2.1 Basic Instrumentation and Reporting . 57

4.2.2 Static Removal of Instrumentation . 58

4.2.3 Binarization and Dynamic Removal . 59

4.2.4 Performance Impact . 60

4.3 Adaptive Instrumentation . 61

4.3.1 Forward Analysis of the Program . 63

vi

4.3.2 Backward Analysis of the Program . 64

4.3.3 Scoring Heuristics . 65

4.3.4 Waiting for Sufficient Data . 68

4.3.5 Design Alternatives . 69

4.4 Evaluation . 69

4.4.1 Comparison of Heuristics . 71

4.4.2 Instrumentation Selectivity . 75

4.4.3 Multiple Bugs . 78

4.4.4 Performance Impact . 80

4.4.5 Comparison with Holmes . 81

4.5 Summary . 82

5 Identifying Failure-inducing Changes 84

5.1 Conditional Coverage Estimation . 86

5.1.1 Basic Definitions . 87

5.1.2 Estimating Co-occurrence of Nodes . 89

5.1.3 Handling Function Calls . 92

5.1.4 Recursion and Loops . 93

5.1.5 Sources of Imprecision . 96

5.1.6 Change Impact Analysis . 96

5.2 Experimental Setup . 98

5.2.1 Performance . 99

5.3 Isolating Failure-inducing Changes . 100

5.3.1 Associating Changes with Predictors . 101

5.3.2 Associating Changes with Failing Locations . 103

5.3.3 Association using Forward Slices . 104

5.4 Summary . 105

vii

6 Related Work 107

6.1 Survey of Statistical Debugging Techniques . 107

6.1.1 Extensions from the CBI Project . 107

6.1.2 Fault Localization Tools . 108

6.2 Related Work for Compound Predicates . 110

6.3 Related Work on Adaptive Instrumentation . 111

6.4 Related Work for Conditional Coverage Profiles . 113

6.4.1 Change Impact Analyses . 113

6.4.2 Identifying Failure-inducing Changes . 114

6.4.3 Probabilistic Static Analyses . 115

7 Conclusion 116

7.1 Interoperability of the Contributions . 117

7.2 Closing Thoughts . 118

Bibliography 119

viii

List of Tables

1.1 Relative performance overheads . 6

3.1 Three-valued truth tables for compound predicates . 21

3.2 Bounds required in equation (3.4) for a conjunction . 29

3.3 Bounds required in equation (3.4) for a disjunction . 29

3.4 Results for exif with only simple predicates . 33

3.5 Results for exif with compound predicates . 34

3.6 Results for print_tokens with simple predicates . 35

3.7 Results for print_tokens with compound predicates . 35

3.8 Properties of applications in the Siemens test suite . 36

3.9 Kind of the top predicate during complete data collection 37

3.10 Kind of the top predicate during 1⁄100 sampling . 38

3.11 Bug-relevance of simple and compound predicates . 39

3.12 Bug-relevance of top-ranked compound predicates found with and without effort metric . . . 40

3.13 Properties of larger bug benchmarks . 41

3.14 Kind of the top predicate for large bug benchmarks . 41

3.15 Time (in minutes) taken to compute scores for compound predicates 42

4.1 Taxonomy of changes, with the proposed system being the bottom right cell 55

4.2 Programs used for experimental evaluation . 70

4.3 Mean number of sites instrumented per iteration . 77

ix

4.4 Mean number of iterations for each program . 77

4.5 Results for exif . 79

4.6 Relative performance overheads . 80

5.1 Bug benchmarks used in experiments . 98

5.2 Overhead of data collection and time for analysis . 99

x

List of Figures

1.1 Overview of the CBI system . 3

1.2 Summary of contributions . 9

3.1 Illustration for ↑ R(C obs) . 24

3.2 Illustration for ↓ R(C obs) . 25

3.3 Illustration for ↑ R(D obs) . 27

3.4 Illustration for ↓ R(D obs) . 28

3.5 Code snippet from function exif_mnote_data_canon_load in exif 33

3.6 Code snippet from function get_token in print_tokens 35

3.7 Percentage of predicates pruned using effort and upper-bound in Importance 43

3.8 Variation in the number of interesting predicates with effort 45

3.9 Sampling rate vs. number of interesting predicates . 46

3.9 Sampling rate vs. number of interesting predicates (cont.) 47

4.1 Module structure in exif 0.6.9 . 51

4.2 Overview of adaptive bug isolation (a dark shadow highlights differences from fig. 1.1) . . . 53

4.3 Example graphs for static removal of branch predicates . 58

4.4 Adaptation speed for various heuristics using forward analysis 72

4.5 Adaptation speed for various programs using forward and backward analysis 74

4.6 Mean number of sites to find top-ranked predictor . 76

xi

5.1 Example control-flow graph fragment . 91

5.2 Control-flow graph for a simple square root computation 94

5.3 General equations for conditional coverage profile for the CFG in fig. 5.2 95

5.4 Conditional coverage profile from node n1 for the CFG in fig. 5.2 95

5.5 Conditional coverage profile from node n11 for the CFG in fig. 5.2 95

5.6 Example illustrating change impact analysis . 97

5.7 Precision and recall of associating failure-inducing changes with bug predictors 102

5.8 Precision and recall of associating failure-inducing changes with failing locations 103

xii

Abstract

Software testing is costly, time-consuming, and often incomplete. Statistical debugging is a new domain

of research that extends the testing phase into deployment. Post-deployment monitoring and statistical

analyses are used to find program behaviors, called predicates, that are correlated with failures. Prior

works rely on dynamic analysis, which focuses solely on the runtime behavior of programs, for bug

isolation. This dissertation demonstrates the use of static analysis, a counterpart of dynamic analysis, to

improve statistical debugging. Static analysis discovers a program properties without running it.

The contributions are evaluated in the context of the Cooperative Bug Isolation (CBI) project that

studies statistical debugging techniques. Predicates instrumented by CBI test the program’s state at

particular program locations. At a high level, predicates are considered useful for fault localization if the

set of executions in which they are observed true closely matches the set of failed executions. However,

complex bugs manifest only when multiple factors co-occur. Simple predicates may not be accurate

predictors of complex bugs. We propose that compound predicates, which are propositional combinations

of simple predicates, could be better failure predictors. Compound predicates are the most accurate

predicates of failure in 93% of our experiments. We use offline estimation, mathematical upper-bounds on

failure predictivity, and static program dependences to tractably incorporate compound predicates into

statistical debugging. These optimizations reduce analysis time from 20 minutes to just 1 minute.

Statistical debugging searches for needles in a haystack: over 99.996% of predicates are not failure

predictive. The CPU, network, and storage resources used to collect these predicates could be better

utilized. We develop an adaptive bug isolation technique that uses static program dependences and prior

feedback to selectively monitor those predicates that are likely to be useful. Predicates that are irrelevant

xiii

to failure are never instrumented, or are removed after their relevance is ascertained. We characterize this

adaptive predicate selection as a forward analysis on the program-dependence graph. We also develop a

backward analysis that uses a crash location as a starting point. Our approach finds the best predicate

found by complete instrumentation after exploring, on average, just 40% of the program locations. More

importantly, very few locations are instrumented at any time, yielding imperceptibly low overheads of less

than 1%.

While debugging, a developer first uses the list of predicates in CBI’s output to find root causes of

failures, and then develops a fix. We aid the developer in the first task by augmenting CBI’s output with

source-level changes that are likely causes of failures. We extend the well-studied problem of change

impact analysis to compute the likelihood that a source-level change impacts a program location. Our

technique, called conditional coverage profiles, uses symbolic evaluation, the program’s control-flow

graph, and runtime profiles to narrow the scope of impacted program locations by an order of magnitude

compared to prior work. It identifies failure-inducing changes with a precision of 89% and a recall of 55%.

Our contributions, while seemingly orthogonal in their goals, are unified by their application of static

analysis to connect dynamic behavior. Static program structure is used to prune less useful compound

predicates, adaptively instrument likely bug predictors, and associate predicates with failure-inducing

changes. Overall, this dissertation improves the monitoring efficiency and fault localization of the

state-of-the-art in statistical debugging.

1

Chapter 1

Introduction

Statistical debugging tools analyse execution profiles collected at runtime to find bugs. Static analysis and

program-dependence graphs (PDGs) can be used to improve the fault localization ability and monitoring

efficiency of statistical debugging techniques.

Statistical debugging via post-deployment monitoring is a new domain of research that extends the

testing phase into deployment. Such tools record only a small fraction of a program’s runtime behavior

and rely on the economy of scale and statistical analysis for effective fault localization. The design of

these techniques have twin goals of

(a) gathering meaningful data for effective fault localization, and

(b) reducing the overhead of monitoring to facilitate post-deployment data collection.

Both these constraints must be met for the widespread adaptation of post-deployment monitoring. Static

program structure and static analysis can help us achieve this goal.

1.1 Cooperative Bug Isolation

Software has bugs. Software testing is one method of ensuring software quality and reliability. However,

software testing is costly, time consuming, and often incomplete. Due to market and time constraints,

software is often released with bugs. Regression testing, feature testing, and program verification are

2

some methods used by software engineers to test the correctness and reliability of software. However, it

is infeasible, and even impossible to test a program on all possible inputs and configurations. Bugs in a

deployed program can arise during the execution of an untested code path or deployment in an untested

environment.

Fixing bugs that affect the actual users of the program, and hence affect their perception of the software

quality, is a higher priority for developers than fixing known, but rare, bugs found via in-house testing.

Currently, public bug trackers and automatic crash reporting are the conventional means by which the

software developer keeps track of bugs that arise after deployment. Post-deployment monitoring [Libb]

has been proposed as a more heavyweight alternative to crash reporting. Unlike crash reporting, which

gets invoked only at the time of a failure, post-deployment monitoring is always enabled. Diagnostic

information about a program’s execution is continuously collected. After every program run, this diagnostic

information gets automatically uploaded to a central server, and is available for offline analysis. Bug

isolation techniques analyze this data to identify bug predictors. A bug predictor is a program behavior

that is highly correlated with program failure. This information can then be used by a software developer

to diagnose and fix the bug.

Post-deployment monitoring and the associated bug-isolation techniques are collectively referred to as

statistical debugging. Cooperative Bug Isolation is a project that studies statistical debugging techniques.

Figure 1.1 shows a conceptual overview of this project. A source-to-source instrumentor modifies the

program to record runtime behavior. An instrumentation site, the basic unit of instrumentation, inspects the

state of the running program at a single program location. For example, a branch site inspects the outcome

of each conditional statement. A scalar-pairs site inspects the relation between the output of a scalar

assignment statement and every other scalar value in scope. A return site inspects the relation between a

scalar value returned by a function call and zero. The inspiration of the return instrumentation scheme is

the convention used in C programs where the return value indicates the success or failure of an operation.

The CBI instrumentor supports several other instrumentation schemes [Liba]. Each instrumentation site is

decomposed into a small collection of instrumentation predicates that partition the state space at that site.

For example, there are two predicates at a branch site: one testing whether the branch condition is true and

3

Instrumentation
Sites

Sampling

CBI Instrumentor

Deployed Program

User Community

Feedback
Reports

Statistical
Debugging

Top Bug
Causes

main.h
main.c
· · ·

Program Source

Bug Fix

Figure 1.1: Overview of the CBI system

another testing whether the condition is false. These instrumentation schemes are a wide net intended to

catch useful clues for a broad variety of bugs. They might be both incomplete and mutually redundant

with respect to possible program behavior. CBI also uses sampling [Lib+03] to monitor a sparse, but fair

random subset of the dynamic instances of each instrumentation site. At a sampling rate of 1⁄100, every time

the program reaches an instrumentation site, there is a one in a hundred chance that the predicates at that

site are recorded.

After deployment, each run of the program generates a compact trace of the values of instrumentation

predicates. The trace, and a single outcome label that marks the run as good (successful) or bad (failed) is

uploaded to a central server. Fault isolation algorithms based on statistical techniques [Lib+03; Lib+05],

and machine learning [And+07; Zhe+06] have been developed to analyze this data. In addition to success

on widely used bug benchmarks, they also found previously unknown bugs [Lib+05]. The output of these

techniques is a list of predicates whose truth in an execution of the program is correlated with failure. The

programmer is presented with a list of such predicates, as well as the statistical reasoning behind this

4

decision. This information, hopefully, steers the programmer to the root cause of the bug and aides in

the development of a fix. Over time, this continual process can improve the quality and reliability of the

software.

1.1.1 Relevance of Static Program Information

The balance between accurate fault localization and efficient data collection is evident in the design of

CBI. Scalar-pair instrumentation sites are defined at each assignment to a scalar variable, and hence

can be quite numerous. Other instrumentation schemes like g-object-unref and float-kinds [Liba] can

be included depending on the properties of the program being tested. These choices enhance the ability

to find a broad variety of bugs. On the other hand, sampling throws away a vast majority of the data

to guarantee minimal performance overhead. To reduce space consumption, the feedback reports are

compacted to collect the frequency, rather than a complete trace, of predicate observations. Even though

there are several instrumentation schemes, complex schemes such as path-profiling are eschewed in favor

of simple properties.

Within the framework of post-deployment monitoring, there is a rich design space, and scope for new

techniques for program instrumentation and statistical analyses. Static analysis and program dependences

can be used to improve the state-of-the-art in this domain. The rest of this chapter makes various proposals

that use this information to improve the results of fault localization and the overhead of data collection.

1.2 Offline Analysis of Compound Predicates

An instance of the trade-off between accurate fault localization and efficient data collection is the choice

of predicates instrumented by CBI. The branch, return and scalar-pairs instrumentation schemes, as well

as other instrumentation schemes supported by CBI are simple properties that can be quickly tested at

runtime. However, such predicates might not be the best predictors of program failure. At a very high

level, a predicate can be thought of as partitioning the space of all runs into two subspaces: those satisfying

the predicate and those not satisfying it. A bug in the program can be considered as partitioning the space

of runs into successful and failed runs. If the partitions induced by a predicate closely matches the set of

5

failed runs, , it would be considered as a good predictor for the bug. However, real-world bugs exhibit

themselves in complex situations. The partition of executions induced by a predicate may only crudely

match the set of failed executions. Such simple predicates may not always be the best predictor of the bug.

On the other hand, predicates added by complex instrumentation schemes can induce complex partitions

of the set of executions. For example, a path predicate is true only in the intersection of the runs in which

each branch in that path is true. Thus, path predicates may be better predictors of complex bugs. However,

complex instrumentation schemes impose higher runtime overheads. A middle ground between simple

instrumentation schemes and direct profiling of complex schemes is to consider Boolean formulae of

simple predicates as candidate bug predictors. The predicates added by CBI’s instrumentation schemes

are Boolean conditions on the program state. A natural way to combine them into compound predicates is

using logical operators such as conjunction and disjunction. We add compound predicates as candidate bug

predictors during offline analysis. This approach imposes the same performance overhead as existing CBI

instrumentation. The challenges in introducing compound predicates lie in the identification of compound

predicates that are good failure predictors, as well as of better use to programmers in tracking the bug.

We use statistical estimation and static program dependences to efficiently compute those compound

predicates that are likely to be useful bug predictors.

1.3 Adaptive Instrumentation

CBI uses lightweight instrumentation based on sampling to reduce the runtime overhead of post-deployment

monitoring. At sampling rates between 1⁄100 and 1⁄1000 suggested by Liblit [Lib07], more than 99% of

the predicate behavior is never recorded. The compromise made by sampling is to uniformly discard

more than 99% of the runtime profile. However, Liblit [Lib07] also found that more than 99% of the

instrumented predicates are not predictive of failure. In such a situation, uniformly applying sparse

sampling is not the optimal approach. Instead, we can combine intermediate fault localization results and

program dependences to prioritize data collection towards those sites that are more likely to execute in a

failed execution. Such sites are more likely to be useful in fault localization.

At a high level, such an adaptive predicate selection will work as follows. We start by monitoring an

6

Table 1.1: Relative performance overheads

Sampling Rate

Program 1⁄1 1⁄100 1⁄UINT_MAX

bash 1.315 1.257 1.137
bc 1.172 1.146 1.130
gcc 3.686 2.426 1.651
gzip 3.583 2.012 1.565
exif 1.893 1.975 1.292

Overall 2.076 1.692 1.338

initial set of instrumentation sites. Feedback obtained during this stage can be used to choose sites that

could be causing failures. This set of sites is monitored during the next stage. More importantly, those

sites that cannot be correlated with failure can be identified and their instrumentation can be postponed

until a later time. Throughout this process, statistical-analysis results are available to the programmer,

who can fix failures if enough data is available or choose to wait for more data if the picture is unclear.

Intuitively, such an adaptive predicate selection tries to mimic the debugging activity of a programmer.

Using feedback from a prior execution, or even just an initial hunch, the programmer uses breakpoints

and other probes near points of failure to get more feedback about program behavior. Suspect code is

examined more closely, while irrelevant code is quickly identified and ignored. Each iteration enriches the

programmer’s understanding until the reasons for failure are revealed. We propose to mimic and automate

this process on a large scale. Instead of a single run, we can collect feedback from thousands or millions

of executions of the program by its users. The adaptive step uses the control-dependence graph of the

program to choose the set of predicates that get instrumented in the next iteration.

An added motivation for studying adaptive re-instrumentation techniques is that sampling does not

improve performance in all cases [Lib07]. In particular, the overhead is non-trivial for CPU intensive

workloads. Table 1.1 shows the average overhead of sampling-based instrumentation for some CPU

intensive bug benchmarks. The overheads are obtained by normalizing against the running time of the

uninstrumented program. Sampling rates of 1, 1⁄100 and 1⁄UINT_MAX are studied. At a sampling rate of 1⁄UINT_MAX,

virtually no feedback gets collected. It is the best case for sampling based instrumentation. Even for

7

this scenario, the overheads range from 1.29× to 1.65×, with a mean overhead of 1.338×. The adaptive

instrumentation technique proposed above will also reduce the performance overheads because at any

point in time, only a small subset of the instrumentation sites will be instrumented. Moreover, by selecting

a small set of sites to instrument at any point in time, we can observe the behaviors of these sites in their

entirety. Sampling is no longer required to guarantee low overheads.

1.4 Identifying Failure-inducing Changes

The output of statistical debugging tools is a list of predicates that are good predictors of failure. The

programmer who uses these tools has two tasks at hand: first using failure predictors to identify the root

cause of program failures, and then developing a fix for it. We can augment this list to also direct the

attention of the programmer to possible root causes. In the context of evolutionary software development,

the notion of a “root cause” could be a change made to the program from an earlier version. For example,

if the new version of a program has a bug that was not present in an old version, the set of changes made

to the old version may be the direct or indirect cause of the bug. Such changes are likely root causes for

bugs introduced during minor releases of the software. For major releases, changes can build entire new

features. Hence isolating a single change in a major release would be less useful in identifying a smoking

gun. Nevertheless, identifying failure-inducing changes is a useful enhancement to the output of statistical

debugging tools.

This proposal is inspired by other tools that identify failure-inducing changes. Given a passing and

failing version of a program and the set of atomic changes made between the two versions, the goal of these

dynamic-analysis tools is to find the minimum set of changes that cause failure when applied. However,

existing work assumes the ability to enable each change individually [RR07; Zel99; Zha+08] or access to

precise coverage information [Hof+09; Stö+06]. Such precise coverage information is not available in

the presence of sampling or adaptive predicate selection. Thus, they are best suited for in-house testing,

where it is possible to discover failures and collect profiles with a subset of changes enabled.

The problem of identifying failure-inducing changes can be solved by drawing on another rich body

of research. The well-studied problem of Change Impact Analysis [Arn96] identifies the components

8

that are potentially impacted by a change to a program. If we find the source-level change that impacts

a failure predictor found by statistical analysis, we can classify that change as a potential root cause of

this failure. However, the output of existing change impact analyses [Api+05; Bin97; Hor+90; Hut+94;

Kun+94; Ren+04; SH10; Yin+04] is ill-suited for this task. The output of these analyses is a Boolean

decision on whether a particular program point is impacted. From our experience, a failure predictor is

likely to be impacted by multiple changes.

Instead, we can quantify the impact of the change on each program point as a more nuanced, probabilistic

value. This value is derived from branch and call-graph profiles of the old and new versions of the program.

Our technique solves a data-flow problem similar to prior work on “Data flow frequency analysis” [Ram96].

The data-flow problem takes into account the location of the source-code change. We can use this

probabilistic value to identify the change that is most likely to impact a failure predictor. We can objectively

evaluate the accuracy of this classification. However, it is hard to evaluate whether information about a

failure-inducing change is more useful to the programmer than just a failure predictor. Subjectively, the

failure-inducing change, if correct, is a better starting place for a programmer to attempt a fix.

1.5 Contributions

Figure 1.2 summarizes our contributions along two criteria: improving failure prediction and efficiency of

monitoring. The idea of compound predicates, further developed in chapter 3, adds Boolean combinations

of predicates as candidate bug predictors. Chapter 5 explores the idea of associating a failure-inducing

change with each failure predictor. Both of these proposals aid the programmer’s fault comprehension,

while using the same data as current techniques. Adaptive predicate selection, explained in chapter 4,

attempts to find the same failure predictors as current techniques while significantly reducing the overhead

of data collection. The proposal of identifying failure-inducing changes is orthogonal to adaptive predicate

selection. Theoretically, the failure predictors and edge profiles collected using adaptive predicate selection

can be used to find failure-inducing changes. On the other hand, compound predicates are derived using

offline aggregation of the per-run predicate information. By limiting the set of predicates monitored in any

run, adaptive predicate selection limits the set of compound predicates that can be used for bug isolation.

9

CBI
state-of-the-art

Adaptive
Predicate Selection

Compound
Predicates

Failure-inducing
Changes

Adaptive Pred-
icate Selection

+ Failure-inducing Changes

B
et

te
rf

ai
lu

re
pr

ed
ic

tio
n

Efficient monitoring

Figure 1.2: Summary of contributions

Research on post-deployment monitoring must take two kinds of users into account. First are the

programmers who analyze the output of statistical analyses to understand and fix a bug. Compound

predicates and failure-inducing changes are qualitative extensions to the output of statistical analyses that

help the programmer in his task. The second category of users are the actual users of the software. They are

indirect beneficiaries of post-deployment monitoring. They also form the foundation of post-deployment

monitoring by allowing collection of diagnostic information. Adaptive predicate selection helps them by

reducing the overhead of data collection.

10

Chapter 2

Background

This chapter introduces background information about CBI to aid the discussion in the following chapters.

It explains the instrumentation [Lib+03] and analysis [Lib+05] phases of CBI in detail. Chapter 6 surveys

other work in the field of statistical debugging, and explains the relevance of the ideas in this dissertation

to the related work.

2.1 Instrumentation Schemes

The basic unit of instrumentation added by CBI is called an instrumentation site. An instrumentation

site is defined at a single program point where the state of the running program is inspected. Each site is

decomposed into a small collection of predicates, each of which corresponds to a Boolean condition on

the state of the program. The predicates partition the state space at that site. Instrumentation sites are

automatically selected based on the syntactic features of the code. They may be both incomplete and

mutually redundant with respect to possible program behavior; they are not a perfect execution trace, but

rather are a wide net intended to catch useful clues for a broad variety of bugs.

The CBI instrumentor supports several schemes of instrumentation sites, each associated with a

particular syntactic feature of the program. However, prior work has found the branch, return and

scalar-pairs schemes to be the most useful for purposes of fault localization. This section explains these

three schemes in detail. We also limit instrumentation to these three schemes for experiments in subsequent

11

chapters.

• A branch site is defined at each conditional statement and tests the outcome of the condition. The

predicates at a branch site split the state space into two sets: one where the branch condition is true

and another where it is false.

• A return site is defined at each function call that returns a scalar value. The predicates at a return

site split the state space into three sets, where the return value is negative, zero, and positive. This

partition is especially well-matched to C programs, as the sign of a returned value often indicates

success or failure of an operation.

• At an assignment to a scalar variable x in the program, multiple scalar-pairs sites are instrumented,

one for every scalar variable y in scope. The predicates at a scalar-pair site split the state space into

three sets, where x < y, x = y and x > y.

Every time the execution reaches an instrumentation site, exactly one of the predicates at that site

is true. For reasons of privacy, and to limit the size of the feedback reports, this stream of predicate

observations is compressed into a vector of predicate counters. The counter corresponding to a predicate

captures the number of times that predicate was true in that execution. The sum of all predicate counters

at a site gives the overall coverage of that site. The feedback report for a run also has a single outcome

label indicating whether this run was good (successful) or bad (failed). In the simplest case, failure can be

defined as crashing, and success as not crashing. More refined labeling strategies are easily accommodated,

as subsequent analysis stages do not care how the success/failure distinction was made. In particular,

failure analysis does not use stack traces, and therefore can be applied to non-crashing bugs.

For sites that have more than two associated predicates, the complement of a predicate can also be

considered as a predicate. For example, there are three additional predicates at a return site that capture

whether the return value is nonnegative, nonzero or nonpositive. At a scalar-pairs site that compares a

scalar variable x with another scalar variable y, there are three additional predicates that capture whether

x≤ y, x 6= y and x≥ y. At a branch site that has only two predicates, the predicates are complements of

each other. Hence, no additional predicates are added.

12

2.2 Sampling

The instrumentation sites mentioned in the previous section can be quite numerous. It varies from around

500 sites for simple 500 line programs in the Siemens bug benchmark [Hut+94] to over 145,000 for

Rhythmbox, which has about 57KLOC [Lib+05]. The computational overhead of gathering the feedback

reports can be quite high. Sampling techniques have been developed that reduce this overhead. Instead of

complete predicate counts, only a sparse but fair random subset of the counts is collected. Liblit et al.

[Lib+03] have developed a sampling scheme based on a static source-to-source transformation applied at

compile time. The transformation creates two copies of each function: a slow path with instrumentation

enabled and a fast path without any instrumentation. The two copies are connected using control-flow

constraints that switch execution to the slow path to sample an instrumentation site, and switch to the fast

path at other times. The intuition behind this transformation is that at a sampling rate of, say, 1⁄100, the

program executes along the fast-path for approximately 99% of the time. While executing the fast path,

only a minor overhead for bookkeeping is imposed. This technique is derived from that of Arnold and

Ryder [AR01]. Liblit [Lib07] concludes that sampling rates between 1⁄100 and 1⁄1,000 are suitable for realistic

deployments. They find that sampling improves performance in some but not all cases. A sampling

rate of 1⁄100 is used by the instrumented versions of popular open source software packages in the public

deployment maintained by CBI. The overhead for these programs is deemed acceptable by the volunteer

users.

One consequence of the sampling transformation is the blow-up caused by the fast- and slow- path

versions of every function. Sampling approximately doubles the static code size, thereby increasing costs

for packaging or network distribution. Avoiding code doubling may be mandatory for practical, economic

reasons:

We did the math of going to a second DVD for [Windows] Vista. Basically a second DVD

doubles the costs, because you not only need two pieces of media, you also need a slightly

more expensive case. M. Fortin [For07]

The doubling of code size, and the inability of sampling to guarantee low overheads for all cases are part

13

of the motivation behind the techniques for adaptive predicate selection introduced in chapter 4. Another

consequence of sampling is that data analysis must cope with the fact that 99% or more of requested data

is missing. The statistical analysis described in the next section has been designed to be able to handle

such incomplete data.

2.3 Statistical Bug Isolation

The goal of statistical debugging techniques is to find bug predictors: predicates that, when true, herald

failure due to a specific bug. Bug predictors highlight areas of the code that are related to program failure

and so provide information that is useful when correcting program faults. This section describes the

statistical debugging technique developed by Liblit et al. [Lib+05] in detail. These concepts are the

most relevant to the ideas built in later chapters. Other statistical debugging techniques are discussed in

section 6.1.

The inputs for these algorithms are the feedback reports collected from a set of executions. The

feedback report for a run has a vector of counters, one per predicate. The predicate might be one that is

directly instrumented or one that is derived offline. The counter denotes the number of times the predicate

was observed to be true in this run. The sum of the counters corresponding to the directly instrumented

predicates gives the number of times the predicates at that site were inspected. Aggregating these values

across the entire suite of runs, we can find the number of runs in which the predicate was ever true, and the

number of runs in which the predicate was ever observed. Each run is also labeled as successful or failed.

By including this distinction, we get four values for each predicate p:

• S(p obs) and F(p obs), respectively the number of successful and failed runs in which the value of

p was evaluated.

• S(p) and F(p), respectively the number of successful and failed runs in which the value of p was

evaluated and was found to be true.

14

2.3.1 Scoring Predicates

These aggregated counts are used to compute two scores of bug relevance.

Sensitivity: F(p) captures whether the predicate is observed true in a large number of failed runs. This

property is normalized to NumF, the total number of failed runs, to get a score in the range [0,1]. It

is also normalized using the logarithm function to moderate the impact of very large numbers of

failures.

Sensitivity(p)≡ log(F(p))
log(NumF)

(2.1)

Specificity: Increase(p) captures the increase in the likelihood of failure when p is true over simply

reaching the line where p is defined. It is computed as follows:

Increase(p)≡ F(p)
S(p)+F(p)

− F(p obs)
S(p obs)+F(p obs)

(2.2)

A high sensitivity score for a predicate indicates that p accounts for many failed runs. A high specificity

score indicates that the predicate does not mis-predict failure in many successful runs. In information

retrieval terms, sensitivity corresponds to recall of failure prediction and specificity corresponds to

precision of failure prediction. A single score, Importance(p) which captures the failure predictivity of p

is computed by balancing the sensitivity and specificity scores as follows:

Importance(p)≡
2

1
Increase(p) +

1
Sensitivity(p)

(2.3)

The predicates are ranked using the Importance score. However, predicates might be mutually redundant.

If there are failures corresponding to multiple bugs, the list of predicates usually has a lot of predicates

corresponding to the most prevalent bug near the top. The iterative elimination algorithm described next is

designed to handle situations with multiple bugs.

15

2.3.2 Iterative Bug Isolation

The process of iterative bug isolation starts by ranking predicates using the Importance score. The

predicate at the top of this list is assumed to correspond to the most important bug, though other bugs

may remain. This top predictor is recorded, and then all feedback reports where it was true are removed

from consideration. The intuition behind this step is that fixing the corresponding bug will change the

behavior of runs in which the predictor originally appeared. The scores of predicates are recomputed, and

the next best predictor among the remaining reports is then identified, recorded, and removed in the same

manner. This iterative process terminates either when no undiagnosed failed runs remain, or when no

more failure-predictive predicates can be found.

This process of iterative elimination maps each predictor to a set of program runs. Ideally each such

set corresponds to the expression of a distinct bug; unfortunately this is not always the case. Due to the

statistical nature of the analysis, along with incomplete feedback reports resulting from sparse sampling

rates, a single bug could be predicted by several top-ranked predicates, and predictors for less prevalent

bugs may not be found at all.

2.4 Evaluation of the Output of Fault Localization

The output of the iterative bug isolation algorithm, and other related work in this field, is a ranked list

of program properties that are potentially useful for debugging. In the case of CBI, the ranked list has

instrumentation predicates. Prior work has used a metric [RR03] that considers the programmer as

performing an undirected breadth-first search of the program-dependence graph (PDG) from each entry in

the ranked list. This metric has two problems. First, case studies in prior work [Lib+05] find that patterns

in the list of predictors, such as testing the value of a common variable, or proximity in the source code

are important while debugging. Our case study in section 3.3.2 also finds this to be true. Second, a recent

user-study on the usability of fault localization tools [PO11] finds that during debugging programmers

do not process each item in the output list independently. They look at several items in the list, and not

necessarily in the order in which they are ranked.

16

In light of this, just independent breadth-first searches from items in the ranked list of predicates is not

the right evaluation metric. A qualitative evaluation of the results, in addition to being subjective, is time

consuming. We qualitatively evaluate two scenarios in section 3.3. Prior work Liblit et al. [Lib+05] has

shown that the Importance score is useful for finding previously unknown bugs, as well as seeded bugs in

benchmarks. For evaluations in chapters 3 and 4, we use high Importance scores as a proxy for a useful

bug predictor.

17

Chapter 3

Compound Predicates

CBI gathers feedback reports by using valuable CPU cycles at end user machines. It is essential to make

those cycles worthwhile by extracting every bit of useful information from them. The instrumentation

predicates considered by CBI test Boolean conditions on the current state of the program. We propose

compound predicates which are propositional combinations of instrumentation predicates. The reasoning

is that compound predicates induce complex partitions of the set of executions. Such partitions may match

the set of failed runs, and hence the compound predicate may be a better predictor of complex bugs. In

this chapter, we use the term simple predicate to denote predicates at instrumentation sites and the term

compound predicate to denote propositional combinations of simple predicates.

As an example, consider a hypothetical bug due a null-pointer error. Two conditions must co-occur for

this bug to manifest: a pointer must be assigned null, and the null pointer must later be dereferenced.

One such bug exists in exif 0.6.9, and was found by prior work [Lib+05]. However, the key predicate that

was used to find the bug did not have a have a high score and hence was ranked much lower in the output. A

non-persistent user might be discouraged by irrelevant predicates (false positives) in the output and give up

on the task. This useful predicate captures one of the prerequisites of the bug, the assignment of null to a

pointer. However, it captures only a necessary condition for failure. It is not a sufficient condition because

the pointer may never be dereferenced. A statistical analysis performed using compound predicates finds

a conjunction of two predicates as the best predictor. The first predicate in the conjunction was the simple

18

predicate that captures the executions where the null assignment occurs. The second predicate captures

the executions where the dereference of the problematic pointer happens. Both the predicates captured

conditions that were necessary but not sufficient for failure. The conjunction of the two predicates is a

necessary and sufficient condition of failure, and hence is the perfect predictor. We present a detailed

case-study of this bug along with code snippets and fault localization results in section 3.3.1.

Compound predicates can be incorporated into statistical debugging by either (a) changing the

instrumentor to explicitly monitor each compound predicate at runtime, or (b) estimating the value of each

compound predicate from the values of its components offline. The first approach will yield a precise

value but needs significant modifications to existing infrastructure. Furthermore, as we show later in this

chapter, even with rigorous restrictions on the set of compound predicates chosen, the number of candidate

compound predicates is asymptotically quadratic in the number of simple predicates. The time and

space overheads of monitoring compound predicates will be far from reasonable. The offline-estimation

approach will be less precise but requires only few modifications to existing infrastructure, and none

to the instrumentor. Therefore, we design and implement compound predicates using this approach.

Section 3.1 gives a precise definition of compound predicates and discusses how they can be computed

efficiently. Section 3.2 defines a metric to characterize the usefulness of compound predicates in the task of

debugging. Section 3.3 discusses two case studies that demonstrate the usefulness of compound predicates.

Section 3.4 presents the results of experiments conducted on a large suite of buggy test programs, including

an assessment of the effect of sparse random sampling on compound predicates.

3.1 Compound Predicates: Formalization

The most general propositional combination of N simple predicates is φ(p1, p2, . . . pN), where p1, p2, . . . pN

are simple predicates and φ is a Boolean function of N variables. There are 22N
such functions [Wei06]. By

design, the negation of every CBI predicate is also a predicate. Hence, the number of candidate compound

predicates is slightly smaller than 22N
, but is still exponential in N.

To reduce complexity, we only consider functions of two predicates. There are 16 (222
) such functions

for each pair of simple predicates. We further restrict our focus to just conjunctions and disjunctions since

19

they are the simplest, and most easily understood by programmers. The revised definition of a compound

predicate is C = φ(p1, p2) where φ ∈ {∨,∧}. Conjunction and disjunction are commutative, and the

reflexive cases (p1∧ p1 and p1∨ p1) are uninteresting. This reduces the number of compound predicates

to just
(N

2

)
=

N(N−1)

2
binary conjunctions and an equal number of binary disjunctions.

3.1.1 Deriving Compound Predicates

To incorporate compound predicates into statistical debugging, we need to find if a compound predicate

was observed in each run, and if so, whether it was true at least once. This information is defined for

simple predicates as follows:

Definition 1. For a simple predicate p and a run r, it can either be observed true at least once, observed

and never true, or never observed during the run.

• r(p) is true if p was observed true at least once during r.

• r(p) is false if p was evaluated at least once, but was never true during r.

• r(p) is unknown if p was never observed during the run.

• r(p obs) is true if r(p) is either true or false.

A predicate p might be unobserved during a run r, and hence r(p) is unknown, either because the

execution did not reach the line where it was defined, or when the execution did reach the line , it was not

observed because of sampling.

Similar to Definition 1, we can define the truth of a compound predicate in a run as follows.

Definition 2. For a compound predicate C = φ(p1, p2), r(C) is true iff at some point during the execution

of the program, C was observed to be true.

The difficulty with this notion of compound predicates is that C must be explicitly monitored during

the program execution. For example, r(p1) = true and r(p2) = true does not imply that p1∧ p2 is ever

true at a single program point. p1 and p2 may be true at different stages of execution but never true at

20

the same time. Furthermore, when p1 and p2 appear at different source locations, there may be no single

point in time at which both are even well-defined and therefore simultaneously observable. In order to be

able to estimate the value of C from its components, we adapt a less time-sensitive definition as follows:

Definition 3. For a compound predicate C = φ(p1, p2), r(C)≡ φ(r(p1),r(p2)).

In other words, we treat r as distributive over φ , effectively removing the requirement that p1 and p2

be observed simultaneously. This can lead to false positives, because r(C) may be computed as true when

C is actually false at all moments in time. False negatives, however, cannot arise1. The assumption of the

distributive property may have either a positive or negative impact on the Importance score of C depending

on whether the run r failed or succeeded. With this definition, simultaneous observation of the predicates

is not required to determine whether a compound predicate is observed in a run: p1 and p2 might be

defined in different locations, possibly in different functions. The compound predicates found useful in the

case-studies in section 3.3 are defined in different program locations, where simultaneous observation is

not possible, and yet, provide useful clues for understanding the failures. Moreover, adopting Definition 3

allows offline estimation of whether C was observed in a run.

Because r(p1) or r(p2) may be unobserved, three-valued logic is required to evaluate φ(r(p1),r(p2))

in Definition 3. For the statistical analysis introduced in section 2.3, it is enough to consider whether r(p)

was true or ¬true (either false or unknown). When constructing compound predicates, however, we can

use the sub-cases of ¬true to take advantage of the short-circuiting properties of logical operators.

Consider a compound predicate p1∧ p2. If either r(p1) or r(p2) was false in a run r, then r(p1∧ p2) =

false, since one false value disproves a conjunction. If both r(p1) and r(p2) were true, then p1∧ p2 was

observed to be true. Otherwise, the value of r(p1∧ p2) is unknown. This is shown using a three-valued

truth table in table 3.1a. The symbol ‘?’ is used to denote that the predicate was unobserved.

Similarly one true value proves a disjunction. Hence, r(p1∨ p2) is true if either of r(p1) or r(p2) was

true. Also, r(p1∨ p2) is false if both r(p1) and r(p2) are false. The truth table for the predicate p1∨ p2 is

shown in table 3.1b.

1Sampling introduces false negatives, though, and affects both simple and compound predicates

21

Table 3.1: Three-valued truth tables for compound predicates

(a) Conjunction: p1∧ p2

p1�p2 T F ?
T T F ?
F F F F
? ? F ?

(b) Disjunction: p1∨ p2

p1�p2 T F ?
T T T T
F T F ?
? T ? ?

3.1.2 Pruning Computation of Scores

Even using the revised definition for compound predicates, their number would be quadratic in the number

of simple predicates. A large number of the compound predicates formed by this procedure are likely to

be useless in the analysis of the program. Certainly a compound predicate that is less predictive of failure

than one of its components is useless. The component (simple) predicate is a better predictor of failure,

and so the compound predicate adds nothing to the analysis. We use the Importance score introduced in

section 2.3.1 as the measure of failure predictivity.

Definition 4. A compound predicate C = φ(p1, p2) is “interesting” iff its Importance score is strictly

greater than the Importance score of both its component predictors. i.e.

Importance(C)> Importance(p1), and

Importance(C)> Importance(p2)

In the case where the compound predicate has the same score as a component simple predicate, the

simpler one is preferable. Keeping only interesting combinations of predicates reduces the memory burden

of storing them, and helps ensure the utility of a compound predicate that is presented to the user.

Constructing a compound predicate C from its components requires generating two bits of information

for each program run: whether r(C) is true and whether r(C obs) is true. This is aggregated across the set

of successful runs, S and failed runs F to obtain four quantities. For R ∈ S,F ,

• R(C) is the number of runs r ∈ R for which r(C) is true.

• R(C obs) is the number of runs r ∈ R for which r(C obs) is true.

22

While using the iterative elimination algorithm (section 2.3), the Importance score for each compound

predicate is defined using S(C), F(C), S(C obs) and F(C obs). Computing these values takes O(|S+F |)

time. As CBI is meant to analyze deployed software, program runs potentially number in the hundreds of

thousands, if not millions. Even for small test datasets with around a thousand runs, this computation

takes around twenty minutes in our experiments. However, our experiments found that most of these

compound predicates are not interesting (i.e., they have low Importance scores) and are not presented to

the programmer. In such cases, the time spent computing the exact scores has been wasted. In this section,

we develop upper-bound estimates on the score of a compound predicate from the aggregate values S(p),

F(p) etc. of its component simple predicates. If this estimate falls below the threshold required for the

predicate to be presented to the programmer, the exact score is not computed. For the common case, this

reduces the complexity of evaluating a predicate from O(|S+F |) to O(1).

The threshold used for pruning can be derived in two ways:

• Only interesting compound predicates, as formalized in Definition 4, are retained; for a compound

predicate φ(p1, p2) the threshold would therefore be max(Importance(p1), Importance(p2)).

• During iterative bug isolation, only the predicate with the highest score is retained during each

iteration. The threshold for Importance(C) is therefore the highest score yet seen (including those

of simple predicates).

To simplify the discussion of the estimation of upper-bounds, we introduce some new terms and

notations. If R ∈ {F,S} is the set of program runs under consideration, R(p) is the number of runs in

which predicate p was observed at least once but never observed true. It is equal to R(p obs)−R(p). For

some unknown quantity x, let ↑ x and ↓ x denote estimated upper and lower bounds on the exact value of x,

respectively.

The Importance score of a predicate was described in section 2.3.1. The score of a compound predicate

23

C is as given below:

Sensitivity(C)≡ log(F(C))

log(NumF)
(3.1)

Increase(C)≡ F(C)

S(C)+F(C)
− F(C obs)

S(C obs)+F(C obs)
(3.2)

Importance(C)≡
2

1
Increase(C) +

1
Sensitivity(C)

(3.3)

where NumF is the total number of failed runs. The upper bound on the Importance score of a compound

predicate can be computed by maximizing Increase(C) and Sensitivity(C) under constraints based on

the Boolean operator. Importance(C), being the harmonic mean of these two terms, will likewise be

maximized. From equation (3.2), an increase in F(C) or S(C obs) or a decrease in S(C) or F(C obs) will

increase the value of Increase(C). So an upper bound on Increase(C) is

↑ Increase(C)≡ ↑ F(C)

↓ S(C)+ ↑ F(C)
− ↓ F(C obs)
↑ S(C obs)+ ↓ F(C obs)

(3.4)

Since NumF is a constant, maximizing Increase(C) also maximizes Sensitivity(C).

Bounds for a Conjunction

So far, we have used the term C to denote a compound predicate. For notational convenience, henceforth

we use C to denote a conjunction of two simple predicates and D to denote a disjunction.

Consider a conjunction C = p1∧ p2 and a set of runs R. We know that among the |R| runs, p1 was

observed in R(p1)+R(p1) runs, and it was true at least once in R(p1) of those runs. Similarly, p2 was

observed in R(p2)+R(p2) runs, and it was true at least once in R(p2) of those runs. Under these constraints,

we need to fix the co-observations of p1 and p2 in such a way that the desired quantity is maximized or

minimized.

From table 3.1a, C is observed true in a run if both p1 and p2 were observed true in that run. Equivalently,

the set of runs in which C was observed true is the intersection of (a) the set of runs in which p1 was

observed true, and (b) the set of runs in which p2 was observed true. The size of this intersection, and

24

Case 1: min(R(p1),R(p2)) +
R(p1)+R(p2)

Case 2: |R|

|R|

min(R(p1),R(p2)) R(p1)+R(p2)

Length of ∝ R(p1) Length of ∝ R(p1)

Length of ∝ R(p2) Length of ∝ R(p2)

Length of ∝ R(C) Length of ∝ R(C)

Figure 3.1: Illustration for ↑ R(C obs)

consequently R(C), cannot be larger than the either of these sets. Thus

↑ R(C) = min(R(p1),R(p2))

Likewise, R(C) is minimized when there is minimum overlap between the set of runs in which p1

was observed true and p2 was observed true. The minimum overlap is 0 as long as R(p1)+R(p2) does

not exceed |R|. Otherwise, both p1 and p2 must be observed together in at least R(p1)+R(p2)−|R| runs.

Thus,

↓ R(C) = max(0,R(p1)+R(p2)−|R|)

Next, consider R(C obs). Figure 3.1 illustrates the cases when R(C obs) is maximized. The figure

should be interpreted as follows. The line on the top is proportional to |R|, the size of the runs under

consideration. Per the legend, each bar is proportional to the size of the set of runs in which the predicates

under consideration, p1, p2, and C are observed true and observed but never true. For simplicity, we refer

to the latter case as the predicates being observed false. As per table 3.1a, C is observed in the following

cases.

Rule 1: If both p1 and p2 are observed true, C is observed true. In fig. 3.1, the bar proportional to R(C) is

25

Case 1: 0 + max(R(p1),R(p2))

Case 2: R(p1)+R(p2)−|R′| +
max(R(p1),R(p2))

|R|

max(R(p1),R(p2))

R(p1)+R(p2)−|R′|

|R′|

Length of ∝ R(p1) Length of ∝ R(p1)

Length of ∝ R(p2) Length of ∝ R(p2)

Length of ∝ R(C) Length of ∝ R(C)

Figure 3.2: Illustration for ↓ R(C obs)

active only when the bars denoting R(p1) and R(p2) overlap.

Rule 2: If either p1 or p2 is observed false, C is observed false. In fig. 3.1, the bar proportional to R(C) is

active when either of the bars proportional R(p1) and R(p2) are active.

To maximize R(C obs), applications of both of these rules must be maximized. Applications of Rule 1 are

maximized when the sets of runs in which p1 and p2 are observed true completely overlap. As shown in

the illustration, C is observed true in min(R(p1),R(p2)) runs in this case. Rule 2 is applied when either p1

is observed false, or p2 is observed false. Applications of Rule 2 are maximized when the sets of runs in

which p1 and p2 are observed false are non-overlapping. In this case, C is observed false in R(p1)+R(p2)

runs. In total, C is observed true in min(R(p1),R(p2))+R(p1)+R(p2) runs. However, there has to be an

overlap between these cases if the sum exceeds |R|, the total number of runs. This is shown in Case 2 of

fig. 3.1. In this case, C will be observed in all of the runs.

↑ R(C obs) = min(|R|,R(p1)+R(p2)+min(R(p1),R(p2)))

26

Finally, to minimize R(C obs), applications of the two rules mentioned above are minimized. Per Rule

2, the false observations of p1 and p2 must completely overlap to minimize the number of runs in which

C is observed false. As shown in the illustration in fig. 3.2, C is observed false in max(R(p1),R(p2))

runs. This decides that neither p1 nor p2 was observed true in min(R(p1),R(p2)) of the runs. This leaves

|R′|= |R|−min(R(p1),R(p2)) runs to pick, without overlap, the runs in which p1 and p2 are observed

true. Such a non-overlapping arrangement will minimize the runs in which p1 and p2 are simultaneously

observed true. If this is possible, applications of Rule 1 are minimized.

1. Suppose the sum R(p1)+R(p2) is less than |R′|. As shown in Case 1 of fig. 3.2, the true observations

of p1 and p2 can be made non-overlapping. Consequently, there are no runs in which the conjunction

is observed true.

2. If R(p1)+R(p2) exceeds |R′|, there will be a minimum overlap of R(p1)+R(p2)−|R′| between

the runs in which p1 and p2 are simultaneously observed true. As shown in Case 2 of fig. 3.2, the

conjunction will be observed true in such runs.

Thus,

↓ R(C obs) = max(R(p1),R(p2))+max(0,R(p1)+R(p2)−|R′|)

Bounds for a Disjunction

Consider a disjunction D = p1∨ p2 and a set of runs R. From table 3.1b, D is observed true in a run if

either p1 or p2 was observed true in that run.

Equivalently, the set of runs in which D was observed true is the union of (a) the set of runs in which

p1 was observed true, and (b) the set of runs in which p2 was observed true. The size of this union, and

consequently R(D), will be at least as large as either of these two sets. Hence,

↓ R(D) = max(R(p1),R(p2))

Likewise, R(D) is maximized when there is no overlap between the set of runs in which p1 and p2 are

observed true. If there is no overlap, R(D) is equal to the sum of R(p1) and R(p2). If this sum exceeds |R|,

27

Case 1: R(p1)+R(p2) +
min(R(p1),R(p2))

Case 2: |R|

|R|

R(p1)+R(p2) min(R(p1),R(p2))

Length of ∝ R(p1) Length of ∝ R(p1)

Length of ∝ R(p2) Length of ∝ R(p2)

Length of ∝ R(D) Length of ∝ R(D)

Figure 3.3: Illustration for ↑ R(D obs)

the union of the two sets can, at best, be as large as R.

↑ R(D) = min(|R|,R(p1)+R(p2))

Next, consider R(D obs). Figure 3.3 illustrates the cases when R(D obs) is maximized. D is observed

in a run when

Rule 1: Either p1 or p2 is observed true, in which case D is observed true. In fig. 3.3, the bar proportional

to R(D) is active when either of the bars proportional to R(p1) and R(p2) are active.

Rule 2: Both p1 and p2 are observed false, in which case D is observed false. In fig. 3.3, the bar proportional

to R(D) is active only when the bars denoting R(p1) and R(p2) overlap.

To maximize R(D obs), applications of both these rules must be maximized. Applications of Rule 2 are

maximized when the set of runs in which p1 and p2 are observed false completely overlap. As shown in

fig. 3.3, D is observed false in min(R(p1),R(p2)) runs. Rule 1 is applied when either p1 or p2 is observed

true. Applications of Rule 1 are maximized when the set of runs in which p1 and p2 are observed true are

non-overlapping. If this is possible, D is observed true in R(p1)+R(p2) runs. In total, D is observed in

R(p1)+R(p2)+min(R(p1),R(p2)) runs. This is shown in Case 1 of fig. 3.3. However, there has to be an

28

Case 1: max(R(p1),R(p2)+0

Case 2: max(R(p1),R(p2) +
R(p1)+R(p2)−|R′|

|R|

max(R(p1),R(p2))

|R′|

R(p1)+R(p2)−|R′|

Length of ∝ R(p1) Length of ∝ R(p1)

Length of ∝ R(p2) Length of ∝ R(p2)

Length of ∝ R(D) Length of ∝ R(D)

Figure 3.4: Illustration for ↓ R(D obs)

overlap between true observations of p1 and p2 if this sum exceeds |R|, the total number of runs. This is

shown in Case 2 of fig. 3.3. In this case, D will be observed in all of the runs. Thus,

↑ R(D obs) = min(|R|,R(p1)+R(p2)+min(R(p1),R(p2)))

Finally, to minimize R(D obs), applications of the two rules mentioned above are minimized. Per Rule

1, the true observations of p1 and p2 must completely overlap to minimize the runs in which D is observed

true. As shown in the illustration in fig. 3.4, D is observed true in max(R(p1),R(p2)) runs. This decides

that p1 and p2 are both true in min(R(p1),R(p2)) runs. This leaves |R′|= |R|−min(R(p1),R(p2)) runs

to pick, without overlap, the runs in which both p1 and p2 are simultaneously observed false. If this is

possible, applications of Rule 2 are minimized.

1. Suppose, the sum R(p1)+R(p2) is less than |R′|. As shown in Case 1 of fig. 3.4, the false observations

of p1 and p2 can be made non-overlapping. Consequently, there are no runs in which the disjunction

is observed false.

29

Table 3.2: Bounds required in equation (3.4) for a conjunction

Quantity Bounds for C = p1∧ p2

↑ F(C) min(F(p1),F(p2))
↓ S(C) max(0,S(p1)+S(p2)−|S|)
↑ S(C obs) min(|S|,S(p1)+S(p2)+min(S(p1),S(p2)))
↓ F(C obs) max(F(p1),F(p2))+max(0,F(p1)+F(p2)−|F ′|)

where |F ′|= |F |−min(F(p1),F(p2))

Table 3.3: Bounds required in equation (3.4) for a disjunction

Quantity Bounds for D = p1∨ p2

↑ F(D) min(|F |,F(p1)+F(p2))
↓ S(D) max(S(p1),S(p2))
↑ S(D obs) min(|S|,S(p1)+S(p2)+min(S(p1),S(p2)))
↓ F(D obs) max(F(p1),F(p2))+max(0,F(p1)+F(p2)−|F ′|)

where |F ′|= |F |−min(F(p1),F(p2))

2. If R(p1)+R(p2) exceeds |R′|, there will be a minimum overlap of R(p1)+R(p2)−|R′| between

the runs in which p1 and p2 are observed false. As shown in Case 2 of fig. 3.4, D will be observed

false in those runs.

Thus,

↓ R(D obs) = max(R(p1),R(p2))+max(0,R(p1)+R(p2)−|R′|)

For simplicity and generality, the preceding discussion derives the bounds for a general set of runs R.

Table 3.2 lists the specific bounds required in equation (3.4) for a conjunction C = p1∧ p2 by substituting

the set of successful runs S or the set of failed runs F in the place of R. Table 3.3 lists the specific bounds

for a disjunction D = p1∨ p2.

As a concrete example, consider C = p1∧ p2. Assume that there are 1,000 successful runs, 1,000

failed runs, and that p1 and p2 are observed in all runs. Furthermore, assume F(p1) = 500, F(p2) = 1000,

S(p1) = 250 and S(p2) = 500. Substituting R(p) = 1000−R(p) and computing the bounds listed in

table 3.2 we get ↑ F(C) = 500,↓ S(C) = 0,↓ F(C obs) = 1000 and ↑ S(C obs) = 1000. Therefore the

upper bound of Increase(C) is 500
500 −

1000
2000 = 0.5 and the upper bound of Sensitivity(C) is log1000

log1000 = 1.0.

30

Thus, the upper bound for Importance(C) is

2
1

0.5 +
1
1

= 0.666

If the compound predicate C is analyzed during the iterative elimination algorithm (see section 2.3.2) and

we already know a predicate C′ with Importance score more than 0.666, we can prune C before computing

its exact score. The estimate of Importance(C) computed above is an upper-bound on the actual score of

C, making it mathematically impossible for it to beat C′ even if fully evaluated.

All upper- and lower- bound estimates are conservative. Pruning compound predicates using the

above calculations and the appropriate threshold value reduces the computational intensity of the analysis

without affecting the results. The effectiveness of pruning in practice is examined in section 3.4.4.

3.2 Usability Metric

In our experiments, we often observe hundreds of compound predicates with similar or even identical

high scores. The redundancy elimination algorithm will select the top predicate randomly from all those

tied for the top score; a human programmer finding a predicate to use in debugging is likely to make a

similar choice. Importance measures predictive power, so all high-scoring predicates should be good bug

predictors. However, even a perfect predictor may be difficult for a programmer to use when finding and

fixing a bug.

Debugging using a simple predicate requires the identification and understanding of the connection

between the predicate and the bug it predicts. For a compound predicate, the programmer must also

understand the connection between its components. Given a set of compound predicates with similar high

scores, those that can be easily understood by a human are preferable. However, the notion of usability is

hard to quantify or measure. In this section, we propose the effort metric for selecting understandable

predicates from a large set of high-scoring predictors. Only predicates selected by this metric are presented

to the user. If the data is analyzed by an automated tool it may not be advantageous to employ this metric.

The definition of effort is unrelated to a predicate’s Importance score, making it orthogonal to the pruning

31

discussed in section 3.1.2. As mentioned earlier, the objective function approximated by this metric is

hard to measure experimentally. However, we find that it works well in practice.

The goal of the metric is to capture the debugging effort required from the programmer to find a direct

connection between component predicates. We adapt the distance metric of Cleve and Zeller [CZ05] for

this purpose. They model the programmer as performing a breadth-first search in the program dependence

graph while exploring the program. By this metric, the score of a predicate is the fraction of code that can

be ignored while searching for the bug. We use a similar metric called effort for a compound predicate.

Definition 5. The “effort” required by a programmer while using a compound predicate φ(p1, p2) is the

smaller fraction of the code explored in a breadth-first bidirectional search for p2 from p1 and vice-versa.

The idea behind this metric is that the larger the distance between the two predicates, the greater the

effort required to understand their relationship. Also, if a large number of other branches are seen during

the search, the programmer should keep track of these dependencies too. Per Cleve and Zeller [CZ05], we

use the program dependence graph (PDG) to model the program rather than the source code. We perform

a breadth-first search starting from p1 until p2 is reached and count the total number of vertices visited

during the search. The fraction of code covered is the ratio of the number of visited vertices to the total

number of PDG vertices.

The effort metric can be applied both proactively or reactively. Proactive use removes compound

predicates whose effort values fall above a certain threshold of usefulness. This avoids computing their

scores and hence improves performance. Reactive use of the metric breaks ties among predicates with the

same Importance score by giving higher ranks to those with better effort value.

Our definition of effort is meant to be exhaustive: if there is any possibility of two predicates being

related using less than the chosen percentage of nodes, conjunctions and disjunctions of them needs to

be considered. While pruning compound predicates, an exhaustive metric is preferable. However, it is

not quite clear if this metric can be meaningfully incorporated into statistical analysis. We can use it to

break ties in the Importance scores. As mentioned in section 2.4, it is hard to qualitatively evaluate the

relevance of a single ranked list of predicates, let alone the marginal benefits of ranked lists of predicates

from different techniques.

32

The effort metric is just one of many reasonable candidates. The following are some other options.

• A selective metric can eschew bi-directional search of the PDG in favor of a directed forward-only

or backward-only search.

• When the failing locations are available, the programmer might evaluate the influence of a predictor

on such locations. A chop [JR94; RR95] between the predictor and the failure location can

characterize this activity.

Manual evaluation of the ranked list of predicates is needed to understand the relative merits of each

candidate metric. We manually evaluate the usefulness of compound predicates in section 3.4.2. In

addition to being subjective, manual evaluation is time consuming, and needed 10 hours for the 130

Siemens programs. To avoid the subjectivity of evaluation by a single person, Parnin and Orso [PO11]

conduct a study on how 34 participants (who were graduate students) used the output of the Tarantula

[JH05] debugging tool. While they find some interesting patterns on how the tool was actually used,

further studies involving practicing programmers are needed to reliably characterize the usefulness of

fault-localization results.

3.3 Case Studies

This section presents two case-studies where compound predicates prove to be useful. The first study

concerns a memory access bug in exif 0.6.9, an open source image manipulation program. A compound

predicate is useful in increasing the score of an extremely useful bug predictor. In the second case study,

a compound predicate is useful in isolating a bug in the print_tokens program in the Siemens bug

benchmark [Hut+94].

3.3.1 exif

exif 0.6.9 crashes while manipulating thumbnails in images taken using Canon cameras. The module

handling Canon images has a bug in the function exif_mnote_data_canon_load. A snippet from this

function is shown in fig. 3.5.

33

for (i = 0; i < c; i++) {
...
n->count = i + 1;
...
if (o + s > buf_size) return; // (a)
...
n->entries[i].data = malloc(s); // (b)
...

}

Figure 3.5: Code snippet from function exif_mnote_data_canon_load in exif

Table 3.4: Results for exif with only simple predicates

Score Predicate Function File:Line

0.704 new value of len ==
old value of len

jpeg_data_load_data jpeg-data.c:224

0.395 i == s exif_mnote_data_canon_save exif-mnote-data-canon.c:176

If the condition o + s > buf_size is true on line (a), then the allocation of memory to the pointer

n->entries[i].data on line (b) is skipped. The program crashes when another piece of code reads from

n->entries[i].data without checking if the pointer is valid. This is an example of a non-deterministic

bug as the program succeeds as long as the uninitialized pointer is not accessed somewhere else.

We generated 1,000 runs of the program using input images randomly selected from a set of Canon and

non-Canon images. As the bug being studied rarely manifests, this set of images was designed to trigger

sufficient failed executions. Each run was executed with randomly-generated command line arguments,

omitting arguments that would have triggered two unrelated bugs. There are 934 successful executions

and 66 crashes. Applying the iterative bug isolation algorithm with only simple predicates produces two

predicates that account for all failed runs as shown in table 3.4. Studying the source code of the program

does not show any obvious relation between the two predictors and the cause of failure. Although the

second predictor is present in the crashing function, it is a comparison between two unrelated variables:

the loop iterator i and the size of the data stored in the traversed array s. Also it is true in only 31 of the

66 failures.

The analysis assigns a very low score of 0.019 to the predicate p1: o + s > buf_size despite the

34

Table 3.5: Results for exif with compound predicates

Score Predicate Function File:Line

0.941 o + s > buf_size exif_mnote_data_canon_load exif-mnote-data-canon.c:237
and offset < len exif_data_load_data exif-data.c:644

fact that it captures the exact source of the uninitialized pointer. Because the bug is non-deterministic,

p1 is also true in 335 runs that succeeded, making p1 a partial predictor. In other words, p1 is only

a prerequisite of failure: it is observed true in all failed runs, but it is also observed true in some or

all successful runs. Including compound predicates in the analysis produces one compound predicate

shown in table 3.5. The second row is the second component of a compound predicate, which is a

conjunction as indicated by the keyword and at the start. Conjunction of p1 with the second predicate p2:

offset < len eliminates all false positives and thereby earns a very high score. This is an example of

how a conjunction can improve the score of a partial predictor. p2 is in function exif_data_load_data,

which calls exif_mnote_data_canon_load indirectly. It is possible that p2 is another partial predictor,

capturing another condition that drives the bug to cause a crash. If it does, it has to be a deep relationship

as we could not find such a relation even after spending a couple of hours trying to understand the source

code. However this does not reduce the importance of this result as the conjunction has a very high score

compared to p1 and p2 individually.

A hypothetical predicate p3: n->entries[i].data == 0 at the point where the uninitialized

pointer is actually used ought to be a perfect bug predictor. However, the CBI instrumenting compiler

does not actually instrument this condition or any direct equivalent. Furthermore, this assumes that

n->entries[i].data is zero-initialized even when exif_mnote_data_canon_load returns early

without filling in this field. Predicate p1 provides critical additional information, as it identifies the initial

trigger (skipping the malloc) that sets the stage for eventual failure (use of an uninitialized pointer). Thus

one role for compound predicates is to capture those program behaviors, like p1, that are necessary but not

sufficient preconditions for failure.

It should be noted that the compound predicate shown in table 3.4 is one of several top-ranked

predicates. The iterative bug isolation algorithm used by CBI picks a random top-ranked predicate when

35

switch(next_st)
{

...
case 30 : /* This is COMMENT case */

skip(tstream_ptr->ch_stream);
/* missing code token_ind= */ next_st=0; // (a)
break;

}

Figure 3.6: Code snippet from function get_token in print_tokens

Table 3.6: Results for print_tokens with simple predicates

Score Predicate Function File:Line

0.609 token_ind >= 80 get_token print_tokens.c:195
0.091 token_ptr->token_id == 27 print_token print_tokens.c:508

Table 3.7: Results for print_tokens with compound predicates

Score Predicate Function File:Line

0.733 next_st == 30 and get_token print_tokens.c:219
new value of token_ind < get_actual_token print_tokens.c:557
old value of token_ind

0.691 next_st == 30 and get_token print_tokens.c:219
token_ind > cu_state get_token print_tokens.c:213

0.592 next_st == 30 and get_token print_tokens.c:219
token_ind == cu_state get_token print_tokens.c:197

0.474 next_st == 30 and get_token print_tokens.c:219
start < ind get_actual_token print_tokens.c:561

0.474 next_st == 30 get_token print_tokens.c:219

there are several predicates with the same top score. This demonstrates the need for further studies to

quantify the usability of compound predicates in addition to the metric in section 3.2.

3.3.2 print_tokens

The second case study is about the bug in the function get_token in print_tokens v6. Figure 3.6

shows a snippet from this function. The bug is the omitted assignment to variable token_ind in line (a).

36

Table 3.8: Properties of applications in the Siemens test suite

Application Variants LOC Sites Test Cases

print_tokens 7 727 268 4,130
print_tokens2 10 569 250 4,115
replace 31 563 567 5,542
schedule 9 413 229 2,650
schedule2 9 373 265 2,710
tcas 41 173 496 1,608
tot_info 23 564 296 1,052

The output of the iterative bug isolation algorithm with simple predicates is shown in table 3.6. The top

predictor is in the same function as the bug, and tests the value of the variable token_ind whose value

is affected by the bug. But, it is hard to gleam any information beyond that. It is also the case that the

predicate p: next_st == 30 at the switch statement is an insufficient case of failure. In runs where the

value of token_ind reaching line (a) was already 0, there is no failure. Among 3,868 successful and 150

failed runs overall, p was true in 1,250 successful and all 150 failed runs. Hence, p had a score of 0.095

and was not presented to the user.

Table 3.7 shows the output of bug isolation with compound predicates. There are four compound

predicates and one simple predicate in the result. The common thread among all these predicates is

the predicate p. This hints to the programmer to scrutinize the statements in the case 30 block of the

switch statement. The second component in the top three compound predicates checks the values of

the token_ind variable. This further hints to the programmer that the variable token_ind is wrongly

assigned. Thus, compound predicates can, potentially, help a programmer experienced with the code base

to quickly identify the bug and develop a fix.

3.4 Experiments

This section presents a quantitative evaluation of the ideas presented in previous sections. The experiments

are performed using the Siemens test suite [Hut+94] as maintained by the Galileo Software-artifact

Infrastructure Repository (SIR) [Rot+06]. Each application in the Siemens test suite has multiple variants,

37

Table 3.9: Kind of the top predicate during complete data collection

Type of Top Predictor

Application Variants Simple Conjunction Disjunction

print_tokens 7 0 7 0
print_tokens2 10 0 10 0
replace 31 3 28 0
schedule 9 0 0 9
schedule2 9 1 8 0
tcas 41 1 40 0
tot_info 23 2 20 1

Overall 130 5% 86% 7%

each with a seeded bug, and an associated suite of test inputs. The seeded bugs cause the programs to

print a wrong output, instead of making them crash. Each test case is labeled a success or a failure by

comparing the output of the buggy program to that of a bug-free reference version. Table 3.8 lists the

number of variants, the size in LOC, the number of instrumentation sites, and the size of their test suite. We

report aggregate results by averaging the relevant measures across all variants of each application. We use

CodeSurfer [Gra06] to build program dependence graphs and to compute the effort metric. There are two

configurable parameters for the experiments: the sampling rate and the effort cutoff. Unless specified, the

default sampling rate is 1 (i.e., complete data collection) and the default effort is 5% (i.e., only predicates

that are reachable from each other by exploring less than 5% of the program are considered).

3.4.1 Top-scoring Predicates

For the 130 buggy programs in the Siemens suite, we perform a statistical debugging analysis using the

iterative bug isolation algorithm discussed in section 2.3, at a sampling rate of 1. We then determine

whether the top-scoring bug predictor is a simple predicate, a conjunction, or a disjunction. Table 3.9

reports how often each of these three kinds of predictors appears with the highest score.

As can be seen, conjunctions dominate, with 86% of programs tested selecting a conjunction as the top

bug predictor. This confirms that compound predicates can diagnose failures more accurately than simple

predicates alone. If there are multiple bugs in the program, disjunctions of high-scoring predicates for two

38

Table 3.10: Kind of the top predicate during 1⁄100 sampling

Type of Top Predictor

Application Variants Simple Conjunction Disjunction

print_tokens 7 0 7 0
print_tokens2 10 0 10 0
replace 31 7 24 0
schedule 9 2 7 0
schedule2 9 5 4 0
tcas 40 31 9 0
tot_info 21 0 21 0

Overall 127 35% 64% 0%

bugs can be expected to have high scores. Because each Siemens program variant has only a single bug,

it is to be expected that disjunctions are not needed as frequently. Thus, disjunctions play a smaller but

significant role, especially in the case of schedule. Even in single-bug programs, disjunctions can be

helpful if no one simple predicate perfectly aligns with the condition that causes failure.

Section 3.4.5 explains that the chance of observing a compound predicate shrinks quadratically with

the sampling rate. However, conjunctions remain important even with sparse sampling. Table 3.10 reports

how often each kind of predicate appears with the highest score while sampling at a rate of 1⁄100. Only 64%

of the applications have a conjunction as the top-scoring predictor. When tcas is excluded, 84% of the

Siemens applications show a conjunction as the top-scoring predictor. The tcas program has no loops or

recursion and every function is called at most twice. Thus, no simple predicate can be observed more than

twice in a single tcas run, and conjunctions are infrequently observed when sampling is sparse. Only

25% of the tcas experiments have a compound predicate as the top-ranked predictor.

3.4.2 Bug-relevance of Compound Predicates

In the previous subsection, we evaluated the effectiveness of compound predicates based on their failure-

predictive ability. In this section, we perform a qualitative evaluation of their utility in bug isolation.

The objective is to provide a qualitative substantiation of the results in the previous subsection: does the

higher failure-predictivity of compound predicates, as captured by the Importance metric, actually matter?

39

Table 3.11: Bug-relevance of simple and compound predicates

Compound Predicates
Simple Predicates Irrelevant Not-obvious Relevant

Irrelevant 34 12 21
Not-obvious 0 12 15
Relevant 10 6 20

For this evaluation, we consider each program in the Siemens suite, and compare the output of analyses

performed with and without compound predicates. We subjectively, with prior knowledge of the location

of the bug, classify the output into three classes:

• Irrelevant: no direct connection between the predicate and the bug is evident.

• Not-obvious: no direct connection between the predicate and the bug is evident, but the predicate is

very close to the location of the bug. A programmer experienced with the code base may be able to

find such predicates useful.

• Relevant: the predicate is relevant to the bug, and captures a very obvious pre-condition or

post-condition.

For variants where simple predicates are relevant, compound predicates are considered relevant only when

they are strictly more useful than simple predicates.

This is one, albeit subjective, way of evaluating the usefulness of compound predicates. The manual

evaluations in this subsection required about 10 hours. Table 3.11 shows the result of this classification. The

rows capture the classification of analyses performed with only simple predicates, and the columns capture

the classification of analyses performed with compound predicates. The cells count the number of variants

that fall in each category. The right-most column (including the bottom-right cell, because of our stricter

evaluation when simple predicates are labeled relevant) represents cases where compound predicates are

strictly more useful than simple predicates. We also consider cases where simple predicates are labeled

irrelevant and compound predicates are labeled not-obvious as cases where compound predicates are

strictly more useful. Among the 130 variants, compound predicates are strictly more useful for 68 variants.

Compound predicates received the same categorization as simple predicates for 46 of the remaining 62

40

Table 3.12: Bug-relevance of top-ranked compound predicates found with and without effort metric

Without effort
With effort Irrelevant Not-obvious Relevant

Irrelevant 40 0 4
Not-obvious 2 25 3
Relevant 8 1 47

variants. Compound predicates received a worse categorization for the remaining 16 variants. This includes

the 7 variants in table 3.9 where the top-ranked simple predicate had a higher score than the top-ranked

compound predicate. In these seven cases, incorporating compound predicates does not negatively impact

bug isolation, since the top-ranked compound predicate is not presented to the user. In summary, based on

both quantitative and qualitative evaluation, incorporating compound predicates is more useful than just

simple predicates.

Relevance of Usability Metric

We perform a similar evaluation to test the impact of the effort heuristic in the bug-relevance of compound

predicates. We classify the top-ranked compound predicates found when the effort metric is used to prune

predicates, and when all the compound predicates are considered. The latter case captures the penalty

of using effort to prune predicates. This classification was done blindly: when classifying a compound

predicate, whether this predicate was found while effort is used is deliberately omitted.

Table 3.12 shows the result of this classification. In 77 of the 130 variants, the top-ranked compound

predicate was the same irrespective of the usage of effort. Even when the top-ranked compound predicates

differed, they had similar categorization for most of the variants. The classification differed in only 28 of

the 130 variants. Using effort discarded bug-relevant predicates in 7 variants. However, effort was able to

prune irrelevant, but high-scoring predicates, and find relevant predicates in 11 variants. Our motivation in

the design of effort is to design an exhaustive metric: if there is any way two predicates could be related

using less than the chosen percentage of nodes, a compound predicate of them needs to be considered. A

selective metric that eschews bi-directional search of the PDG in favor of a directed search may perform

better in selecting the most bug-relevant compound predicates.

41

Table 3.13: Properties of larger bug benchmarks

Application Variants LOC Sites Test Cases

flex 18 14,725 to 16,967 1,491 to 11,704 567
grep 17 14,775 to 15,721 25,701 to 40,167 809
gzip 9 7,348 to 8,970 27,822 to 35,915 217
sed 15 8,704 to 19,774 16,090 to 19,030 365

Table 3.14: Kind of the top predicate for large bug benchmarks

Type of Top Predictor

Application Variants Simple Conjunction Disjunction

flex 18 3 15 0
grep 17 1 16 0
gzip 9 2 7 0
sed 15 1 14 0

Overall 59 12% 88% 0%

3.4.3 Experiments on Larger Benchmarks

In this section, we briefly evaluate compound predicates on a set of larger benchmarks. We use the

following bug benchmarks obtained from the Software-artifact Infrastructure Repository [Rot+06], all

written in C: flex, grep, gzip, and sed. Each program has multiple versions and each version has

multiple faults. Some of the faults do not cause significantly many test cases to fail. Since a sizable sample

of failed runs is needed for statistical debugging to be effective, we retain only those faults that cause more

than five test cases to fail. Table 3.13 shows the the total number of faulty variants across all versions of

each program that cause more than five test cases to fail. The table also shows the size of the programs in

terms of LOC, the number of intrumentation sites, and the size of the test suite.

For the 59 buggy programs in this study, we perform statistical analysis on data collected at a sampling

rate of 1. The effort parameter is set to 5%. We determine whether the top-scoring bug predictor is a

simple predicate, a conjunction, or a disjunction. Table 3.14 reports how often each of these three kinds

of predictors appears with the highest score. A conjunction was the top-scoring predictor in 88% of the

programs tested. A simple predicate was the top-scoring predictor for the remaining 12% of the programs.

42

Table 3.15: Time (in minutes) taken to compute scores for compound predicates

Application Naïve effort effort + Importance effort + Only-Best

print_tokens 139.95 64.17 39.60 6.53
print_tokens2 19.16 7.16 2.88 0.69
replace 37.04 14.73 10.33 2.35
schedule 3.01 1.10 0.67 0.06
schedule2 4.38 1.32 0.50 0.13
tcas 6.24 3.15 1.41 0.33
tot_info 3.59 1.69 1.40 0.16

Overall 20.95 8.98 5.59 1.11

A disjunction was never a top bug predictor. This result confirms the conclusion from experiments on the

Simens programs that compound predicates can diagnose failures more accurately than simple predicates

alone.

3.4.4 Effectiveness of Pruning

Even when restricted to binary conjunctions and disjunctions, compound predicates could substantially

increase the analysis workload if naïvely implemented. Techniques to reduce the computation time were

proposed in earlier sections. Table 3.15 shows their benefits. For each application, the first column shows

the time to naïvely compute the scores of compound predicates. Section 3.2 suggests a heuristic for

pruning compound predicates that are unlikely to be useful or understandable to a programmer. The “effort”

column shows the analysis time with this metric enabled. Section 3.1.2 describes how to compute an

upper bound on a predicate’s score. Two thresholds can be used while predicates are pruned based on their

upper bound. First is the Importance score of the component simple predicates. The column titled “effort

+ Importance” shows the analysis time with this threshold along with the effort metric. When interested

in only the score of the top compound predicate (such as section 2.3.2), the threshold of the highest

Importance score found so far can be used as the threshold. The “effort + Only-Best" column shows the

analysis time for this aggressive threshold. Each optimization progressively reduces the running time,

realizing an improvement from 21 minutes to just a minute. With the naïve setting, the print_tokens

application takes more than two hours to complete. Even with aggressive pruning, the analysis takes

43

p
r
i
n
t
_

t
o
k
e
n
s

p
r
i
n
t
_

t
o
k
e
n
s
2

r
e
p
l
a
c
e

s
c
h
e
d
u
l
e

s
c
h
e
d
u
l
e
2

t
c
a
s

t
o
t
_
i
n
f
o

O
ve

ra
ll

Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Fr

ac
tio

n
of

 c
om

pl
ex

 p
re

di
ca

te
s

Prune: effort > 5%
Prune: score upper bound too low

Compute exact score, but too low
Compute exact score and retain

(a) Conjunctions

p
r
i
n
t
_

t
o
k
e
n
s

p
r
i
n
t
_

t
o
k
e
n
s
2

r
e
p
l
a
c
e

s
c
h
e
d
u
l
e

s
c
h
e
d
u
l
e
2

t
c
a
s

t
o
t
_
i
n
f
o

O
ve

ra
ll

Application

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Fr
ac

tio
n

of
 c

om
pl

ex
 p

re
di

ca
te

s

(b) Disjunctions

Figure 3.7: Percentage of predicates pruned using effort and upper-bound in Importance

44

almost 7 minutes. This is due to the relatively low effect of the effort and pruning optimizations on the

print_tokens program, as seen in Figure 3.7.

Figure 3.7 shows the relative efficiency of the effort metric and pruning in discarding predicates. On

average, 53% of candidate conjunctions and disjunctions are discarded because, per the effort metric,

they would require traversing more than 5% of the application code. Pruning conjunctions whose upper

bound of the Importance scores are lower than the scores of their constituent simple predicates (the

effort+ Importance setting in table 3.15) eliminates a further 15% of the conjunctions. This step is more

useful for disjunctions: 37% of the disjunctions were pruned away. Only 22% of conjunctions and 10% of

disjunctions remain to have their exact scores computed. Of this, roughly a fourth (6% of the initial pool)

of the conjunctions have scores greater than their component predicates. Less than 1% of the disjunctions

had scores greater than their component predicates. The main take-away from this section of experiments

is that pruning and the effort heuristic reduce the computation time from 21 minutes on average to just

over a minute.

3.4.5 Effect of Effort and Sampling

Figure 3.8 shows how the number of interesting conjunction and disjunction predicates, as defined in

Definition 4, varies at four different effort levels. As expected, more predicates are evaluated as effort

increases, and so more interesting predicates are found.

Real deployments of CBI use sparse random sampling of simple predicates to reduce performance

overhead and protect user privacy. Prior work [Lib+03] has recommended sampling rates of 1⁄100 to 1⁄1,000 to

balance data quality against performance and privacy concerns. However, a pair of independent features

each observed in 1⁄100 runs have only a 1⁄10,000 chance of being observed together, raising doubts whether

interesting compound predicates will be found in sparsely sampled data. Note, however, that certain

compound predicate values can be “observed” even if one simple component is not, per the rules in

table 3.1.

Figure 3.9 shows the effect of sampling on the number of interesting predicates of each kind. We term

a simple predicate as interesting if its Importance score is strictly greater than 0. A compound predicate is

45

1% 2% 5% 10%

effort

1

10

100

1000

10000

100000

1000000

N
um

be
r

of
 in

te
re

st
in

g
pr

ed
ic

at
es

print_tokens
print_tokens2
replace

schedule
schedule2
tcas

tot_info

(a) Conjunctions

1% 2% 5% 10%

effort

1

10

100

1000

10000

N
um

be
r

of
 in

te
re

st
in

g
pr

ed
ic

at
es

(b) Disjunctions

Figure 3.8: Variation in the number of interesting predicates with effort

46

Conjunctions Simple Disjunctions

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

1

10

100

1000

10000

100000

1000000

N
um

be
r

of
 P

re
di

ca
te

s

(a) print_tokens

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

1

10

100

1000

10000

100000

N
um

be
r

of
 P

re
di

ca
te

s
(b) print_tokens2

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

1

10

100

1000

10000

100000

N
um

be
r

of
 P

re
di

ca
te

s

(c) replace

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

1

10

100

1000

10000

N
um

be
r

of
 P

re
di

ca
te

s

(d) schedule

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

0

1

10

100

1000

10000

N
um

be
r

of
 P

re
di

ca
te

s

(e) schedule2

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

0

1

10

100

1000

10000

N
um

be
r

of
 P

re
di

ca
te

s

(f) tcas

Figure 3.9: Sampling rate vs. number of interesting predicates

47

Conjunctions Simple Disjunctions

1/1 1/1.01 1/2 1/5 1/10 1/100 1/1000

Sampling Rate

0

1

10

100

1000

10000

100000

N
um

be
r

of
 P

re
di

ca
te

s

(g) tot_info

Figure 3.9: Sampling rate vs. number of interesting predicates (cont.)

considered interesting based on Definition 4. The sampling rates are reduced exponentially from 1⁄1 (i.e.

no sampling) to 1⁄1,000. Figure 3.9 has one plot per Siemens application showing the variation in the number

of interesting predicates as the sampling gets sparser. Note that the y axes have a logarithmic scale, and

the scale is not the same across applications.

The number of interesting disjunctions is always very low (order of tens) compared to interesting

conjunctions. However, disjunctions should not be omitted altogether. They are useful in some programs,

such as schedule (table 3.9). Pruning is very effective for disjunctions, and hence they do not impose as

high an overhead as conjunctions. At sampling rates lower than 1⁄10, there is a sharp drop in the number

of interesting conjunctions. This is likely due to the shrinking odds of observing both components of

a conjunction within a single run. Despite the sharp drop, the number of interesting conjunctions is

still comparable to the number of interesting simple predicates even at 1⁄1,000 sampling. This shows that

interesting compound predicates can still be found at sparse but realistic sampling rates.

A puzzling trend in fig. 3.9 is that all three curves rise for a brief interval before dropping off. Most

Siemens applications exhibit this bump. The bumps in the conjunction and disjunction curves could

be attributed to the bump in the simple predicates curve. Any increase in the number of interesting

48

simple predicates is likely to produce a greater increase in the number of interesting compound predicates,

especially because the additional simple predicates are likely to be redundant (as explained later).

The transient increase in the number simple predicates at moderate sampling rates is unexpected and

initially seems counterintuitive. Closer inspection of experimental results reveals two scenarios where this

can happen.

The first scenario happens due to an ad hoc but perfectly reasonable elimination of seemingly identical

predicates. As an example, consider the predicates p: a == b and q: a >= b defined at the same site.

Note that q is a derived predicate (see section 2.1), and is seen in runs in which either the predicate a == b

is true or a > b is true. If both p and q have the same score, it is useful to just retain p as it is a more

stringent condition than q. However, this does not mean that a > b was never true. It may be the case

that a > b was observed during some runs but does not affect the outcome of a >= b if a == b also

happens to be true in those runs. However, at sampling rates lower than 1, only a > b may be observed in

some runs and hence the number of runs in which p and q are observed true, and consequently their scores,

may be different. Thus, the ad hoc elimination heuristic performs less effectively at lower sampling rates,

leading to an increase in the number of simple predicates retained for further analyses.

To understand the second scenario, consider a predicate p for which S(p obs) = S(p) and F(p obs) =

F(p). In other words, p is true at least once in every run in which it is observed. From equation (3.2),

Increase(p) = 0. In a run in which p was observed, it may also be false at least once. As we reduce the

sampling rates, only the false occurrences may be recorded in some runs and hence the two equalities may

no longer hold. As a result Increase(p) may be nonzero. If it becomes positive, then a predicate that was

not interesting at higher sampling rates becomes interesting at lower sampling rates.

3.5 Summary

We have demonstrated that compound Boolean predicates are useful predictors of bugs. Our experiments

show qualitative and quantitative evidence that statistical debugging techniques can be effectively applied to

compound predicates, and that the resulting analysis provides improved results. We describe two methods

of eliminating predicate combinations from consideration, making the task of computing compound

49

predicates more feasible. The first employs three-valued logic to estimate set sizes and thereby estimate

the upper bound of the score of a compound predicate. The second uses distances in program dependence

graphs to quantify the programmer effort involved in understanding compound predicates.

These techniques help the statistical debugging analysis scale up to handle the large number of candidate

predicates we consider. However, using the analysis results in debugging can require sifting through a

large number of less useful predicates that also pass automated inspection. Further shrinking this list while

retaining useful predictors remains an important open problem. Most identified bug predictors redundantly

describe the same small set of program failures. Thus the bi-clustering algorithm of Zheng et al. [Zhe+06]

may be promising as it was designed to handle multiple predictors for the same bug. Automated analyses

which further process predictor lists, such as BTrace [Lal+06], may also benefit from the richer diagnostic

language offered by the work presented here.

50

Chapter 4

Adaptive Bug Isolation

As mentioned in chapter 3, CBI gathers feedback reports by using valuable CPU cycles at end user

machines. It is essential to maximize the utility of these CPU cycles. Statistical debugging, however, has to

cast a wide net of instrumentation to find useful failure predictors. This chapter presents a feedback-driven

technique that prioritizes data collection towards those predicates that are most likely to be useful in fault

localization. The advantages of this technique are three-fold. First, instrumentation of predicates that

are not failure-predictive can be avoided, or removed after their predictivity is ascertained. Second, this

technique has a configurable parameter that controls the amount of instrumentation performed. At the

most aggressive setting of this parameter, mean overheads of 1.03× are achievable, while still producing

useful results for fault localization. Third, sampling is no longer required to guarantee low-overheads.

Using adaptive instrumentation, and complete (non-sampled) observation of instrumentation sites, we can

quickly gather sufficient data where it is most needed.

CBI currently performs broad-spectrum instrumentation of numerous program behaviors. While

this seems necessary to catch a wide variety of bugs, it guarantees that almost all the collected data is

uninteresting. Most programs mostly work: nearly all code in any given application is not relevant for any

given bug. In one study, fewer than 1 in 25,000 instrumented behaviors were reported as failure-predictive

[Lib+03]. Over 99.996% of each execution profile was discarded, but only after consuming resources

(CPU time, network bandwidth, storage space, etc.) that could have been better-used for other purposes.

51

exif 0.6.9

libexif exif

canon olympus pentax libjpeg

Figure 4.1: Module structure in exif 0.6.9

As a concrete example, let us return to the exif program studied in chapter 3. Figure 4.1 shows

the high-level organization of exif. The core functionality to manipulate meta-data tags in images is

organized in the libexif library. It has three submodules, canon, olympus, and pentax, each handling

photos taken with a different brand of camera. The exif module, which is a sibling of libexif, provides

a command-line interface to libexif. It has a submodule, libjpeg to manipulate images in the jpeg

file format. There are three bugs in exif that are exercised by our test suite. The bug in the canon module,

mentioned in chapter 3, is very rare and causes just one failure in our test suite of 10,000 runs.

The other two bugs are in the exif and libjpeg submodules. Statistical analysis finds bug predictors

in the libexif, olympus, exif, and libjpeg modules. The bug in libjpeg arises when processing

images with fewer than two meta data sections. The predictors for this bug are in the libjpeg, libexif

and olympus modules. The single predictor in the olympus is a weak predictor. The other bug is in the

printing code in exif. Good predictors for this bug are found in the exif and libexif modules. Only

0.03% of predicates in these modules are failure predictive. More importantly, none of the predicates in

canon and pentax are failure predictive. This is not surprising because the code in these modules has no

relevance to the known bugs. The CPU time, network bandwidth and storage space used to instrument and

analyze predicates in such bug-free code are wasted. The adaptive bug isolation technique developed in

this chapter aims to avoid instrumenting such bug-free code segments, but without any knowledge of the

bugs. It uses feedback from deployed runs to achieve this task.

The above example highlights the problem with current monitoring systems. They begin with the

52

worst-case assumption that nearly anything could be a clue for a bug. Moreover, they continue monitoring

events even after statistical analyses show that most are not predictive of failure. Contrast this with the

focused debugging activity of an expert programmer. Using feedback from a prior execution, or even

just an initial hunch, the programmer uses breakpoints and other probes near points of failure to get more

feedback about program behavior. Suspect code is examined more closely, while irrelevant code is quickly

identified and ignored. Each iteration enriches the programmer’s understanding until the reasons for failure

are revealed.

We propose to mimic and automate this process on a large scale. Instead of a single run, we can collect

feedback from thousands or millions of executions of the program by its users. Adaptive bug isolation

starts by monitoring a small set of program behaviors. Based on analysis of feedback obtained during this

stage, other behaviors that could be causing failures are automatically chosen and monitored during the

next stage. Throughout this process, statistical-analysis results are available to the programmer, who can

fix failures if enough data is available or choose to wait for more data if the picture is unclear. Effectively,

we replace sampled measurement of all predicates with non-sampled measurement of adaptively-selected

predicates. Non-sampled instrumentation allows faster adaptation by quickly gathering sufficient data

where it is most needed. Adaptive instrumentation improves upon existing approaches by prioritizing the

monitoring of potentially useful behaviors over those that are less useful, thereby conserving computational

resources and bandwidth for both users and developers.

The rest of the chapter is organized as follows. Section 4.1 provides a high-level overview of the

changes we propose to CBI. It proposes binary instrumentation as a mechanism to efficiently change

instrumentation after deployment. Section 4.2 describes our binary instrumentor and several optimizations

developed to reduce the overhead of monitoring. Section 4.3 describes our Adaptive Bug Isolation

technique and section 4.4 presents an experimental evaluation.

4.1 Overview of Adaptive Bug Isolation

Figure 4.2 shows a high-level overview of adaptive bug isolation. The proposed changes to the overview

of CBI in fig. 1.1 are highlighted with a dark shadow. In this system, the program is instrumented to

53

Compiler

Compiled Program

Instrumentor

Selectively
Instrumented
Deployments

Candidate
Sites

User Community

Feedback
Reports

Statistical
Debugging

with Adaptation

Top Bug
Causes

main.h
main.c
· · ·

Program Source

Bug Fix

Figure 4.2: Overview of adaptive bug isolation (a dark shadow highlights differences from fig. 1.1)

selectively monitor a set of candidate instrumentation sites. The instrumentor is represented separately

from the compiler to capture a design issue explored shortly. The candidate sites are initially selected

statically from the program source. The number of locations instrumented is a small fraction of the whole

program. Feedback reports from this selectively instrumented program are collected, as earlier. The

adaptation step analyzes these feedback reports to produce a new set of candidate instrumentation sites.

During any stage of this iterative process, intermediate results of fault localization are also available for

the programmer’s inspection. The overhead of monitoring is low, since only a small number of sites are

instrumented during any iteration. The price of such low overheads is a drastic reduction in the amount of

data available for statistical analysis. It is impossible to improve upon CBI’s fault localization under these

constraints. Our technique is, instead, geared towards retaining the fault localization ability of existing

54

statistical analyses, while also achieving low overheads, and avoiding instrumentation of bug-free code.

A key design issue in the design of adaptive bug isolation is the mechanism of changing instrumentation

after deployment. Application sizes and bandwidth limits preclude releasing new software each time the

adaptive bug-hunting system identifies new instrumentation targets. Distributing executable patches might

be impractical, and resource intensive. Instead, we use binary instrumentation as the chief mechanism for

adaptivity. Adaptation decisions are distributed as a list of predicates that need to be enabled or disabled.

A binary instrumentor at the user’s machine re-instruments the software every time a new list is distributed.

Due to limitations in our binary instrumentor, it cannot support the scalar-pairs instrumentation scheme.

So, all the experiments in this chapter, including non-adaptive, complete instrumentation performed using

source-to-source instrumentation, are performed without the scalar-pairs instrumentation scheme.

Binary instrumentation in itself has several advantages over source-level instrumentation. We can

instrument any program, not just those written in languages supported by a source-level instrumentor. We

can instrument and monitor a program even when its source code is unavailable. We can also instrument

system and third-party libraries used by the application. Truly fixing bugs without source code would be

difficult, but remediation may still be possible once the causes of failure are identified [LS05a; LS05b;

NS05; Qin+07; Rei+06; Wan+04]. Furthermore, because sampling is not used, binary instrumentation adds

only a constant overhead to the size of distributed software: the size of one generic binary instrumentor,

usable for all monitored software in a machine. This improves on static sampling schemes whose fast- and

slow- path code variants roughly double the size of executables [Lib+03], thereby increasing costs for

packaging or network distribution.

4.1.1 Practical Considerations

While the adaptive bug isolation technique we develop in this chapter is not ready to be deployed to the

end users yet, we briefly consider some concerns that may arise when this system is put into practice.

55

Table 4.1: Taxonomy of changes, with the proposed system being the bottom right cell

Pre-deployment
Instrumentation

Post-deployment
Instrumentation

Fixed
Instrumentation

+ compiler optimizations

– big executables

+ no source needed, ease
of deployment

– no compiler optimizations,
high overheads

Adaptive
Instrumentation

+ compiler optimizations
small executables

– costly patch deployment

+ easy deployment, small
executables, low overheads

– no compiler optimizations

Mechanism of Instrumentation

We proposes changes to two aspects of CBI: the choice of predicates, and the instrumentation mechanism.

First, adaptive instrumentation changes instrumentation, even after deployment. Second, post-deployment,

binary instrumentation is used in lieu of pre-deployment, source-level instrumentation. Table 4.1 shows

the relative merits of each of these decisions.

1. Pre-deployment instrumentation is done at the source level, and consequently, compiler optimizations

are done after the instrumentation is added. This can reduce the overhead of the instrumented code.

Fixed, pre-deployment instrumentation, however, relies on sampling to reduce overheads. This

results in big executables, and wasted data collection.

2. Fixed, post-deployment instrumentation increases the size of the binary after deployment, thereby

reducing distribution overheads. Section 4.2 describes our exploration of this option. It evaluates

several binary instrumentation toolkits. However, without adaptive instrumentation, their overheads

are quite high (section 4.2.4).

3. Pre-deployment adaptive instrumentation allows small executables, and low overheads. However,

deploying patches is relatively harder than instrumenting the binary.

4. Post-deployment adaptive instrumentation, on the other hand, facilitates easy deployment, while

56

relying on selective instrumentation used by adaptivity to guarantee low overheads. It cannot take

advantage of post-instrumentation compiler optimizations.

The evaluations in this chapter, except the performance measurements in section 4.4.4, hold true irrespective

of whether selective instrumentation is done before or after deployment.

Security Implications

Our proposal on adaptive bug isolation opens one more channel of communication between the software

vendor and the user. This raises concerns about a malicious third-party forcing instrumentation to collect

sensitive user data. We can use existing infrastructure to alleviate this concern. Most consumer software

has the ability to securely and automatically check for updates, and apply them.

Another security concern is the trustworthiness of the binary instrumentor. The binary instrumentor

is trusted by the end-user to perform updates to the application. In the system we envision, the binary

instrumentor is deployed with the same privileges and protection as the update manager. In this situation,

either the instrumentor is safe from tampering, or is not allowed to instrument the application if a

compromise is detected.

Deviations in Usage Patterns

One underlying assumption of adaptive bug isolation is with regards to usage patterns. The users’

interactions with the software, and consequently the symptoms of failure and best predictors of failure, are

assumed to be stable over time. Adaptive bug isolation adds instrumentation in locations that are most

likely to be useful for the failed runs seen so far. This set could be less useful if the usage pattern changes,

and the program now fails under different circumstances. This situation is alleviated by the idea developed

in section 4.4.3 to handle multiple bugs. However, stable usage patterns for long periods is still desirable

when performing the iterative refinement of instrumentation predicates. The speed at which the reports are

collected also factors into this question. Our hypothesis is that deployment of our technique in a large user

community will yield faster accumulation of runtime feedback, as well as provide pockets of the user

57

community with stable behavior. The small overheads we demonstrate in section 4.4.4 can encourage the

participation of such large user communities.

4.2 Binary Instrumentation

This section evaluates the option of fixed, post-deployment instrumentation in table 4.1. We use the

Dyninst [BH00] instrumentation framework, which allows many optimizations that are difficult, and in

some cases impossible, to achieve using other tools for binary instrumentation. This section discusses

those optimizations in detail. Unfortunately, even with these optimizations, overheads are too large for

deployment to end users (see section 4.2.4). This motivates using an adaptive approach, discussed in

section 4.3, to achieve truly lightweight monitoring.

4.2.1 Basic Instrumentation and Reporting

Dyninst explicitly separates the program being instrumented from the program directing the instrumentation.

We term the former the target and the latter the instrumentor. The instrumentor launches the target in

a separate address space and leaves it in a suspended state. Dyninst reconstructs the target’s global call

graph and per-function control-flow graphs. From this, we identify branches and function call return

points where instrumentation will be inserted. Each instrumentation site requires two (for branches) or

three (for function returns) global counters. For reasons we discuss below, these counters are stored in

a shared memory segment mapped into the address spaces of both the instrumentor and the target. The

instrumentor generates code to increment the predicate counters and inserts this code into the target. The

target is then released from the suspended state and is allowed to run to completion.

On termination, predicate counters must be read and stored for later analysis. One approach would be

to register a process-exit callback in the target, such as via ANSI C’s atexit. However, an exiting target

may already have corrupted its heap, run out of memory, or be in an otherwise unstable state. We cannot

assume that it is still capable of sending counter values across a network or saving them to a file. Instead,

our instrumentor detects when the target has exited, and then reads the predicate counters directly from

58

b1
T

��
F

��
b2

T

��
F

��

b4

b5

��

b6

��
b3

(a) Control-flow graph

b1
T
~~

F

R1

~~

R2

��
b2

T
~~

F

b3 b4

R3

��

R4

��
b5 b6

(b) Control-dependence graph

Figure 4.3: Example graphs for static removal of branch predicates

the shared memory segment. The instrumentor also records the target application’s exit status at this time,

for use when labeling crashes as failed runs.

4.2.2 Static Removal of Instrumentation

Branch predicate counts are equivalent to the edge profiles of an execution. We use static program structure

to avoid redundant operations using approaches similar to those of Ball and Larus [BL96] or Tikir and

Hollingsworth [TH05]. However CBI collects more than just edge profiles. Coverage of any predicate,

such as a function return predicate, implies coverage of the basic block in which that predicate is defined.

This in turn implies coverage of the edges leading to that block from all of its control-dependence ancestors.

Figure 4.3 shows an example control-flow graph (CFG) and the corresponding control-dependence

graph (CDG). The true and false edges of branches are labeled T and F respectively. The additional

Ri nodes in the CDG are region nodes [Fer+87] that group nodes with identical control conditions. For

example, nodes b2 and b3 execute if and only if the condition at b1 is true.

Ordinarily, a branch instrumentation site at b1 would place one predicate counter along the edge from

b1 to b2 and another along the edge from b1 to b4. If there is already any instrumentation site s at b2 or b3,

then the branch predicate count along the edge b1→ b2 must equal the sum of the counts of the predicates

at s. Thus, the b1→ b2 edge need not be instrumented and its missing edge profile can be computed offline.

In general, we define a branch predicate as redundant if its count can be inferred offline by a post-mortem

59

analysis of the execution profile. Consider a potential branch predicate p along the edge from some block

u to a successor block v. Predicate p is redundant if u dominates v and at least one instrumentation site s

is defined in v or any other basic block that is control-equivalent to v. The first condition ensures that

the entire control-dependence region corresponding to v is executed if and only if the edge from u to v is

traversed. The second condition ensures that every execution of the control-dependence region containing

v will be reflected in one of the predicates from site s. Under these conditions, instrumentation for branch

predicate p can be omitted. The count for p can be derived offline by summing up the counters for the

predicates at site s.

Control-flow graphs and derived representations rarely reflect the possibility that buggy programs

may terminate abruptly. Doing so would create additional edges from nearly every node to the global

program-exit node. Such edges would confound our ability to assume that site s is reached every time the

edge u→ v is crossed, because it is possible to cross u→ v but crash before reaching s. Fortunately, this

situation can be recognized and corrected by inspecting the stack of a failed run. For each stack frame that

shows execution in the control-dependence region corresponding to v but before reaching s, the sum of

counts at s should be incremented by one to derive the actual count of u→ v edge crossings.

4.2.3 Binarization and Dynamic Removal

While some statistical debugging models use exact values of predicate counts [And+07; JS07; Liu+05;

Zhe+06], others require only binarized data: they consider only whether a predicate was true at least once,

but make no further distinctions among nonzero counts [JH05; Lib+05]. If a binarized model is to be

used, then predicate “counters” are merely flags. Instrumentation code can just store a 1, which takes

one memory operation, instead of incrementing a counter, which takes one arithmetic and two memory

operations.

Furthermore, when using binarized data, there is no benefit from additional observations of a predicate

that has already been observed true once. Therefore, a predicate’s instrumentation code may be removed

from the target once it has triggered [CE04; Mis+05; TH05]. Dynamic instrumentation removal is especially

well suited for branch instrumentation, as each branch predicate adds code on a distinct edge and therefore

60

each branch predicate can be removed independently.

4.2.4 Performance Impact

Instrumentation must have extremely low overhead if we are to collect feedback data from members

of the general public. Experiments with a small, CPU-intensive benchmark show that naïve binary

instrumentation does not achieve this goal.

We use the SPEC 099.go benchmark, compiled with gcc 4.1.2, instrumented using a beta version

of the Dyninst 6.0 release and run on an otherwise idle dual-core 3.2 GHz Pentium CPU. We use one

small (2stone9) and two large (5stone21 and 9stone21) benchmark workloads. All measurements reported

are averages across five repeated trials. Execution time excludes instrumentor start-up costs and reflects

only time spent running the instrumented code. Start-up costs can be amortized over several runs using

the new binary rewriting feature in Dyninst. We instrument all branches and function returns in the main

executable but not in shared libraries.

The unmodified go executable completes the small workload in 0.4 seconds, and the two large workloads

in 21.7 and 21.6 seconds respectively. Naïve Dyninst instrumentation slows execution by a factor of 5.8

times for the small workload and 5.5 times for the large workloads. Adding static branch instrumentation

removal, binarized counts, and dynamic branch instrumentation removal increases this relative slowdown

to 8.9 for the small workload, but shrinks it to 1.8 for the large workloads: the benchmark’s small code

footprint means that dynamic branch instrumentation removal is more beneficial for longer-running tasks.

While 1.8 is better than 5.5, this is still too slow. Users will not accept a 1.8× slowdown in daily use.

We also consider three non-Dyninst-based approaches: Pin, Valgrind and sampler-cc. Pin and Valgrind

are dynamic binary instrumentors that use just-in-time (JIT) disassembly and recompilation, as contrasted

with Dyninst’s code-patching approach. Our custom Pin instrumentor built using Pin version 2.6 has

slowdowns between 4.3 and 5.0. Our custom Valgrind instrumentor built using Valgrind version 3.2.1

performs similarly to lightly-optimized Dyninst, with slowdowns between 7.0 and 10.2. However, many

of the more aggressive optimization strategies would not be practical to apply under a JIT execution model.

Moreover, just-in-time code patching maintains a code cache to hold instrumented basic blocks. This

61

code cache imposes a baseline overhead to load and execute instructions even when no instrumentation is

performed. This limit cannot be improved with any static or dynamic optimization. For Pin, this overhead

comes to about 1.9, which is higher than highly optimized Dyninst instrumentation. For this reason, we

evaluate our adaptive techniques in the next section using Dyninst. As opposed to our binary instrumentor,

sampling based instrumentation at the sparsest sampling rate of 1⁄UINT_MAX imposed relative slowdowns

of 1.4 across all workloads. While source-level information based on sampling is the fastest among the

options considered here, we are not willing to give up the benefits of dynamic instrumentation while

simultaneously imposing a 40% slowdown on end users. The adaptive techniques described in the next

section dramatically reduce instrumentation overheads while simultaneously avoiding the drawbacks of

static instrumentation.

4.3 Adaptive Instrumentation

The goal of statistical debugging algorithms is to find predicates that are correlated with failure. Existing

statistical debugging techniques attempt to find the tiny fraction of predicates that are predictive of failure.

However, they assume that instrumentation sites are selected once and remain fixed thereafter. This

section describes an adaptation-based approach that eliminates fixed monitoring plans. Instead, sites are

speculatively added to the instrumentation plan if it appears that they may be good predictors of failure

and are removed from the monitoring plan once their ability (or inability) of failure prediction has been

assessed. Our algorithm exploits the principle of locality: if a predicate is highly predictive of failure, then

predicates in its vicinity are potentially good failure predictors as well. Our experience with statistical

analysis using non-adaptive instrumentation found that the principle of locality holds in some, but not all

cases. The essence of our technique is to adaptively adjust the instrumentation plan by locating a predicate

that is highly predictive of failure and extending the plan to include nearby sites.

Procedure 1 defines this iterative algorithm. It is parameterized by four sub-procedures (GetInitialSet,

WaitForSufficientData, score, and Vicinity) that are described more fully later. monitored is the set of

sites for which feedback information is available from previous iterations. explored is the set of branch

predicates that have received the highest score in previous iterations; these are predicates whose nearby

62

1: monitored = /0
2: explored = /0
3: plan = GetInitialSet()
4: while debugging do
5: Instrument and monitor sites in plan
6: WaitForSufficientData()
7: monitored = monitored∪plan
8: best = branch predicate with highest score in monitored\ explored
9: explored = explored∪{best}

10: plan = Vicinity(best)\monitored
11: end while
Procedure 1: Pseudo code for Adaptive Analysis

vicinity has already been explored. plan is the set of sites that are being monitored during the current

iteration. best is the branch predicate that receives the highest score in the current iteration. At startup, the

analysis chooses the set of sites to be monitored by calling GetInitialSet. The set of sites is monitored

until the function WaitForSufficientData returns, indicating that enough feedback has been collected for

meaningful analysis to be applied. Using this feedback, and feedback from earlier phases (if any), the best

branch predicate that was not already explored is identified. The plan for the next iteration is to monitor

previously unmonitored sites in the vicinity of this best predicate as defined by the function Vicinity. The

sets monitored and explored are updated during each phase. Note that we are not monotonically adding

instrumentation to the program. The selection of the new plan done in line 10 of procedure 1, in addition

to adding sites returned by Vicinity, stops instrumentation of predicates already monitored.

During any iteration, the programmer can view analysis results for all sites monitored previously. The

programmer can choose to continue the adaptive search, or may stop the process if he recognizes and

can fix the root cause of the bug. Thus, termination of the “while debugging” loop is a human decision.

Procedure 1 describes an automated search that can proceed without human intervention, but it is assumed

that human programmers are observing, learning from, and occasionally intervening in the process.

Our choice of algorithms for the sub-procedures GetInitialSet and Vicinity determines whether the

analysis in procedure 1 is a forward (section 4.3.1) or backward (section 4.3.2) analysis. The score function

assigns numeric values to every predicate; a higher value is assigned to a predicate that is a better predictor

of failure. We describe some candidate scoring functions in section 4.3.3 and experimentally evaluate

63

them in section 4.4. Some scoring heuristics developed for non-adaptive instrumentation are designed to

compute the inherent bug-predictivity of a predicate and prevent the bug predictivity of nearby predicates

from skewing the measure for this score. Such metrics are less suitable for our adaptive algorithm, as they

subvert the locality principle on which it relies. WaitForSufficientData assesses whether sufficient data

has been collected. While not the main focus of this work, we briefly discuss this issue in section 4.3.4.

Section 4.3.5 mentions some alternative design choices.

4.3.1 Forward Analysis of the Program

The general pattern in forward-adaptive bug isolation is to start at the beginning of the program and

iteratively work forward toward the root causes of bugs. Consider the control-flow graph in fig. 4.3a.

Suppose the branch predicate associated with the true result of the condition at b1 is found as the best

predicate according to the score function. This means that whenever the edge b1→ b2 is traversed, the

program is likely to fail. This indicates that there might be some bug in the basic blocks b2, b3, b5 and b6

and predicates in these blocks may be even better at predicting the bug. However, we do not have enough

evidence to believe that b5 and b6 have good failure predictors. It could be the case that the bug is in

b5 and hence none of the predictors in b6 predict failure. It is also possible that the bug is in b6 and the

predicates in b5 are not relevant. Which of the two cases is true will be known when we have information

about the branch site at b2. We can defer monitoring sites in b5 and b6 until we have that information.

On the other hand, we have enough reason to believe that good predictors will be found in b2 and

b3 because the collected data shows that these blocks are executed in many failed runs. In general, the

choice of b2 and b3 translates to choosing the children in the control-dependence graph (CDG). Thus, if

the best predicate is associated with the branch at basic block b being true (respectively, false), then we

are interested in the basic blocks that are control dependent on b with the true (respectively, false) control

condition. Therefore Vicinity(best) returns the sites in these basic blocks. Function calls are handled

automatically by using an interprocedural control-dependence graph. To fit with the notion of searching

forward in the control-dependence graph, GetInitialSet returns the sites in basic blocks control dependent

on the entry node of the CDG.

64

4.3.2 Backward Analysis of the Program

If a program fails by crashing, then a stack trace of the program when it crashed may be available. Based

on the folk wisdom that the bug is likely to be somewhere near the point of the crash, exploring the

predicates near the crash point may find good bug predictors faster than a forward analysis. To illustrate

backward analysis, once again consider the control-flow graph fragment in fig. 4.3a. Suppose the program

crashes in block b3. Now consider the branch site at b1, which is b3’s control ancestor. This site is the

last point where execution of b3 could have been skipped and hence the crash averted. So, b1 is a good

candidate bug predictor and we monitor it and measure its score.

Suppose the programmer looks at the new feedback and has no idea why a predicate at b1 could be

causing the crash. There are two possible reasons:

case I: The bug may actually be in basic block b2, b5, or b6. The predicate at b1 may have a high score

simply because it governs execution of these blocks.

case II: The branch predicate at b1 may have a high score because the problem happens before the

program reaches b1. Thus, the program will fail irrespective of the outcome of this branch.

In case I, predicates in b2, b5 and b6 are potential bug predictors. Using the same reasoning used during

forward analysis, we only monitor b2 and delay monitoring of b5 and b6 until there is information about

the branch predicates in b2. In case II, we could explore further backwards in the CDG by considering

b1’s control ancestor (assuming that fig. 4.3a shows just a fragment of a larger program). Since there is

no way to decide whether the root cause is before the execution of b1 or after it, we take a conservative

approach and include sites suggested by both cases I and II in the monitoring plan for the next iteration.

To summarize, for backward analysis, GetInitialSet returns the branch site in the control ancestor of

each basic block in which a crash occurs. Vicinity(best) returns sites in the control ancestors and control

children having the appropriate control condition of the basic block in which the predicate best is defined.

65

4.3.3 Scoring Heuristics

In this section, we consider possible definitions for score as used in procedure 1. All possibilities considered

are heuristics in that one could contrive situations in which they perform badly. Our goal is to identify

scoring heuristics that perform well on a variety of programs in realistic situations.

In the sites-and-predicates model used by CBI, the data collected for a predicate p is aggregated into

four values: S(p) and F(p) are, respectively, the number of successful and failed runs in which p was

observed to be true at least once. S(p obs) and F(p obs) are, respectively, the number of successful and

failed runs in which p was observed at least once regardless of whether it was true or not. Besides these

four values, there is another global value: NumF, the total number of runs that were labeled as failures.

All heuristics described in this section are computed using these values.

Failure Counts

The first heuristic scores a predicate p according to the number of failed runs in which p was observed to

be true: FailCount(p)≡ F(p). Any region of code that is executed during many failed runs is potentially

buggy. FailCount(p) may not be a good measure of failure predictability because it does not distinguish

between two predicates that are true in different numbers of successes but the same number of failures.

However, a predicate seen in many successful and failed runs may capture some property of the program

other than its outcome, such as differing usage scenarios [Zhe+06].

Importance

The Importance score was introduced in section 2.3.1 as a good measure of failure predictivity. We can

also consider it as a candidate-heuristic for adaptive scoring. For convenience, the definition of Importance

66

is as follows:

Sensitivity(p)≡ log(F(p))
log(NumF)

Increase(p)≡ F(p)
S(p)+F(p)

− F(p obs)
S(p obs)+F(p obs)

Importance(p)≡
2

1
Increase(p) +

1
Sensitivity(p)

Maximum Importance

During initial experiments, we found that Importance as a scoring heuristic often leads to sub-optimal

adaptation decisions. For example, consider a branch condition that is always true and the associated

branch predicate p. Since the branch is always taken, F(p obs) = F(p) and S(p obs) = S(p). Thus

Increase(p) and consequently Importance(p) are both 0. Even if F(p) is very large, a branch predicate

p′ with marginally positive values for Increase(p′) but very low F(p′) will be given preference over p.

This is not a problem with the Importance heuristic because, as mentioned earlier, there can be situations

where the heuristics make choices that go against the principle of locality. If the iterative ranking and

elimination algorithm described in section 2.3.2 is used, where the goal is to find predicates with high

Importance scores, we can construct a heuristic that maximizes the Importance score of predicates in

Vicinity(p) rather than the Importance of p itself.

Predicates in Vicinity(p) have not already been monitored, so we cannot predict the exact maximum

score among predicates in that set. Instead, we compute an upper bound by considering a hypothetical

predicate h that has the best possible score. Such a predicate must be true in all the failed runs in which

it is observed and false in all the successful runs in which it is observed, i.e. F(h) = F(h obs) and

S(h) = 0. When a forward analysis is used, h will appear in a basic block that is control dependent on

the edge associated with p and hence h will be observed only when p is true, so F(h obs) = F(p) and

67

S(h obs) = S(p). Thus,

Increase(h) =
F(h)

S(h)+F(h)
− F(h obs)

S(h obs)+F(h obs)

= 1− F(p)
S(p)+F(p)

We set MaxImportance(p) ≡ Importance(h) to favor predicates that have the potential to reveal new

predicates with high Importance.

Student’s t-Test

The next heuristic, TTest(p), uses a statistical test called the Student’s t-test [Lev69]. During a forward

analysis, if p is true in a larger percentage of failures than successes, then the predicates in Vicinity(p) are

also observed in a larger percentage of failures than successes and the heuristic should give preference to

p. On the other hand, if p is true in a larger percentage of successes than failures, then the predicates in

Vicinity(p) should have lower preference. There are two sets of data for each predicate p: the observations

of p in successful and failed runs. The null hypothesis is as follows:

H0: the observed behavior of p in successful and failed runs are indistinguishable

The t-test uses the mean, standard deviation and the size of the two samples to assign a numeric confidence

in the range [0,1] with which the null hypothesis can be rejected. While not the usual interpretation of the

t-statistic, we use this confidence to characterize whether the observed behavior of p in successful and

failed runs differ significantly. The TTest(p) heuristic computes the t-test confidence measure c and assigns

a score of c to p if it is seen in more failures than successes. If p is seen in more successes than failures, a

score of −c is assigned to p. Since the information about p does not impose any useful restrictions on the

coverage of the ancestor of the node associated with p in the CDG, neither MaxImportance nor TTest has

a sensible interpretation for backward analysis.

Student’s t-test is a parametric test and assumes that the samples are normally distributed. We also

evaluated a non-parametric test, the Mann–Whitney U-test [MW47], which is less powerful but does not

68

assume normal distribution. The U-test never performed better than the t-test indicating that the normality

assumption is acceptable. Therefore, we give the U-test no further consideration.

Other Heuristics

To evaluate the usefulness of our techniques, we also define three other heuristics. To assess whether

search heuristics are useful at all, we consider BFS, a naïve breadth-first search on the CDG. Random

is a straw man heuristic that selects a “best” predicate at random on each iteration. Lastly, an Oracle

heuristic helps to measure how well any search heuristic could possibly do; we discuss Oracle further in

section 4.4.2.

4.3.4 Waiting for Sufficient Data

Most statistical analyses have the ability to associate a confidence value with their output. A typical

confidence measure would be a probability, between 0 and 1, that an observed trend is genuine rather than

merely coincidental. Given such information, we can wait until the analysis is able to compute its output

with a sufficiently high confidence (for example, with probability greater than 0.95). In general, this

decision involves a compromise between the speed and accuracy of debugging. Collecting more reports

improves accuracy but may take longer to produce interesting results, while collecting fewer reports has

opposite trade-offs. Moreover, user behavior might change across iterations and more reports will be

needed to accommodate such instability. As mentioned earlier, this issue is not the main focus of this

work. Section 4.4 explains a simple approach that we use for our experimental evaluation.

Note that the definitions of GetInitialSet and Vicinity, as given in either section 4.3.1 or section 4.3.2,

have an important completeness property. With either approach, starting with GetInitialSet and repeatedly

expanding the search using Vicinity will eventually instrument every site that is reachable from the

program’s entry point. This property is important because the principle of locality is not a guarantee: a

good predicate may appear in code where other predicates have low scores. The completeness property

ensures that adaptive bug isolation can recover from wrong turns. If the “while debugging” is allowed

to run until all sites have been instrumented, provide the same information as exhaustive (non-adaptive)

69

instrumentation; it may just take longer to get there.

4.3.5 Design Alternatives

As proposed here, adaptive instrumentation is a heuristic search through the control-dependence graph, and

the principle of locality is assumed to apply to predicates that are close in this graph. However, the effects

of bad code can also propagate through data rather than through control flow. Thus, it may be desirable to

consider data-dependence relations as well. This can be done by using the program-dependence graph

(PDG) [HR92] instead of the control-dependence graph. Balakrishnan et al. [Bal+05] have demonstrated

PDG construction for unannotated binaries.

Instead of constructing an interprocedural CDG, one could initially treat calls as opaque and only

instrument callee bodies if the results they return are highly predictive of failure. However, this incorrectly

assumes that called functions are pure, with no effects other than the values they return. This clearly is not

true for C. Thus, a completely modular, function-by-function search is not appropriate in the general case.

Procedure 1 describes an automated search that can proceed without human intervention. But the

general framework is flexible and can be manually overridden if and when needed. For example, the

programmers can override GetInitialSet to directly debug modules that are known to be buggy from prior

experience or in-house testing. Similarly, experienced programmers can look at already-monitored sites

and specify their own plan based on domain knowledge, whether to test a hypothesis or simply chase down

a hunch. The set of monitored sites can be actively modified to balance aggressive exploration against

user-tolerable overhead.

4.4 Evaluation

Prior work [And+07; Chi+09; JS07; Lib+03; Lib+05; Liu+05; Zhe+06] has shown qualitatively and

quantitatively that statistical debugging is effective. In this section, we evaluate the main contribution of

this chapter, which is the use of adaptive binary instrumentation to further reduce performance overheads.

As mentioned earlier, our technique is geared towards retaining the fault localization ability of existing

statistical analyses, while also achieving low overheads, and avoiding instrumentation of bug-free code.

70

Table 4.2: Programs used for experimental evaluation

Program Variants LOC Sites Test Cases

bash 1 59,846 17,996 1,061
bc 1 14,288 1,799 10,000
ccrypt 1 5,276 757 10,000
exif 1 10,588 2,631 10,000
flex 47 14,705 2,538 567
gcc 1 222,196 56,850 892
grep 17 14,659 2,666 809
gzip 9 7,266 1,406 217
Siemens 7 to 41 173 to 563 94 to 184 1,052 to 5,542
space 38 9,126 1,673 13,585

Our evaluation uses the faulty programs of the Siemens suite [Hut+94]; the bash, flex, grep, gzip

and space bug benchmarks [Rot+06]; and gcc 2.95.3 [Fre]. We also evaluated bc 1.06, ccrypt 1.2 and

exif 0.6.9, each of which has known fatal bugs [Lib+05]. Some test subjects have multiple variants, each

exhibiting a different bug. Table 4.2 lists our test programs, the number of variants, their size in lines of

code and number of instrumentation sites, and the size of the test suite used. All test programs except

the Siemens programs are realistic applications with several thousand lines of code (KLOC). The largest

applications are bash and gcc, with greater than 50 KLOC.

The scalar-pairs scheme is not supported by our binary instrumentor. The main roadblock in adding

support for this scheme is the difficulty in reliably identifying the whereabouts of each variable from

just the binary. Techniques for deeper analysis of executables [BR07] might help in this task. However,

predictors belonging to the branches and returns schemes are the top-ranked predicates for 57% of our

test subjects. Even among the remaining 43% of the subjects that had a top-ranked scalar-pairs predicate,

predicates belonging to the other schemes have good scores. In section 3.4.2, we manually evaluated

the bug-relevance of the top-ranked predicates. Among the 36 subjects where simple predicates were

found relevant for bug-isolation, 22 (i.e. 61%) belonged to the branches and returns schemes. Thus,

omitting the scalars-pairs scheme does not severely impact the usefulness of predicates found using binary

instrumentation.

Bugs in some test subjects cause incorrect output rather than crashes. Like the experiments in chapter 3,

71

a test case is labeled as a success or failure by comparing the output of the buggy program to that of a

bug-free reference version. Our statistical analyses are applicable irrespective of the labeling strategy used.

For the purposes of backward analysis, the failure point is defined as the statement in the program that

prints the first incorrect byte in the output. We find this location by tracing program output and associating

each output byte with the code that printed it [Hor+10]. For each failed test case, the traces from executions

of faulty and reference versions are compared to find the failure point. Since the output tracer does not

support bash, we do not perform backward analysis for bash.

The Importance score is undefined if a variant fails in zero or one test case. Such variants are discarded

and not included in table 4.2. For the remainder, we run the adaptive analysis given in procedure 1. To

mimic a real deployment in which no two runs are exactly alike, we partition tests into random subsets of

500 cases each and cycle through these for successive iterations. When using the Random heuristic, all

measures are averages across five trials.

4.4.1 Comparison of Heuristics

The intent of each heuristic is to guide adaptive analysis toward high-scoring predicates. To evaluate

effectiveness of the heuristics, we plot the score of the top-scoring predicate found versus the total number

of sites monitored so far. Figure 4.4 shows these plots for large applications (bash and gcc), medium-sized

applications (bc, ccrypt, exif, grep, space) and the small applications in the Siemens test suite. The

heuristics deviated from the normal pattern of the medium-sized applications for gzip and flex. The

plot for gzip is shown in fig. 4.4d.

Note that Vicinity(best) in procedure 1 may return multiple sites. When this occurs, flat horizontal

segments appear in the plots of fig. 4.4, reflecting a larger-than-unit jump in the number of sites monitored.

This is particularly common with BFS, which can fan out quickly in each iteration.

For the medium-sized applications (fig. 4.4b), all heuristics start by finding essentially the same top

score before diverging at 100 sites. The divergence at 100 sites may look small in the plot, but it is

significant considering the large range covered by the x axis. TTest performs best followed by FailCount.

FailCount lags Importance in the early phases because it cannot distinguish predicates seen only in

72

FailCount
Importance

MaxImportance
TTest

BFS
Random

0 750 1500 2250 3000

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

0.6

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(a) large

0 250 500 750 1000

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(b) medium

0 31 62 93 124 155

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(c) Siemens

0 100 200 300 400 500

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(d) gzip

Figure 4.4: Adaptation speed for various heuristics using forward analysis

73

failed runs from those seen always. The pathological cases for Importance that motivated the design

of MaxImportance appear to be fairly common in these applications, as indicated by the fairly good

performance of MaxImportance. Wide fan-out leads BFS to instrument many uninteresting sites on its

way to a good predicate. All of these outperform the Random straw man. The heuristics behave similarly

for the Siemens programs: BFS and Random are significantly worse than the other heuristics; TTest is the

best or close to the best; the others are close to TTest for some cases and close to BFS in the rest. For the

large applications bash and gcc (fig. 4.4a), FailCount is the best heuristic, followed by Importance and

TTest. For programs gzip and flex, the heuristics deviate from the general pattern observed above. In

the plot for gzip in fig. 4.4d, BFS and other heuristics significantly outperform TTest. Manual inspection

shows that the top predictors are near the top of the CDG (usually two or three levels deep). Thus, BFS and

Random are better at finding them early, while TTest gets sidetracked by an initial wrong choice. These

are ultimately heuristics, and therefore can occasionally perform sub-optimally. flex exhibits behavior

similar to gzip.

Figure 4.5 compares backward analysis performed using the Importance heuristic and forward analysis

using the TTest heuristic. (Backward TTest is meaningless.) The subplots show the increase in the score

of the top-scoring predicate found versus the total number of sites monitored for the large, medium-sized,

and the small Siemens applications.

We do not perform backward analysis for bash, because the output tracer used to find the crashing

location does not support it. Figure 4.5a compares forward and backward analysis for gcc, the other large

application. Backward analysis does not find the best predictor even after 1,500 iterations. The difference

is entirely incidental, and has to do with the presence of boiler-plate code in gcc that parses the input

source file. The predicates in this region of code are not predictive of failure because they are executed

in all runs. The crash location and the top predictor are separated by this boiler-plate code. Backward

analysis is unable to make the right choice when exploring predicates in this region, and hence is unable to

find the top predicate. Forward analysis, on the other hand, is able to find the top predictor without having

to deal with this problem.

For the medium-sized applications, backward analysis begins finding good predictors earlier. This

74

Forward TTest Backward Importance

0 250 500 750 1000

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(a) gcc

0 472 944 1416 1888 2360

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(b) medium

0 31 62 93 124 155

Number of sites monitored

0

0.1

0.2

0.3

0.4

0.5

Sc
or

e
of

 to
p

pr
ed

ic
at

e

(c) Siemens

Figure 4.5: Adaptation speed for various programs using forward and backward analysis

75

affirms the folk wisdom that many bugs are close to their points of failure. After about 200 sites, exploration

does not improve the scores significantly. The increase in the score of the top predicate around 950 sites

indicates that for some variants, the highest-scoring predicate is not found until later iterations. This

suggests that the principle of locality does not always apply; high-scoring predicates occasionally appear in

the same locality as low-scoring predicates. For bc and exif, which have crashing bugs, the top predictor

is very close to the point of failure and is found rapidly by backward analysis, after exploring fewer than

100 sites. For gzip, backward analysis is better, finding the top predicate after exploring about 200 fewer

sites than forward analysis. For space, ccrypt, and flex, backward analysis performs better initially,

but forward analysis wins in the long run.

For the Siemens programs, backward analysis starts marginally better than forward, but is soon

overtaken. This does not mean that backward analysis is less useful: the Siemens programs are small

(about 500 lines of code) and most output is printed at basic blocks at or close to the top of the CDG. Thus,

backward exploration stops fairly early and only a forward analysis is performed thereafter. To conclude,

backward analysis is better initially but forward analysis is just as effective in the long run.

4.4.2 Instrumentation Selectivity

In the previous section, we evaluated the first goal of adaptive bug isolation, which is to prioritize

instrumentation of good failure predictors. We used the variation in Importance scores of predicates over

time for this evaluation. Our second goal is to avoid instrumentation of predicates that are not failure

predictive. This can be evaluated by using the fraction of predicates that were never instrumented during

the debugging activity. This requires identification of the point in time when debugging finishes, which is

not precisely defined. It depends on the skill and motivation of the developer, in addition to the quality of

the failure predictors found by our technique. The human element is hard to capture. Instead, we consider

the top predictor found by the iterative bug isolation algorithm (section 2.3) as the reference. We consider

debugging to have finished when our adaptive approach finds this top predictor. We make the simplifying

assumption that a lazy programmer who looks at only the first predicate in the bug-isolation output will

find adaptive bug isolation just as useful as non-adaptive statistical debugging.

76

b
a
s
h

b
c

c
c
r
y
p
t

e
x
i
f

f
l
e
x

g
c
c

g
r
e
p

g
z
i
p

S
i
e
m
e
n
s

s
p
a
c
e

O
ve

ra
ll

Application

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
si

te
s

ex
pl

or
ed

BFS Random TTest Oracle

Figure 4.6: Mean number of sites to find top-ranked predictor

To gauge the progress towards our second goal, we measure the total instrumentation effort required for

the adaptive process to discover the same top-ranked bug predictor as a traditional, non-adaptive method.

For each variant, we note the top bug predictor, and then count sites explored before an adaptive analysis

identifies this same predicate. We compare TTest with BFS and Random to test whether a carefully-selected

heuristic can help in this task. We also consider an Oracle heuristic that has perfect knowledge of program

behavior. It always selects the branch predicate that reaches the target predicate by monitoring the fewest

instrumentation sites.

Figure 4.6 plots the percentage of sites explored for each program averaged across all variants. BFS

and Random explore about 60% of sites before finding the top predicate. TTest explores just 40%. Oracle

suggests that there is room for improvement but also establishes a lower bound of about 20% for any

adaptive search that crosses CDG edges one at a time. Adaptive analysis performs very well in bash, bc,

77

Table 4.3: Mean number of sites instrumented per iteration

Program FailCount Importance MaxImp TTest Random BFS BwImp

bash 3.9 3.4 3.2 2.8 2.6 179.2 -
bc 3.6 2.9 4.3 4.8 2.8 60.9 163.0
ccrypt 3.3 2.4 5.3 2.6 3.6 24.8 4.5
exif 1.9 2.4 1.9 3.0 2.3 24.6 2.7
flex 46.7 45.4 51.7 44.1 43.8 289.6 137.5
gcc 3.8 3.2 3.7 4.2 3.8 517.2 12.0
grep 5.8 6.1 6.3 5.9 5.1 110.4 9.7
gzip 5.5 10.1 6.5 9.8 6.5 105.3 10.6
Siemens 3.2 3.1 3.1 3.2 2.9 9.9 3.5
space 3.3 3.6 3.1 3.9 2.6 56.1 18.3

Table 4.4: Mean number of iterations for each program

Program FailCount Importance MaxImp TTest Random BFS BwImp

bash 181.0 314.0 316.0 545.0 766.4 12.0 -
bc 94.0 156.0 73.0 66.0 145.2 7.0 1.0
ccrypt 11.0 79.0 9.0 29.0 16.8 5.0 59.0
exif 73.0 99.0 70.0 33.0 186.6 16.0 22.0
flex 176.3 242.5 67.6 311.4 240.8 3.1 114.7
gcc 618.0 1227.0 662.0 645.0 863.3 10.0 1500.0
grep 180.2 388.2 107.5 299.2 546.3 10.6 190.2
gzip 57.7 42.6 50.8 127.8 84.3 3.1 87.6
Siemens 19.7 25.6 20.7 18.6 30.6 7.7 21.2
space 148.9 158.6 161.6 134.9 266.5 9.8 76.2

ccrypt, exif, and gcc, finding the top predictor while instrumenting less than 20% of sites on average.

Table 4.3 shows the mean number of sites instrumented during an iteration. Table 4.4 shows the

mean number of iterations required to find the top bug predictor. The columns show the various scoring

heuristics. The column titled BwImp corresponds to backwards analysis performed using the Importance

heuristic. BFS’s wide fan-out reveals the top predictor in fewer iterations but instruments many sites.

Other forward heuristics instrument roughly the same number of sites per iteration but differ in the number

of iterations required. flex has a relatively flat CDG due to a large number of switch statements in its

input scanner. This causes significantly many sites to be instrumented per iteration. The best predictor

for bc is very close to the point of failure and hence backward analysis completes quickly. The number

78

of iterations required is in the order of tens for Siemens programs and in the order of hundreds for large

applications, which is not large for wide deployments that generate many feedback reports.

Caveats regarding Instrumentation Selectivity

Two factors in the above discussion are worth further consideration. First, the Importance score assigned

to predicates during adaptive bug isolation will be different from the score computed using non-adaptive

bug isolation. However, as more and more data is collected, the scores assigned by both the approaches

will get close to each other. Even though we stop instrumentation of a predicate at the end of the iteration

in which it was chosen, the fact that we do not use sampling helps. Our technique can gather enough

samples for each predicate quicker than sampled, non-adaptive instrumentation.

Second, the number of iterations needed for finding the top predictor varies anywhere from 18 to 650.

However, consider the number of feedback reports needed to gather sufficient observations of a predicate.

This number will be significantly smaller for non-sampled, adaptive instrumentation as compared to

sampled, non-adaptive instrumentation. Although a gross oversimplification, the intuition is that gathering

sufficient observations of a predicate while sampling at a rate of 1/100 would need a hundred times as many

reports as non-sampled data collection. Hence, the overall time needed by our technique to produce useful

results would roughly be of the same order of magnitude as sampled, non-adaptive instrumentation.

Given that our technique omits monitoring a vast majority of predicates during every run, it is not

possible to improve upon, or even match, the number of feedback reports or time needed for fault localization.

We can, however, match the failure predictors found by non-adaptive instrumentation. The takeaway from

this section of experiments is that, by selecting an appropriate candidate for WaitForSufficientData, we can

perform bug isolation using a reasonable number of feedback reports, while using extremely lightweight

instrumentation (as seen later in section 4.4.4).

4.4.3 Multiple Bugs

If there are multiple bugs in the program, adaptive analysis might exclusively select predicates relevant

to the most relevant bug. Or, it might keep selecting predicates relevant to several different, but equally

79

Table 4.5: Results for exif

Single Instance Parallel

Bug
Number of

Failed Executions Iterations Sites Iterations Sites

libjpeg 228 32 100 41 120
exif-print 180 423 817 26 68

prevalent bugs. Neither is desirable. Infrequent bugs are ignored in the first case, while it takes longer to

find good predictors for any of the bugs in the second case. To handle these pathologies, we propose a

solution similar in spirit to that of the iterative bug isolation algorithm in section 2.3.2. The failed runs in

the feedback reports can be clustered based on the circumstances in which they fail. This requires grouping

failed runs by cause. For crashes, one may use crash stacks or just the crashing program counter to label

failures. The set of failed runs is divided into disjoint sets, each labeled with the failing program counter

or crash stack. Runs with a different label can be ignored while attempting to find good bug predicates for

a particular set of labeled failures. Based on this intuition, multiple instances of procedure 1 are run. Each

instance considers one set of labeled failures, and all the successful runs. This solution avoids both the

pitfalls mentioned above. Deployed programs can be randomly split to collect feedback data for these

multiple instances.

To illustrate how programs with multiple bugs are handled, we return to our exif benchmark. As

mentioned earlier in the chapter, exif contains three known bugs. The bug in the module processing

Canon images was exhibited only once in our test suite of 10,000 runs and, hence, is ignored. One of

the bugs is in the libjpeg module. The other bug is in the printing code in exif. The bugs cause 228

and 180 runs to fail respectively. Table 4.5 shows the number of iterations and predicates instrumented

before which the single-instance and parallel-instance variants of adaptivity find the top bug predictor.

A single instance of procedure 1 finds the top bug predictor for the libjpeg bug in about 32 iterations,

after instrumenting just 100 of 2,631 sites. The best predictor for the exif-print bug is not found

until iteration 423, after instrumenting 817 sites. Manual inspection shows that many sites instrumented

between iterations 32 and 423 relate to the first bug. This affirms that adaptive instrumentation can stall

in the presence of multiple bugs. Per our proposal above, each failed run for exif is labeled based on

80

Table 4.6: Relative performance overheads

Sampling Adaptive

Program 1⁄1 1⁄100 1⁄UINT_MAX Binary TTest BFS

bash 1.315 1.257 1.137 1.857 1.127 1.155
bc 1.172 1.146 1.130 1.271 1.001 1.039
gcc 3.686 2.426 1.651 7.261 1.001 1.036
gzip 3.583 2.012 1.565 3.425 1.021 1.094
exif 1.893 1.975 1.292 6.726 1.003 1.060

Overall 2.076 1.692 1.338 3.305 1.030 1.076

the program counter in which it crashes. We run two separate instances of procedure 1. Each instance

analyzes the failed runs from one labeled-set of failures and all the successful runs. With this parallel

instantiation, the best bug predictor for the first bug is found in 41 iterations and 120 instrumentation sites.

The second bug is caught after 26 iterations and 68 sites. This shows that, while procedure 1 by itself is

not designed for multiple bugs, it can be easily modified to handle them.

4.4.4 Performance Impact

Table 4.3 shows that very few sites are instrumented at any time. We might then expect lower overheads.

We test this hypothesis by measuring the mean overhead for executing the monitoring plans suggested by

the TTest and BFS heuristics. Table 4.6 shows measured overheads relative to 1 for non-instrumented code.

We evaluate performance for bash, bc and exif, whose non-instrumented programs run for approximately

0.25, 4, and 0.01 seconds, respectively. The test suites for other programs, being functionality tests

rather than performance tests, execute for extremely short periods (order of a few milliseconds) and their

performance cannot be reliably measured. For gcc and gzip, we evaluate performance using inputs in the

SPEC benchmark suite. Non-instrumented programs take between 0.5 and 50 seconds on these inputs.

We compare our technique against complete binary instrumentation and the sampling scheme of Liblit

et al. [Lib+05]. We experiment with sampling rates of 1⁄UINT_MAX, 1⁄100, and 1⁄1. A sampling rate of 1⁄UINT_MAX is

the best case for sampling based instrumentation. The execution continues along the fast-path almost all

the time. A rate of 1⁄100 has been suggested by prior work [Lib+03] for public deployments.

81

Adaptive instrumentation is at least an order of magnitude faster than complete binary instrumentation

and significantly faster than all sampling variants. BFS, due to its wide fan-out, has a higher overhead than

TTest. The overhead is minuscule for bc, gcc and gzip, where long running times amortize instrumentation

costs. The mean overheads for adaptive instrumentation is 1.03× for adaptive instrumentation, as opposed

to 1.69× for sampling at a rate of 1⁄100, and 3.31× for complete binary instrumentation. Overheads for

bash and exif are easily affected by measurement noise as even a 0.01 second offset could change

the overhead by at least 4%. If these short-lived programs are excluded, the average overhead for the

remaining programs is 3.2× for complete binary instrumentation, 1.78× for sampling at a rate of 1/100 and

just 1.008× for adaptive instrumentation. An overhead of less than 1% is effectively imperceptible to

an end-user. Sampling, however, imposes an overhead of 1.34× even at its best-case sampling rate of

1⁄UINT_MAX. Selective instrumentation, if applied by a static instrumentor, can achieve order-of-magnitude

improvements over sampling. But, as mentioned earlier, enacting new plans would require distributing

executable patches: an impractically resource-intensive proposition.

4.4.5 Comparison with Holmes

The Holmes project by Chilimbi et al. [Chi+09] introduces two orthogonal concepts: path-based instru-

mentation and adaptive predicate selection. It introduces a new predicate scheme that counts the number of

times each path is taken in an acyclic region. The adaptation step of Holmes proceeds as follows: based on

partial feedback data, weak predictors are selected, and functions close to them in the program-dependence

graph are chosen. Predicates in these functions are instrumented during the next iteration. In this chapter,

we develop and evaluate a heuristic search at a much finer granularity. Holmes also strengthens weak

predictors by selecting path predicates in functions containing weak branch predicates. This strengthening

is orthogonal to the heuristic searches proposed here or in Holmes.

In this section, we compare our technique with the adaptive component of Holmes. We do not

consider path predicates for two reasons. First, our binary and source instrumentors do not yet support

the preferential path profiling technique [Vas+07] used to efficiently implement path predicates. Second,

Holmes’s use of path predicates is orthogonal to adaptivity, and could be added to our system in the same

82

manner.

Holmes defines Vicinity used in procedure 1 at the granularity of entire functions. Holmes finds weak

predictors instrumented in earlier iterations, defined as predicates with Importance scores between 0.5

and 0.75. It selects functions close to these predictors in the PDG, and instruments all predicates in these

neighboring functions in the next iteration.

Weak predictors can be quite sparse. Because Holmes explores only near weak predictors, this creates

a risk that it can get stuck with no new sites available to explore. In our experiments, this was the case

in 46 of the 130 Siemens experiments and 61 of the 97 larger experiments. In 111 of the remaining 120

experiments in which Holmes finds the top predictor, the sparsity of weak predictors is side-stepped

because the top predictor is so close to the point of failure that it is instrumented in the very first iteration.

While the definition of weak predictors seems to be the impediment here, if we remove that restriction

and define Vicinity to explore near all predictors, then Holmes reduces to doing a breadth-first search on

the call graph, which is a coarser version of the BFS heuristic evaluated earlier. Our approach cannot get

stuck, as noted in section 4.3.4.

In general, exploring at the granularity of functions is coarser than BFS. Hence, more sites will be

instrumented per iteration, imposing more overhead, but requiring fewer iterations. Our approach is

more flexible, allowing trade-offs between overhead and the number of iterations. We do not present a

direct performance comparison because Holmes performs only trivial (single-iteration) explorations of all

programs in table 4.6.

4.5 Summary

Post-deployment bug hunting is a search for a needle in a haystack. Monitoring strategies that cannot

respond to feedback incur large overheads and waste considerable computational resources. In this

chapter, we have developed an adaptive post-deployment monitoring system using statistical analysis,

static program structure, and binary instrumentation. Of several search heuristics considered, one (TTest)

consistently performs well in the forward direction while another (Importance) shows promise when

working backward from known points of failure. We find that this technique achieves the same results as

83

an existing statistical method while monitoring, on average, just 40% of potential instrumentation sites in

the programs we considered. Performance measurements show that our technique imposes an average

performance overhead of less than 1% for a class of large applications as opposed to 69% for realistic

sampling-based instrumentation. Monitoring overheads are so small as to be nearly immeasurable, making

our adaptive approach practical for wide deployment.

84

Chapter 5

Identifying Failure-inducing Changes

In this chapter, we develop an application that uses the data collected by CBI to help debugging in the

context of evolutionary software development. In this context, multiple changes have been made to a

program, and some of them could be failure-inducing. Associating failing locations of the program with

source-level changes could be useful to the programmer while debugging. Bug predictors produced by

statistical analysis can also be associated with source-level changes. The source-level change identifies a

potential root-cause of failure and the bug predictor captures the effect of the root-cause that is symptomatic

of failure. This association between source-level changes and bug predictors is potentially more useful than

each piece of information by itself. Identifying failure-inducing changes is an useful aid while debugging.

To associate failing locations and bug predictors with source-level changes, we can use techniques for

change impact analysis [Arn96]. Change impact analysis studies the problem of identifying the components

of a program that are potentially impacted by a change to a program. A change is considered to impact

a component if for some input to the program, making the change to the program changes the behavior

[Hor+88] of the component. Typically, software developers use change impact analysis to understand the

impact of modifications, find related parts that also need to be changed, or select test cases that should be

re-run to test some change. A wide variety of change impact analyses have been developed to compute

impact sets at various granularities: statements [Bin97; Hut+94], functions [Api+05; Kun+94; Ren+04],

or files [Yin+04]. Some analyses are entirely static [Bin97; Yin+04], while others use dynamic traces

85

[Api+05; Hut+94; Kun+94; Ren+04].

Traditionally, the output of a change impact analysis is a Boolean decision on whether a particular

program point is impacted. The impact sets found by these techniques could be used to associate bug

predictors or failing locations with source-level changes. If the bug predictor or failing location of interest

is in the set of impacted locations corresponding to exactly one source-level change, then we can make an

association between the location of interest and the source-level change. We performed this association

using forward slicing as our impact analysis technique: a program point p is considered to be impacted by

a change made at a program point c if and only if p is in the forward slice from c. The exact details of

this experiment are presented in section 5.3.3. We found that almost all of the bug predictors and failure

locations were in the forward slice from multiple changes. Hence, this classification was not very useful

for associating bug predictors and failure locations with source-level changes.

Instead of a Boolean decision on whether a program point is impacted, we propose to quantify the

impact of the change on each program point as a more nuanced, probabilistic value. We approximate

the likelihood of a change impacting a program location p using the probability that p executes after

the change. The intuition behind this approximation is that a change c can impact a location p only if p

executes after c. So we hypothesize that the probability that p executes after c is a reasonable measure of

the likelihood of c impacting p. We then associate a bug predictor or a failing location with the change

that has the highest probability of impacting it. This is only a heuristic for associating bug predictors and

failing locations with the "responsible" source-level changes. But, as discussed in section 5.3, we find that

this works well in practice.

For a given changed location c, we define a conditional coverage profile that contains the probability

that any location in the program executes after c. In this chapter, we develop a technique to estimate the

conditional coverage profile using branch and call-graph profiles. In profile-guided optimization, a simple

coverage profile may refer either to the frequency of execution of statements (and paths) or to the edge

profiles of function-call and conditional statements. Edge profiles can be used to compute the probability

that any program point executes during a typical execution of the program. It is usually approximated by

running the program on a test suite. Here, we define a conditional coverage profile of a program and a

86

changed location. We use “conditional” in the sense of conditional probability: the likelihood of some

event, conditioned on a related event. Specifically, a conditional coverage profile for a change c represents

the probability that any program point executes after the first execution of c. Such a profile can be used to

model the propagation of the impact of a code change.

The value assigned to each program point is the probability that it executes after the first execution of

the change c. This quantity can be exactly computed for a given program run using direct instrumentation.

We can instrument the program to start collecting branch and call-graph profiles after the first execution

of the c. This is simple enough, but scales badly for multiple changes. For that level of flexibility, we

would need multiple instrumented copies of the program, one for each change c, since we only want to

start profiling after c executes. In CBI’s regime of post-deployment monitoring, this would translate to

a long delay between picking a change c, distributing new binaries, collecting sufficient feedback data,

and finally computing the conditional coverage profile. Obviously this is impractical, especially in the

extreme case where every program point can be changed. Instead, we propose to use branch and call-graph

coverage profiles to approximate the value of a conditional coverage profile. As with all dynamic analyses,

poor test suites can yield poor conclusions. However, if the test suite is good, our dynamically-informed

approach may give richer guidance than a purely static analysis.

The rest of this chapter is organized as follows. Section 5.1 explains our technique to estimate

conditional coverage profiles using branch and call-graph profiles. Section 5.2 describes our experimental

setup and presents the time taken for data collection and computation of conditional coverage profiles.

Section 5.3 presents and evaluates our technique to associate bug predictors and failing locations with

source-level changes.

5.1 Conditional Coverage Estimation

The goal here is to assign a numeric value to each node in a program that captures the likelihood that a

source node impacts the line. We formalize this notion in this section.

Definition 6. Let s be a changed node in the inter-procedural control-flow graph (ICFG). The conditional

coverage profile associates each node n n in the ICFG with the value ψn, which is the probability that n is

87

executed at least once after the first time the control flow reaches s. “After” here is non-strict: s is always

considered to execute after itself, even if reached just once.

This is a well-defined quantity for a given set of runs, which can be calculated by instrumenting the

program. The program can be instrumented to start collecting a coverage profile after the first execution of

the source node s. As with any coverage information, depending on the quality of the test suite, inferences

based on the conditional coverage profile can be applied to general program behavior. However, this

approach increases the instrumentation overhead linearly with respect to the number of points of interest for

which the profile is computed. Instead, we propose to estimate this value from the whole-program coverage

profile. Collecting the whole-program coverage profile is a one-time task that can be accomplished

efficiently using CBI’s sampling-based instrumentor. Of course, this estimate can be imprecise for several

reasons. We discuss the sources of imprecision in section 5.1.5

5.1.1 Basic Definitions

Let en denote the event that node n executes after the first execution of the source node. Also, for an edge

from node m to node n in the control-flow graph, let em−n denote the event that the edge is traversed after

the first execution of the source node. The union of edge events a and b occurs when either event a or b

occurs after the first execution of the source node. The intersection of events a and b occurs when both a

and b occur after the first execution of the source node. We use the standard notation P(·) to denote the

probability of an event. Then, ψn = P(en). Then, the probability of the event em−n can be expressed as

follows:

P(em−n) =


bm−n×P(em) if m is a branch node

P(em) otherwise
(5.1)

where bm−n is the fraction of times that control flows to n after control reaches m. So, if succ(m) denotes

the successors of m in the control-flow graph, then ∑
n∈succ(m)

bm−n = 1. The case in Equation (5.1) where the

predecessor m is a branch node conservatively assumes that m executes only once after the first execution

of the source node. This conservative assumption can lead to under-approximations when m executes

more than once. For example, consider executions where m executes exactly twice after the first execution

88

of s during every execution. The probability that the edge m−n is not taken during one execution of the

branch statement at m is 1−bm−n. The probability that the edge m−n is not taken during both of the

executions of m is equal to (1−bm−n)
2. Then, the probability that the edge m−n executes at least once

is 1− (1−bm−n)
2 = bm−n× (2−bm−n). This is greater than the value, bm−n, that would be assigned by

equation (5.1). Such under-approximations can be avoided if we keep track of fine-grained probabilities

such as:

P(m executes exactly k times after the first execution of s) for k = 0, 1, 2,…

Such fine-grained estimations will complicate the comparison operations needed later in this chapter.

Instead, we use the under-approximation in equation (5.1).

Let pred(n) denote the predecessors of node n in the control-flow graph. Then, the probability that n

executes after the first execution of the source s is defined recursively as follows:

ψs = 1 (5.2)

ψn = P(en) = P

 ⋃
m∈pred(n)

em−n

 (5.3)

Equation (5.2) is the base case: s always executes (non-strictly) after itself. For any other node n,

execution reaches n after the first execution of s when any of the in-edges of n in the control-flow graph is

executed after s. Thus, the probability of the event en is the probability of the union of events em−n for all

CFG predecessors m of n.

If n has only two predecessors v and w, then ψn simplifies to

ψn = P(ev−n∪ ew−n) (5.4)

= P(ev−n)+P(ew−n)−P(ev−n∩ ew−n) (5.5)

89

5.1.2 Estimating Co-occurrence of Nodes

The term P(ev−n∩ ew−n) in equation (5.5) can be measured by direct instrumentation. In this section, we

explain how we can estimate this quantity instead, thereby avoiding the cost of instrumentation. If we can

show that the executions of v and w are mutually exclusive, then P(ev−n∩ ew−n) = 0 and equation (5.5)

simplifies to

ψn = P(ev−n)+P(ew−n)

For the general case where execution of the edges in pred(n) are all mutually,

ψn = ∑
m∈pred(n)

P(em−n)

However, if the execution of the edges is not mutually exclusive, we can only estimate a lower bound

on P(ev−n ∪ ew−n). Suppose, P(ev−n) < P(ew−n), that is, the edge w− n has a higher probability of

execution after the source than v− n. The conservative assumption while estimating the lower bound

for P(ev−n ∪ ew−n) would be that the event ev−n occurs only when ew−n also occurs. In this case, the

probability of the intersection of the two events is the probability of the rarer event, i.e. P(ev−n). From

equation (5.5), the probability of the union of the two events reduces to P(ew−n). More generally,

P(ev−n∩ ew−n)≤min(P(ev−n),P(ew−n))

ψn = P(ev−n∪ ew−n)≥max(P(ev−n),P(ew−n))

We approximate ψn using the lower bound above:

ψn ≈max(P(ev−n),P(ew−n)) (5.6)

A predecessor m of a node n falls into one of two categories depending on whether the edge m−n

is a back edge. Let f _pred(n) be the set of predecessors m ∈ pred(n) such that the edge m− n is a

forward edge. Let b_pred(n) be the set of predecessors m ∈ pred(n) such that m−n is a back edge, i.e.

b_pred(n) = pred(n) \ f _pred(n). For the forward edges reaching a node n, only one of them can be

90

executed during one execution of the acyclic region. As explained in the discussion about equation (5.1),

we are unable to distinguish among cases where nodes execute more than once. So, we conservatively

assume that they execute only once. In this case, the forward edges execute mutually exclusively of each

other. Likewise, the back edges reaching n execute mutually exclusively of each other. However, a forward

edge reaching n is not mutually exclusive of a back edge reaching n. So, we can merge the forward and

back edges as a unified edge, and compute ψ
f

n and ψb
n , respectively the probabilities that the execution

reaches n via forward and back edges respectively. Using the same reasoning while deriving equation (5.6),

the best estimate of ψn is the maximum of ψ
f

n and ψb
n .

ψ
f

n = P(
⋃

t∈ f _pred(n)

et−n) = ∑
t∈ f _pred(n)

P(et−n) (5.7)

ψ
b
n = P(

⋃
t∈b_pred(n)

et−n) = ∑
t∈b_pred(n)

P(et−n) (5.8)

ψn ≈max(ψ f
n ,ψ

b
n) (5.9)

In a reducible control graph, back-edges of a loop execute in a subset of the executions that reach the

loop header. In a general coverage profile that is not conditioned on the prior execution of another node,

the probability of the execution reaching n via the forward edges is always greater than the probability of

the execution reaching n via the back edges: ψ
f

n > ψb
n . This will not hold true in conditional coverage

profiles. If the source node of the conditional coverage profile is in the loop body, or in a function called

from the loop body, the probability of the execution reaching n via back edges may be greater than the

probability of the execution reaching n via forward edges.

For irreducible control-flow graphs, it is not possible to divide the control-flow edges into a disjoint

set of forward and back edges. In the case of irreducible CFGs, we have to assume that none of the

predecessors are mutually exclusive, and use the highest probability along an incoming edge as the best

estimate. That is,

ψn ≈ max
t∈pred(n)

(P(et−n))

This situation does not arise in any of our experiments.

91

p

q r

s

t u

T F

T F

Figure 5.1: Example control-flow graph fragment

To recap the concepts introduced so far, consider the CFG fragment in fig. 5.1. There are two branch

nodes, p and s. The probabilities of their children are obtained using the branch profiles as follows:

ψq = P(ep−q) = bp−q×ψp ψt = P(es−t) = bs−t ×ψs

ψr = P(ep−r) = bp−r×ψp ψu = P(es−u) = bs−u×ψs

The node s has three predecessors: q, r, and t. The edges q− s and r− s are forward edges, while t− s is a

back edge. Using the derivation for the multiple-predecessor scenario above,

ψ
f

s = P(eq−s∪ er−s) = P(eq−s)+P(er−s)

= P(eq)+P(es) = ψq +ψs

ψ
b
s = P(et−s) = ψt

ψ(s)≈max(ψ f
s ,ψ

b
s)

= max(ψq +ψr,ψt)

As mentioned earlier, which of ψ
f

s , ψb
s is greater depends on the source node used for the conditional

coverage profile. If t, or a node in a function called from t, is the source, the probability that the edge t− s

is taken after the first execution of the source will be higher than the combined probability that edges q− s

and r− s are taken.

92

In this section, we define ψn for a node n in terms of the value of its predecessors, except for the base

case in equation (5.2). These definitions are independent of the choice of the source node of the conditional

coverage profile. They are statically defined based on the structure of the ICFG. The conditional coverage

profile for a chosen source node s is computed by adding equation (5.2) and simplifying the equations.

For completeness, ψe is set to 0, where e is the program entry node. This is done to derive values for

nodes that are not in the control-flow closure from the source node, and hence have a value of 0 in the

conditional-coverage profile.

5.1.3 Handling Function Calls

Two issues arise while extending our estimation of conditional coverage profiles across procedures. First,

execution probabilities have to be propagated from the function with the source node transitively to all

possible callers of that function. The rest of this section addresses this first issue. The second issue,

recursion, is addressed in section 5.1.4.

To understand the first issue, consider the procedure f that contains the source node s. After the first

execution of the source node s, execution continues along other statements in f , eventually returning to

one of f ’s callers. We use call-graph profiles to compute the fraction of executions that return to each

caller. Our representation of the inter-procedural control-flow graph has a return node associated with

each function call node. Let caller(f) be the set of nodes that call f . For a node n in caller(f), let nr be

the associated return node. For a node n ∈ caller(f), let cn− f be the fraction of calls to f that arise from

the call statement at n. Then the fraction of executions that execute s before returning from f to n is

P(nr) = P(s)× cn− f (5.10)

The above equation initializes P(nr) rather than P(n) to capture the control flowing to the return node

rather than the function call node. Each node nr is now transitively considered a source node, and the above

definition is re-applied in that context. The values cn− f are computed by extending the CBI instrumentor

to collect call-graph profiles. For a node n ∈ caller(f), let en− f be the number of times the call edge from

n to f is observed across all executions in the test suite. Then, cn− f is obtained by normalizing en− f over

93

all callers of f .

cn− f =
en− f

∑
k∈caller(f)

ek− f
(5.11)

The instrumentation to profile call edges is integrated with the existing sampling framework. Sampling

helps us reduce the overhead of data collection. When sampling is enabled, the execution counts of call

edges are a fair random sample of actual calls invoked. Since we normalize the counts collected using

sampling, the computed call-graph profiles get closer in accuracy to the true profiles as data accumulates

from more runs. We also instrument indirect function calls while collecting call-graph profiles. We use a

points-to analysis to identify all possible callees at each indirect call.

5.1.4 Recursion and Loops

So far in this section, we have been defining the conditional coverage profile ψn for a node n in terms

of the corresponding values of its predecessor nodes. These definitions are circular in the presence of

recursion and loops. At the sources of such circularity (recursive calls and loop headers), symbolic values

are introduced. We have built a symbolic expression utility that can handle linear symbolic expressions,

implements addition of two expressions, addition and multiplication by a scalar, and comparison. We use

a linear-algebra solver to solve the set of linear constraints. Comparison is required for the max operation

used in equation (5.6). Consider two symbolic expression A and B. Since the value of each symbolic term

is non-negative, A≥ B if each term in A has an equal or higher coefficient than the corresponding term

in B. For instance, A = 0.5x+0.9y is greater than B = 0.5x+0.2y. On the other hand, 0.5x+1.0 is not

comparable with 0.9y+0.8. When two expressions are incomparable, we use two techniques. First, we

aggressively try to evaluate all expressions any time a comparison is performed. This might simplify one

or both the expressions, making comparison possible. Secondly, when unable to evaluate both arguments

of the comparison, we return the expression with the highest coefficient among all its terms. This is just a

heuristic, and is another source of imprecision in our analysis.

To illustrate the concepts listed here, consider the control-flow graph in fig. 5.2. This corresponds to a

simple program that computes the integral part of the square root of an integer. The most interesting section

of the CFG is the while loop in function sqrt that increments an iterator variable r until r × r exceeds

94

n0: main()

n1: read n

n2: if(n > 0)

n3: print ‘‘error’’ n4: s = sqrt(n)

n5: sqrt return

n6: print s

n7: return

n8: sqrt(x)

n9: r = 0

n10: r = r + 1

n11: if(r × r ≤ x)

n12: return r - 1

F T

F

T

Figure 5.2: Control-flow graph for a simple square root computation

the input parameter. The node n5 represents the point in main to which execution returns after completing

the call to sqrt that started at node n4 The equations governing all conditional coverage profiles for this

code are listed in fig. 5.3. Figure 5.4 shows the conditional coverage profile when node n1 is the source.

This is achieved by setting ψn1 to 1, ψn0 to 0 and simplifying the equations in fig. 5.3. One non-trivial

simplification in fig. 5.4 is the application of the max operator for ψn10 . Since the two expressions are not

directly comparable, we fall-back on the heuristic of picking the expression with the highest coefficient

among its terms. Here, the heuristic selects bn2−n4 since the other option would lead to ψn10 being assigned

bn11−n10 ×ψn10 and consequently, 0. Figure 5.5 shows the conditional coverage profile when n11 is the

source. This is obtained by adding the equations ψn11 = 1 and ψn0 = 0. Per the interprocedural step in

section 5.1.3, we also add ψn5 = 1 since n5 is the return node corresponding to the function call at n4.

95

ψn2 = ψn1 = ψn0 ψn9 = ψn8 = ψn4

ψn3 = bn2−n3×ψn2 ψn10 ≈max(ψn9 ,bn11−n10×ψn11)
ψn4 = bn2−n4×ψn2 ψn11 = ψn10

ψn6 = ψn5 = ψn4 ψn12 = bn11−n12×ψn11

ψn7 = ψn3 +ψn6

Figure 5.3: General equations for conditional coverage profile for the CFG in fig. 5.2

ψn2 = ψn1 = 1 ψn9 = ψn8 = bn2−n4

ψn3 = bn2−n3 ψn10 ≈max(bn2−n4 ,bn11−n10×ψn10)
ψn4 = bn2−n4×ψn2 ≈ bn2−n4

= bn2−n4 ψn11 = ψn10

ψn6 = ψn5 = bn2−n4 ≈ bn2−n4

ψn7 = ψn3 +ψn6 = 1 ψn12 = bn11−n12×ψn11

≈ bn11−n12×bn2−n4

Figure 5.4: Conditional coverage profile from node n1 for the CFG in fig. 5.2

ψn2 = ψn1 = ψn0 = 0 ψn9 = ψn8 = 0

ψn3 = bn2−n3×0 = 0 ψn10 ≈max(0,bn11−n10×1) = bn11−n10

ψn4 = bn2−n4×0 = 0 ψn11 = 1

ψn6 = ψn5 = 1 ψn12 = bn11−n12×ψn11

ψn7 = ψn3 +ψn6 = 1 = bn11−n12

Figure 5.5: Conditional coverage profile from node n11 for the CFG in fig. 5.2

96

5.1.5 Sources of Imprecision

The sources of imprecision in our estimation of conditional coverage profiles can be classified broadly

into two kinds. The first kind arises due to the restrictions imposed by our problem definition. We assume

that control-flow profiles are computed with a composite set of changes enabled. If we instead have the

ability to enable each change individually, we can calculate the conditional coverage profile more precisely.

Moreover, the behavior of branches before and after the first execution of the source node can be different.

We also lose context sensitivity and path sensitivity by using branch profiles instead of path profiles. The

value for ψn12 in fig. 5.5 shows another reason why using branch profiles are imprecise. While node

n12 always executes after the first execution of n11 in a terminating execution, we only assign a value of

bn11−n12 to ψn12 . This can be solved by using a different definition of branch profiles. If we define b′n11−n12

as the fraction of runs in which the edge n11−n12 is taken, it will have a value 1 since this edge is always

crossed in terminating executions. However, this definition does not work well when run-time data is

sampled rather than being collected exactly and completely. Since the edge is taken only once during each

execution of the while loop, it is unlikely to be observed during sparse random sampling. Since we need

sampling to ensure low overheads, we stick to our original definition of branch profiles.

The second broad class of imprecisions arises from our goal to reduce the performance overhead

needed to collect these profiles. Any or all of this second class of imprecisions can be eliminated in

exchange for higher overheads. We use sampling to collect a fair random sample of the branch profiles.

We can compute P(ev−n∩ew−n) used in equation (5.5) directly by instrumentation, but the instrumentation

overhead imposed will be high. This may be preferred during in-house testing, when accuracy trumps

speed. Our current implementation allows only elimination of sampling imprecision.

5.1.6 Change Impact Analysis

When a change is made to a program, it may also negatively impact whether a node executes after a change.

Before a proposed change is made to a node s, a node can have a high probability in the coverage profile

from s. The same node may have a low probability in the coverage profile after the proposed change is

made. This can happen due to changes in the branch profiles of conditional statements that are transitively

97

1 a = 2;
2 b = 2;
3 if (a == 2) {
4 b = 6;
5 goto ret; /* deleted code */
6 }
7 b = 4;
8 ret: print(b);

(a) Code snippet

entry

1 2 3

4 5 7

8

(b) CDG with line 5

entry

1 2 3

4

7 8

(c) CDG without line 5

Figure 5.6: Example illustrating change impact analysis

dependent on the changed node. We also consider such a reduction in the probability of execution as an

impact. Therefore, when we use conditional coverage profiles to capture the effect of a change on a node

in the program, we set the probability of impact as the maximum of the conditional coverage from the

changed nodes in the old and new versions.

Similarly, when using slicing for change impact analysis, both the old and the new versions must be

considered to handle code deletions. To illustrate this case, consider the code snippet in fig. 5.6a and

corresponding control-dependence graph in fig. 5.6b. Lines 1, 2, 3 and 8 are always executed, and hence

dependent on the entry node. Lines 4 and 5 execute only when the branch condition at line 3 is true. Line 7

executes only when the branch condition at line 3 is false. Thus, lines 4, 5 and 7 are control-dependent on

line 3. Moreover, there is a control-dependence edge from line 5 to line 7 because the execution of line 5

prevents execution of line 7. Consider the atomic change of removing line 5 from the snippet. Figure 5.6c

shows the control-dependence graph of the new version, after the change is applied. The dependency from

line 5 to line 7 does not exist in the new control-dependence graph because the node corresponding to

98

Table 5.1: Bug benchmarks used in experiments

Size

Program Lines of Code Test Cases Change Count

flex v1 14,725 567 6
flex v2 15,265 567 4
flex v3 15,303 567 3
flex v4 16,967 567 3
flex v5 15,367 567 2

grep v1 14,775 809 3
grep v2 15,489 809 3
grep v3 15,676 809 3
grep v4 15,721 809 3

gzip v1 7,348 217 3
gzip v2 8,014 217 2
gzip v5 8,960 217 3

sed v2 13,177 365 4
sed v3 11,229 365 4
sed v5 18,063 365 4
sed v7 19,774 365 3

line 5 does not exist in the new CDG. Thus, line 7 is not in the static slice from the set of changed nodes

because the set of changed nodes is empty in this case. However, consider a scalar-pairs predicate defined

on line 7 that compares the old value of variable b with the new value of b. It will change its behavior in

the set of runs where the true branch is taken on line 3. In order to compute these missing dependences,

we compute the slices separately in the two versions. A predicate is considered impacted by the change if

it is in the slice from either the old version or the new version.

5.2 Experimental Setup

Before describing our main application of conditional coverage profiles, which is associating bug predictors

and failing locations with source-level changes, we briefly describe our experimental setup. We use the

following bug benchmarks obtained from the Software-artifact Infrastructure Repository [Rot+06], all

written in C: flex, grep, gzip, and sed. There are multiple versions of these benchmarks and each

99

Table 5.2: Overhead of data collection and time for analysis

Overhead Analysis Time (in sec)

Time per Test Building Conditional
Application Case (in ms) Base Extended Graphs Coverage

flex 2.95 1.42 1.43 34 4
grep 2.75 1.44 1.43 565 7
gzip 4.98 1.41 1.41 154 6
sed 2.06 1.61 1.62 478 5

Overall 2.78 1.46 1.47 100 5

version has multiple changes. Each change is a sequence of straight-line code that is deleted, added, or

modified. The changes can be enabled individually and independently of each other. The benchmarks also

have associated test suites. The changes cause some of the test cases in the suite to fail. Like experiments

in earlier chapters, we consider an abnormal exit or a difference in the output printed by the program

as a failure. Since statistical debugging algorithms usually require a sizable sample of failed runs to be

effective, we retain only those changes that have more than five failing test inputs for experiments in

section 5.3. Table 5.1 lists the various versions of the test subjects, their size (LOC), the size of their test

suite, and the number of changes that cause more than five test cases to fail. In all, 53 distinct variants are

used for fault-localization experiments.

For each change, we identify its corresponding nodes in the ICFG as follows. We use the diff utility

program to compare the source code for the faulty and reference variants of each program. We collect the

first line in each contiguous sequence of lines in the textual difference. The program nodes that are defined

in these locations are considered as the changed nodes for computing conditional coverage profiles.

5.2.1 Performance

In this section, we measure the performance impact of our extensions to the CBI instrumentor. The

feedback reports for experiments in this chapter are collected by enabling branches, returns, and scalar-

pairs instrumentation schemes. Prior work has shown how these can be implemented with very low

overhead using sparse sampling [Lib+03] and adaptive instrumentation (chapter 4). We extend the CBI

100

instrumentor to collect detailed runtime profiles. In addition to branch profiles collected as a part of the

branch instrumentation scheme, profiles of switch statements are collected. For use in the interprocedural

scenario in section 5.1.3, profiles of function-call edges, including indirect calls, are collected. This

extended instrumentation is integrated with the sampling framework of the instrumentor: sparse random

call-graph profiles and switch-statement profiles are collected when sampling is enabled. Table 5.2 shows

the execution overheads for our test subjects. The average execution time across all applications is 2.78ms

per test case. The extended instrumentor, that collects call-graph and switch profiles, imposes between

1.41× and 1.62× overheads. The extra overhead imposed by our extended instrumentor, as compared to

the base instrumentor, is negligible. The base instrumentor imposes an average overhead of 1.46×. The

high value is partially due to the low running time of each test case.

Table 5.2 also shows the time taken to compute conditional coverage profiles. It takes between 34

seconds and 10 minutes to build the call graph and control-flow graphs, and resolve indirect function calls

using CodeSurfer [Gra06]. The bulk of this time is spent performing pointer analysis to resolve indirect

calls. This task is not in the critical path because it uses only the program source. The computation of

conditional coverage profile takes between 4 and 7 seconds per changed location. This time includes the

construction of the basic equations from the static structure of the ICFG, and simplifying the equations.

5.3 Isolating Failure-inducing Changes

We now describe and evaluate our main application of conditional coverage profiles: augmenting the

output of CBI by associating each bug predictor and failing location with a source-level change. Consider

two consecutive versions of an application, and suppose c1,c2, . . . ,cm are the changes made to the old

version of the program to obtain the new version. For each node associated with a bug predictor and

each node associated with a failing location, we wish to find the atomic change that is the most likely to

impact this node. To do this, we choose the change such that the node has a higher value in the conditional

coverage profile from this change than the profiles from all other changes. Although m may be large, the

technique of section 5.1 allows us to compute m approximate coverage profiles from one set of runs with

just one instrumented executable.

101

We extend the notation used to represent the conditional coverage profiles to include the location of

the changed node.

Definition 7. Given a set of atomic changes {c1,c2, . . . ,cm} in the program, let ψ i
n denote the probability

that the node n executes after the first execution of any of the source nodes corresponding to the atomic

change ci.

For a node n, we find the atomic change after which n is most likely to execute. We identify change(n),

the change most likely to impact n as follows:

change(n) = ci such that ψ
i
n > ψ

j
n ∀ j 6= i (5.12)

In some cases, ψ i
n might have the same maximal value for more than one value of i. This can arise for two

reasons. First, the nodes corresponding to multiple atomic changes may be close to each other in the PDG.

Thus, the values in the conditional coverage profile may be the same for these atomic changes. Second,

nodes that are close to the main function of the program have a high probability of execution in any run

and thus the values in the conditional coverage profile may be the same for all changes. For nodes where

such a tie occurs, we do not associate any change with them. Therefore, our evaluation in this section

considers both the precision and recall of our technique.

5.3.1 Associating Changes with Predictors

Suppose p is a bug predictor found by statistical debugging. Let node(p) be the node corresponding to

predictor p. We select this node arbitrarily from among the program nodes defined in the same source line

as the predictor. A preprocessing step in our instrumentor rewrites the program so that each line performs

only one significant operation. This ensures that all the nodes in a source line have the same values in the

conditional coverage profile. We classify change(node(p)) as the most likely cause of the bug predicted

by p.

To evaluate this classification, we use the retained changes for each test subject listed in table 5.1.

For ground truth, we enable each change ci separately, and associate the bug predictors identified by

102

0.0 0.2 0.4 0.6 0.8 1.0
Precision of Change Isolation

0.0

0.2

0.4

0.6

0.8

1.0
R

e
ca

ll
o
f

C
h
a
n
g
e
 I
so

la
ti

o
n

flex v1

flex v2

flex v3

grep v1

grep v2

gzip v1

gzip v5

sed v2

sed v3

sed v5

flex v4
flex v5
grep v3
grep v4

gzip v2
sed v7

Figure 5.7: Precision and recall of associating failure-inducing changes with bug predictors

the iterative bug isolation algorithm described in chapter 2 (section 2.3.2) with ci. We then enable all

changes and collect feedback reports from this composite version. We calculate the conditional coverage

profile from the different changes using branch profiles obtained from the feedback reports. We apply our

change-isolation technique mentioned above to associate each bug predictor for the composite version

with a change. (We find that the list of bug predictors found in the composite version includes only the

bug predictors found in the versions with each individual change enabled). We evaluate this association by

comparing it to the ground truth. As mentioned earlier, there are two criteria in this evaluation. First is the

precision of our association: the fraction of predictors that are associated with the correct change. Since

we do not associate any change when there are ties in the conditional coverage values, we also evaluate

the recall: the fraction of total predictors that are associated with some change (irrespective of whether it

is right or wrong). Figure 5.7 shows a scatter plot of the precision and recall of our technique. Each point

in the plot corresponds to one test subject, except for two groups of overlapping points at (0,0) and (1,1).

Our technique has a precision of at least 50% for eleven of the sixteen test subjects. For ten of these

subjects, the precision is at least 75%. Recall is 0 (and precision is undefined) for four test subjects. They

103

0.0 0.2 0.4 0.6 0.8 1.0
Precision of Change Isolation

0.0

0.2

0.4

0.6

0.8

1.0
R

e
ca

ll
o
f

C
h
a
n
g
e
 I
so

la
ti

o
n

flex v1

flex v3

flex v4

grep v1

grep v2

grep v3

gzip v1

gzip v5

sed v5

flex v5
gzip v2
sed v3

grep v4
sed v2

flex v2
sed v7

Figure 5.8: Precision and recall of associating failure-inducing changes with failing locations

are shown at (0,0) in the scatter plot. The recall of our technique varies from 0% to 100%, with an average

of 55%. The common symptom in the cases having low recall and/or precision is the same as the reason

for ties in the values of conditional coverage. Either the atomic changes are indistinguishably close to each

other or the predictors are sufficiently close to main to have tied conditional coverage values from multiple

changes or a higher value in the conditional coverage from an irrelevant change. However, the average

precision of our technique is 89%. For the proposed usage scenario, this high precision is preferable rather

than increasing recall at the cost of precision.

5.3.2 Associating Changes with Failing Locations

Crash stacks, or just the crashing locations, may sometimes be available as part of the feedback reports.

CBI uses only the labels (success or failure) associated with feedback reports for statistical analysis.

However, when failed locations are available, we can use equation (5.12) to find the change that is most

likely to impact these locations. In our experiments, multiple test cases may fail at the same location.

Such failing locations are counted just once in our evaluation.

104

Since most of our test programs fail by producing incorrect output, we use the output tracer used in

section 4.4 to find the first location where a wrong byte is output. The ground truth is obtained by enabling

each change individually, and finding the failing locations. Failures at these locations in the composite

version are attributed to this change. We run the composite version with output tracing to find failing

locations. (Again, we find that the set of failing locations of the composite version is the same as the

union of the failing locations found in the versions with each individual change enabled). We then use

equation (5.12) to associate a change with each such location.

Figure 5.8 plots the precision and recall of this classification. Each point corresponds to one test

subject, except for three groups of overlapping points at (0,0), (1,0.33), and (1,1). This classification

has a precision of at least 50% for ten of the sixteen subjects. For seven of these subjects, the precision

is at least 90%. The cases having low recall and precision reveal an interesting dual to the situations

encountered in the previous subsection. Most of the failing locations that are not classified or are wrongly

classified are located in utility routines that print the program’s output. Such functions, because they

are called from several locations, have high values in the conditional coverage profiles of several atomic

changes. This leads to to tied values or incorrect classification. This is similar to the pathological cases in

the previous section, where predictors closer to main are not classified or had incorrect classifications.

The average precision and recall of this classification are 88% and 78%, respectively. This average

recall and precision are not close to the centroid of the points in fig. 5.8. This is because each subject

has different numbers of failing locations. The average precision and recall mentioned above are overall

averages rather than an average of averages.

5.3.3 Association using Forward Slices

Forward slicing computes a safe over-approximation of the set of program nodes that may be impacted by

a changed node. A forward slice can be used to perform a classification similar to equation (5.12). A node

is either present in the forward slice from a changed node or not present. If a bug predictor or a failing

location is in the forward slice from exactly one change, we can associate the bug predictor or failing

location with that change. If a bug predictor or a failing location is in the forward slice from multiple

105

changes, we cannot decisively make a association.

The advantage of using forward slicing is the absence of false negatives in the result of impact analysis.

Hence, if a bug predictor or a failing location is associated with a change, that association is likely to be

correct. The disadvantage of using slicing is that slices can be very large (up to 62% [BH03]), reducing the

likelihood that a bug predictor or failing location is in the forward slice of just one change. This is confirmed

by our experiments. For our test subjects, we used impact-analysis results from forward slicing to associate

bug predictors and failing locations with changes. The precision of this classification is 100%. However, a

majority of the bug predictors and failing locations are in the forward slices from multiple changes, and

hence are not associated with any change. The recall is 3% for bug predictors and 1% for classifying

failing locations. As opposed to the Boolean likelihood of impact computed using forward slicing, the

fine-grained likelihood of impact computed using conditional coverage profiles achieves a relatively high

recall and a reasonable precision. Moreover, our technique for computing conditional coverage profiles

uses only the control-flow graph of the program. Hence, it can scale up to larger programs, with hundreds

of thousands of lines of code. In contrast, program slicing tools construct program-dependence graphs of

the program; such tools are not likely to scale up well to such large programs.

5.4 Summary

In this chapter, we have presented a technique to identify which of the set of changes made to a program is

most relevant to bugs. Our technique associates each bug predictor and each failing location with a unique

change. This association is based on a technique for approximating the potential impact of each change on

each program point. We define a conditional coverage profile and develop a technique to estimate it from

branch and call-graph profiles. We have built a tool that finds the most likely failure-inducing change by

combining the conditional coverage profile with the output of CBI’s statistical analysis. Our evaluation

was performed in sixteen experimental settings across four test programs. Our technique for associating

bug predictors with changes has an average precision of 89% and an average recall of 55%. Our technique

for associating a program’s failing locations with a change has an average precision of 88% and an average

recall of 78%. While we demonstrate our results using existing benchmark programs for fault isolation,

106

evaluation in an actual software deployment scenario can help us to further validate our approach and to

promote widespread adoption.

107

Chapter 6

Related Work

We begin our discussion of related work with a survey of statistical debugging techniques in section 6.1.

Subsequent sections explain the relevance of compound predicates (section 6.2), adaptive bug isolation

(section 6.3), and conditional coverage profiles (section 6.4) to related work. These sections also mention

related work specific to the topic under discussion.

6.1 Survey of Statistical Debugging Techniques

This section briefly surveys related work on statistical debugging, both from the CBI project as well as

other research groups.

6.1.1 Extensions from the CBI Project

In addition to the statistical debugging algorithm presented in section 2.3, two new analyses that use

machine learning have been developed by the CBI project. The feedback reports collected by CBI are

especially suited for applying machine learning algorithms. The data analyzed by many machine learning

algorithms follow the document-word model. The data is modeled as a list of documents, and each

document as a collection of words. Typical tasks performed on this data include classification, clustering

and topic modeling. In the context of CBI, each feedback report is a document and predicates with nonzero

counts are the words in the document.

108

Zheng et al. [Zhe+06] develop a bi-clustering algorithm to cluster runs failing under similar circum-

stances. Predicates are clustered together based on the failed runs in which they are observed. Andrzejewski

et al. [And+07] propose ∆LDA as an extension to the machine learning technique of Latent Dirichlet

Allocation (LDA). LDA recognizes the fact that documents may correspond to multiple topics rather than

just one. In the context of CBI, the runtime behavior of a program may correspond to multiple usage

scenarios (topics). ∆LDA considers two kinds of topics: bug topics that are found only in failed runs

and usage topics that can be found in both successful and failed runs. In our experience, the clusters of

predicates produced by these approaches is hard to evaluate subjectively and objectively. The small list of

ranked predicates produced by the iterative elimination algorithm (section 2.3) is much more suitable for

this task. Hence, we used it for evaluation in the earlier chapters.

BTrace is a static analysis tool that extends the set of bug predictors found by statistical analyses.

It finds the shortest control-flow- and dataflow- feasible path in the program that visits all of the bug

predictors. This analysis allows a programmer to examine the failure-predicting behavior even if the

connection to a bug is not easily identifiable, or if the predictors are numerous or complex enough to

overwhelm a programmer examining them directly.

6.1.2 Fault Localization Tools

SOBER [Liu+05] is a statistical debugging technique that uses divergence between a predicate’s behavior

in successful and failed runs as a measure of failure predictivity. The evaluation bias of a predicate in a

run is the fraction of times it evaluated to true. If a predicate is never evaluated during a run, its evaluation

bias is set to 0.5. A predicate’s behavior is defined as the probability density function of its evaluation bias

across all feedback reports. Unlike the technique presented in section 2.3, which only considers whether a

predicate was ever true in a run, the definition of evaluation bias takes into account the actual number of

times each predicate was evaluated in the run. This work does not perform any experimental evaluation

with sampling enabled. In the presence of sampling, there will be numerous predicates that are never

evaluated. Thus, the probability density function of the evaluation bias will have a spike at 0.5 in both the

successful and failed runs. The effect of this scenario in their bug-relevance score is not studied.

109

The Gamma project represents one of the first practical systems for run-time monitoring of deployed

software. Orso et al. [Ors+02] describe a data collection infrastructure, termed software tomography, that

supports a variety of software evolution tasks and allows post-deployment changes to data collection.

However, they rely on statically selective sampling for maintaining low overheads. Visualization techniques

developed by the Gamma group [Jon+02; Ors+04] can prove useful to help programmers understand

and interpret the results of fault localization. Tarantula [JH05] is a fault localization technique that uses

statement coverage as predicates and weighted failure rate as the scoring metric.

The Holmes project [Chi+09] makes two orthogonal contributions to statistical debugging. The first is

a path instrumentation scheme that counts the number of times each path is taken in an acyclic region.

They find that path predicates are usually better failure predictors than branch and scalar-pairs predicates.

However, it is costly to collect path predicates. Their second contribution is a form of adaptive predicate

selection, similar to the idea explored in chapter 4, but at the granularity of functions. Based on partial

feedback data, weak predictors are selected. During the adaptation step, functions close to the weak

predictors in the program-dependence graph are chosen and predicates in these functions are instrumented

during the next iteration. Holmes also strengthens weak predictors by selecting path predicates in functions

containing weak branch predicates. A detailed comparison between adaptive bug isolation and Holmes

was presented in section 4.4.5.

Gore et al. [Gor+11] use elastic predicates that use a more fine-grained decomposition of a site into

predicates. For the returns and scalar-pairs schemes, which compare two scalar values, elastic predicates

record the magnitude of difference in addition to the relation between the values. For example, consider a

returns site. If µr and σr are respectively the mean and standard deviation of the value r returned at the

site, several predicates of the form

(µr +3σr)≤ r

(µr +2σr)≤ r < (µr +3σr)

etc. are added. Data collection happens in two steps. The first step adds instrumentation to estimate the

values of µr and σr for the various sites. In the second step, the program is instrumented to collect the

110

fine-grained predicates mentioned above. This instrumented version is used to gather feedback reports.

Gore et al. [Gor+11] and Chilimbi et al. [Chi+09] use the Importance score defined in section 2.3 to

perform fault isolation.

Except for the coarse-grained adaptivity explored by Holmes, none of the above related work directly

explores the ideas proposed in this dissertation. Our contributions are mostly orthogonal, and can be

integrated with the related work mentioned here.

6.2 Related Work for Compound Predicates

The idea of propositional combinations of simple failure predictors can be incorporated into other fault

localization tools. Techniques that also use the Importance score, namely path predicates, and elastic

predicates, are especially suited, since the upper-bounds estimated in section 3.1.2 are directly applicable.

Tarantula uses statement-level coverage as candidate failure predictors. For Tarantula, co-execution

of statements is the extension equivalent to compound predicates. The general idea of pruning is also

applicable in this scenario. The estimates on the bounds must be reworked for the scoring metrics used by

Tarantula. The effort metric described in section 3.2 is still applicable.

The data analysed by SOBER is a probability vector, with each value representing the estimated

chance of a simple predicate being true when observed. The similarity in collected data means that

similar techniques for complex predicate generation are applicable. The three-valued logic described in

subsection 3.1.1 could be replaced with joint-probability when generating conjunctions; De Morgan’s

law can be applied to generate disjunctions. As with Tarantula, the idea of pruning can be applied by

reworking the upper-bounds on the score of a compound predicate.

Compound predicates relate behavior at multiple program points, and therefore may be difficult to

comprehend. Presenting compound predicates in a way that programmers can readily understand remains

an open problem. The Gammatella [Ors+04] project explores visualization of program-execution data,

such as failure data. Their ideas may be applicable for visualizing compound predicates.

Haran et al. [Har+07] analyze data from deployed software to classify executions as success or failure.

They use tree-based classifiers and association rules to model “failure signals”. The interior nodes in

111

such trees are simple predicates, and the leaf nodes are the predicted outcome. Tree-based classifiers

and association rules implicitly encode conjunctions and disjunctions. The goal of their technique is

classification of executions rather than fault localization.

Daikon [Ern+01] detects invariants in a program by observing multiple program runs. Invariants are

predicates generated using operators such as sum and max to combine program variables and collection

(e.g., array) objects. Daikon is intended for many uses beyond bug isolation, and so it monitors a much

larger set of predicates than CBI. This makes scalable complex predicate generation more difficult.

However, Dodoo et al. [Dod+02] have successfully extended the work to generate implications from the

simpler, measured predicates. Dodoo et al. alternate clustering and invariant detection to find invariant

implications over a set of program runs. The initial clustering is performed using the k-means algorithm

[Jai+99], with program runs represented as normalized vectors of scalar variable values. Since CBI

represents run information as bit-vectors this technique can be applied essentially unchanged. However,

CBI’s focus is fault localization under sparse sampling conditions. Predicates will rarely be identified as

invariant in the presence of sampling.

6.3 Related Work on Adaptive Instrumentation

To the best of our knowledge, Holmes is the only tool that uses adaptation for purposes of post-deployment

fault localization. Several dynamic program analyses developed for other purposes alter their behavior

adaptively. The dynamic leak detector of Hauswirth and Chilimbi [HC04] profiles code segments at a rate

inversely proportional to their execution frequencies. Yu et al. [Yu+05] use dynamic feedback to control

the granularity of locksets and threadsets in their data race detection algorithm. Dwyer et al. [Dwy+07]

make adaptive, online decisions to monitor just a subset of the program events in their dynamic finite-state

property verifier. The AjaxScope platform for monitoring client side execution of web applications [KL07]

provides mechanisms for specifying adaptive policies; the authors describe a performance profiling tool

using this feature.

The Paradyn project [Mil+95] uses adaptive, dynamic instrumentation for performance profiling of

large parallel programs. Roth and Miller [RM06] emphasize automated, on-line diagnosis of performance

112

bottlenecks. Unlike Paradyn and the other online adaptive analyses [Dwy+07; HC04; KL07; Yu+05] our

approach uses statistical bug detection with data being aggregated across many runs and analysis being

performed offline. Paradyn’s tools and techniques for managing and visualizing large data streams may be

useful in our domain as well.

In their execution classification tool mentioned in section 6.2, Haran et al. [Har+07] select program

behaviors to be monitored using weighted sampling. In-house data collection finds predicates that are

useful for classification, and sampling is biased towards such predicates. Like CBI, sampling is used

to reduce monitoring overhead. In the presence of a large user community, weighted sampling can be

combined with our technique for a non-uniform assignment of instrumentation sites to users using any of

our heuristics as weights.

Software tomography, the data-collection infrastructure developed by the Gamma project, statically

divides the data-collection tasks and distributes them among the user community. However, they assume

that the selection of those tasks is human-directed. The adaptive bug isolation technique we propose is an

automatic, heuristically-guided system for bug-hunting that changes data-collection tasks in response to

feedback. However, we do assume that the programmer is watching the results of fault isolation, and can

choose to continue the adaptive search, or stop the process if he recognizes and can fix the bug.

Renieris and Reiss [RR03] present a model of the debugging activity performed by the programmer.

They posit that when given a predictor of failure, the programmer searches for clues about the failure by

performing an undirected breadth-first search on the program-dependence graph. This model has been

used by statistical debugging tools [CZ05; JH05; JS07; Liu+05; Zhe+06] to quantify the effectiveness of

the bug predictors found by their techniques. In chapter 3 (section 3.2), we use this model to develop the

effort metric that characterizes the usability of a compound predicate to a programmer. In chapter 4, we

adopt a model similar to Renieris and Reiss [RR03], but use a heuristic search instead of breadth-first

search. It should be noted that in earlier work, the model was used as an independent metric to compare

different analyses. Here, we use it for a different goal: to rank compound predicates based on their utility,

and to reduce the monitoring overhead.

113

6.4 Related Work for Conditional Coverage Profiles

The fault localization tools mentioned in section 6.1 present a list of program behavior (predicates, statements

etc.) that are symptomatic of failure. They do not explore the idea of extending this information to find

failure-inducing changes. We believe that this additional information is useful in helping programmers

understand bugs and develop fixes. Potentially, the classifier described in section 5.3 can combine results

from any of these tools with conditional-coverage profiles to help identify failure-inducing changes. In

this section, we discuss related work for the ideas in chapter 5 across three topics: change impact analyses,

tools that identify failure-inducing changes, and probabilistic static analyses.

6.4.1 Change Impact Analyses

Change impact analysis identifies the components that are potentially impacted by a change to a program.

Prior research has tackled change impact analysis using static and dynamic analyses. These techniques

find the set of impacted components at various granularities, depending on how the results are expected

to be used. Impact sets can be tracked in coarser granularities at the procedure and object level, or

finer granularities like basic blocks or source lines. Static techniques that track impact sets at coarser

granularities perform a closure of the call-graph [BA96] or object-relationship graph [Kun+94]. Static

slicing is used to track impact sets at the granularity of program-dependence graph nodes [Bin97; Hor+90;

Wei81]. Dynamic techniques like PathImpact [LR03b], Execute-After Sequences [Api+05], Incremental

PathImpact [LR03a], and Chianti [Ren+04] use the dynamic trace of method calls to prune the call-graph

closure obtained from static techniques. Dynamic slicing techniques [KL88; Zha+06] can be used to

find impact sets corresponding to a particular execution. CoverageImpact [Ors+03] intersects compacted

coverage information and static slices to perform impact analysis aggregated over several executions.

For dynamic or hybrid analyses, the granularity of their results affects the run-time overhead for data

collection. Since dynamic techniques rely on information gathered from a set of executions, the precision

of their results is not guaranteed. Techniques that use lightweight data collection are amenable to the

post-deployment setting where a wider range of operational profiles can be collected. To our knowledge,

the CoverageImpact technique proposed by the Gamma project [Ors+03] is the only one designed to

114

use data from post-deployment monitoring. However, like other impact analysis techniques, it assumes

precise coverage information and makes binary decisions on whether a statement is affected by a change.

Conditional coverage profiles generalize this approach by computing probabilistic measures of impact.

They are computed using the sparse random data collected using CBI’s post-deployment monitoring

techniques.

Static slicing is one approach to perform change impact analysis at the granularity of program-

dependence graph nodes. A forward slice is computed from the changed location to identify the set of

affected nodes. Program slicing is a more general tool, that has been used to solve other problems besides

change impact analysis. Such applications include failure comprehension and debugging, regression

testing [RH97], and program integration [Bin+95; San+10]. Recent techniques for probabilistic slicing

[SH10; Sin06] explore the problem of quantifying the impact of a change by assigning a probabilistic

value to each node in the forward slice. Singer [Sin06] proposes that the impact probability on a node

be the product of the conditional probability on edges dominating the node. We are not aware of any

implementation or evaluation of this proposal. Santelices and Harrold [SH10] break the effect of a change

into three components: coverage probability, propagation probability, and impact probability. However,

Santelices and Harrold do not use run-time profiles and assume that each outcome is equally likely at a

branch statement. The novelty of our approach is that our formalization, the conditional coverage profile,

is a concrete property of program executions, giving us an ideal target. We also incorporate run-time

profiles that are efficiently collected using post-deployment monitoring.

6.4.2 Identifying Failure-inducing Changes

The problem of identifying failure-inducing changes has been studied earlier. Zeller [Zel99] uses the

delta debugging algorithm to identify a minimal set of atomic changes that cause failure when applied. In

this technique, subsets of the changes are enabled and the program is tested for failure. Subsets that do

not cause failure are eliminated. This divide-and-conquer step is repeatedly applied to find the minimal

set of changes that cause failure. Due to relations between changes, building intermediate versions with

arbitrary subsets of changes enabled might generate compiler errors. Ren and Ryder [RR07] and Zhang

115

et al. [Zha+08] use static and dynamic information to select more relevant subsets of changes to enable

while finding the minimal set of failure-inducing changes. However, these works all assume the ability

to enable each change individually. Consequently, they are best suited for in-house testing, where it is

possible to discover failures and collect profiles with a subset of changes enabled.

Hoffman et al. [Hof+09] and Störzer et al. [Stö+06] propose techniques to identify failure-inducing

changes without constructing any intermediate versions. A critical piece of information used by these

techniques is whether a change affects a failed test, i.e., whether a changed location is executed in the

failed test. Their algorithms are not robust to incompleteness in this information, and hence are not viable

in the presence of sampling. On the other hand, the goal of our work, and other existing work on statistical

debugging, is to target bugs that evade in-house testing and cause problems post-deployment. The use of

sampling and the inability to build intermediate versions (with subsets of changes enabled) are critical

constraints in this domain, and set our technique apart from other existing work.

6.4.3 Probabilistic Static Analyses

More generally, runtime profiles have been used to quantify outputs of static analyses. Probabilistic pointer

analyses [Che+04; DSS06] associate probabilities to points-to and alias relations. Dataflow frequency

analysis [MS01; Ram96] uses runtime profiles to compute the frequency or probability with which the

dataflow facts hold true. Their framework is applicable to analyses such as reaching definitions, available

expressions, and live variables. The problem of computing conditional coverage profiles can be considered

as an instance of probabilistic dataflow analysis. The associated dataflow problem is the computation

of reachability from a specific source node. Some aspects of our approach, such as the use of symbolic

expressions, and the use of runtime profiles are similar to this work. The differences include our use of

call-graph profiles, and the usage of mutual exclusion between the predecessors of a node. Ramalingam

[Ram96] handle procedure calls by computing summary information for each procedure. Since we are

estimating the probability of execution after a chosen source node for the entire program, call-graph

profiles are useful to us.

116

Chapter 7

Conclusion

Prior work has established post-deployment statistical debugging as a viable and useful testing methodology.

This dissertation develops various techniques to improve the monitoring efficiency and fault localization

of the state-of-the-art in statistical debugging. Adaptive bug isolation sacrifices monitoring of the

whole program in favor of selective, low-overhead instrumentation. Compound predicates improve fault

localization by finding better predictors for complex bugs, while imposing no additional monitoring

overhead. Conditional coverage profiles augment the output of statistical debugging with source-level

changes that are likely causes of failures. In addition to their relevance to CBI, conditional coverage

profiles can potentially be used to extend existing tools that visualize impacted sets. It can also lead us to

revisit regression test prioritization, which is another application of impact analysis.

Our contributions, while seemingly orthogonal in their goals, are unified by their application of static

analysis to connect dynamic behavior. Program dependences are used to prune less useful compound

predicates, thus making statistical debugging with compound predicates tractable. Control dependences are

used to selectively instrument those predicates that are likely to be good predictors of failure. Conditional

coverage profiles, derived from control-flow graphs and runtime profiles, are used to associate bug

predictors with failure-inducing changes.

Our incorporation of static analysis into CBI is one step towards realizing the potential of static

analysis driving dynamic analysis, and vice versa, envisioned by Liblit in his “Reflections on the Role of

117

Static Analysis in Cooperative Bug Isolation” [Lib08]. Static program structure is used to drive dynamic

analysis in adaptive bug isolation. Program structure is also used to quantify the usability of compound

predicates. Alternatively, dynamic program behavior in the form of runtime profiles is used to augment

static change impact analysis. Liblit is also skeptical about the scalability and robustness of static analyses.

For our purposes of constructing program-dependence graphs and precise pointer analysis, the CodeSurfer

[Gra06] tool was able to scale up to programs with upwards of 50KLOC. The program-dependence

graphs and points-to sets might be imprecise in the presence of buffer overflows and wild pointers. Such

imprecision can negatively impact our techniques. But the benefits in terms of low overheads and better

fault localization outweigh such negative impact.

7.1 Interoperability of the Contributions

In chapter 1, we mentioned the twin goals in the design of CBI: gathering meaningful data for effective

fault localization, and reducing the overhead of monitoring to facilitate post-deployment data collection.

Adaptive bug isolation focuses on reducing runtime overheads, while the other two contributions focus on

improving fault localization. The compatibility of these techniques is worth further consideration.

A compound predicate is useful for fault localization only when its component predicates are simulta-

neously instrumented. Adaptive bug isolation, on the other hand, omits monitoring of a vast majority of

predicates. The components of most compound predicates will not be instrumented simultaneously. Thus,

adaptive bug isolation drastically reduces the number of compound predicates available for statistical

analysis.

Identification of failure-inducing changes, on the other hand, is compatible with the other two

contributions. Conditional coverage profiles make no assumption on how the branch and call-graph profiles

are collected. When used with adaptive bug isolation, profiles for some branch and call-graph edges might

not be available. Uniform division at the sources of such edges can be assumed, until adaptive predicate

selection chooses to instrument them. Conditional coverage profiles can also be used to associate a

failure-inducing change with compound predicates. A potential classification heuristic would be choosing

the change that is most likely to impact both the components of a compound predicate.

118

7.2 Closing Thoughts

Statistical debugging brings together several research areas, including static analysis, dynamic analysis,

statistics, and machine learning. This dissertation draws upon some of these areas. Some ideas illustrate

how ideas in these different fields complement each other. Dynamic analysis augments static change

impact analysis. Machine learning, as shown by ∆LDA, improves dynamic analysis of the runtime behavior

of predicates. Static analysis helps removal of redundant instrumentation.

The converse is also true: seemingly obvious enhancements in one domain fail due to interactions with

other domains. While finding failure-inducing changes, clustering-based classifiers were only marginally

better than a simple classifier (section 5.3). The Mann–Whitney U-test does not assume normal distribution

of data and, hence, is more generally applicable than the t-test. However, it performed worse than the

t-test during adaptive bug isolation (chapter 4).

The potential of the use of static analysis has not been fully realized yet. Deeper static analysis, in the

form of model checking and theorem proving, can be used to prove relations between CBI’s predicates.

Such relations can avoid redundant instrumentation and can be encoded as domain knowledge in machine

learning algorithms. In our experiments, none of the model checkers we tried scaled up beyond tiny

programs. However, the potential benefits make further investigation worthwhile.

Overall, we have enhanced the appeal of statistical debugging to both programmers and end-users. We

hope this brings statistical debugging closer to the mainstream, leading to fewer bugs and happier users.

119

Bibliography

[And+07] David Andrzejewski, Anne Mulhern, Ben Liblit, and Xiaojin Zhu. “Statistical Debugging

Using Latent Topic Models”. In: ECML. Ed. by Joost N. Kok, Jacek Koronacki, Ramon López

de Mántaras, Stan Matwin, Dunja Mladenic, and Andrzej Skowron. Vol. 4701. Lecture Notes

in Computer Science. Springer, 2007, pp. 6–17.

[Api+05] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. “Efficient and precise

dynamic impact analysis using execute-after sequences”. In: ICSE ’05: Proceedings of the

27th international conference on Software engineering. St. Louis, MO, USA: ACM, 2005,

pp. 432–441.

[AR01] Matthew Arnold and Barbara G. Ryder. “A Framework for Reducing the Cost of Instrumented

Code”. In: PLDI. 2001, pp. 168–179.

[Arn96] Robert S. Arnold. Software Change Impact Analysis. Los Alamitos, CA, USA: IEEE Computer

Society Press, 1996.

[BA96] Shawn Bohner and Robert Arnold. An introduction to software change impact analysis. Ed. by

Shawn Bohner and Robert Arnold. IEEE Computer Society Press, 1996, pp. 1–26.

[Bal+05] Gogul Balakrishnan, Radu Gruian, Thomas W. Reps, and Tim Teitelbaum. “CodeSurfer/x86–

A Platform for Analyzing x86 Executables”. In: CC. Ed. by Rastislav Bodík. Vol. 3443.

Lecture Notes in Computer Science. Springer, 2005, pp. 250–254.

[BH00] Bryan Buck and Jeffrey K. Hollingsworth. “An API for Runtime Code Patching”. In: Int. J.

High Perform. Comput. Appl. 14.4 (2000), pp. 317–329.

120

[BH03] D. Binkley and M. Harman. “A large-scale empirical study of forward and backward static

slice size and context sensitivity”. In: Proceedings of the 2003 International Conference on

Software Maintenance. Amsterdam, The Netherlands: IEEE Computer Society, Sept. 2003.

[Bin+95] David Binkley, Susan Horwitz, and Thomas Reps. “Program integration for languages with

procedure calls”. In: ACM Trans. Softw. Eng. Methodol. 4.1 (Jan. 1995), pp. 3–35. url:

http://doi.acm.org/10.1145/201055.201056.

[Bin97] David Binkley. “Semantics Guided Regression Test Cost Reduction”. In: IEEE Trans. Softw.

Eng. 23.8 (1997), pp. 498–516.

[BL96] Thomas Ball and James R. Larus. “Efficient Path Profiling”. In: MICRO. 1996, pp. 46–57.

[BR07] Gogul Balakrishnan and Thomas Reps. “DIVINE: discovering variables in executables”.

In: Proceedings of the 8th international conference on Verification, model checking, and

abstract interpretation. VMCAI’07. Nice, France: Springer-Verlag, 2007, pp. 1–28. url:

http://dl.acm.org/citation.cfm?id=1763048.1763050.

[CE04] Kalyan-Ram Chilakamarri and Sebastian G. Elbaum. “Reducing Coverage Collection Over-

head With Disposable Instrumentation”. In: ISSRE. IEEE Computer Society, 2004, pp. 233–

244.

[Che+04] Peng-Sheng Chen, Yuan-Shin Hwang, Roy Dz-Ching Ju, and Jenq Kuen Lee. “Interprocedural

Probabilistic Pointer Analysis”. In: IEEE Trans. Parallel Distrib. Syst. 15.10 (Oct. 2004),

pp. 893–907.

[Chi+09] Trishul M. Chilimbi, Ben Liblit, Krishna K. Mehra, Aditya V. Nori, and Kapil Vaswani.

“Holmes: Effective statistical debugging via efficient path profiling”. In: ICSE. IEEE, 2009,

pp. 34–44.

[CZ05] Holger Cleve and Andreas Zeller. “Locating causes of program failures”. In: ICSE. Ed. by

Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh. ACM, 2005, pp. 342–351.

http://doi.acm.org/10.1145/201055.201056
http://dl.acm.org/citation.cfm?id=1763048.1763050

121

[Dod+02] Nii Dodoo, Alan Donovan, Lee Lin, and Michael D. Ernst. Selecting Predicates for Im-

plications in Program Analysis. Draft. http://pag.csail.mit.edu/~mernst/pubs/

invariants-implications.ps. 2002.

[DSS06] Jeff Da Silva and J. Gregory Steffan. “A probabilistic pointer analysis for speculative

optimizations”. In: Proceedings of the 12th international conference on Architectural support

for programming languages and operating systems. ASPLOS-XII. San Jose, California, USA:

ACM, 2006, pp. 416–425. url: http://doi.acm.org/10.1145/1168857.1168908.

[Dwy+07] Matthew B. Dwyer, Alex Kinneer, and Sebastian G. Elbaum. “Adaptive Online Program

Analysis”. In: ICSE. IEEE Computer Society, 2007, pp. 220–229.

[Ern+01] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. “Dynamically

discovering likely program invariants to support program evolution”. In: IEEE Transactions on

Software Engineering 27.2 (Feb. 2001). A previous version appeared in ICSE ’99, Proceedings

of the 21st International Conference on Software Engineering, pages 213–224, Los Angeles,

CA, USA, May 19–21, 1999, pp. 99–123.

[Fer+87] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program Dependence Graph

and Its Use in Optimization”. In: ACM Trans. Program. Lang. Syst. 9.3 (1987), pp. 319–349.

[For07] Mike Fortin (Distinguished Engineer, Windows Core Operating Systems Division, Microsoft

Corporation). Limiting executable footprints. Personal communication. Nov. 2007.

[Fre] Free Software Foundation. GCC: The GNU compiler collection. http://gcc.gnu.org/.

[Gor+11] Ross Gore, Paul F. Reynolds, and David Kamensky. “Statistical debugging with elastic

predicates”. In: Proceedings of the 2011 26th IEEE/ACM International Conference on

Automated Software Engineering. ASE ’11. Washington, DC, USA: IEEE Computer Society,

2011, pp. 492–495. url: http://dx.doi.org/10.1109/ASE.2011.6100107.

[Gra06] GrammaTech. CodeSurfer. http://www.codesurfer.com. Sept. 2006.

http://pag.csail.mit.edu/~mernst/pubs/invariants-implications.ps
http://pag.csail.mit.edu/~mernst/pubs/invariants-implications.ps
http://doi.acm.org/10.1145/1168857.1168908
http://gcc.gnu.org/
http://dx.doi.org/10.1109/ASE.2011.6100107
http://www.codesurfer.com

122

[Har+07] Murali Haran, Alan F. Karr, Michael Last, Alessandro Orso, Adam A. Porter, Ashish P. Sanil,

and Sandro Fouche. “Techniques for Classifying Executions of Deployed Software to Support

Software Engineering Tasks”. In: IEEE Trans. Software Eng. 33.5 (2007), pp. 287–304.

[HC04] Matthias Hauswirth and Trishul M. Chilimbi. “Low-overhead memory leak detection using

adaptive statistical profiling”. In: ASPLOS. Ed. by Shubu Mukherjee and Kathryn S. McKinley.

ACM, 2004, pp. 156–164.

[Hof+09] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. “Semantics-aware trace analysis”.

In: PLDI. Ed. by Michael Hind and Amer Diwan. ACM, 2009, pp. 453–464.

[Hor+10] Susan Horwitz, Ben Liblit, and Marina Polishchuk. “Better Debugging via Output Tracing

and Callstack-Sensitive Slicing”. In: IEEE Transactions on Software Engineering 36.1 (2010),

pp. 7–19.

[Hor+88] S. Horwitz, T. Reps, and D. Binkley. “Interprocedural slicing using dependence graphs”. In:

SIGPLAN Not. 23.7 (June 1988), pp. 35–46. url: http://doi.acm.org/10.1145/960116.

53994.

[Hor+90] S. Horwitz, T. Reps, and D. Binkley. “Interprocedural slicing using dependence graphs”. In:

ACM Transactions on Programmings Languages and Systems 12.1 (Jan. 1990), pp. 26–60.

[HR92] Susan Horwitz and Thomas W. Reps. “The Use of Program Dependence Graphs in Software

Engineering”. In: ICSE. 1992, pp. 392–411.

[Hut+94] Monica Hutchins, Herbert Foster, Tarak Goradia, and Thomas J. Ostrand. “Experiments of

the Effectiveness of Dataflow- and Controlflow-Based Test Adequacy Criteria”. In: ICSE.

1994, pp. 191–200.

[Jai+99] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A Review”. In: ACM Computing

Surveys 31.3 (Sept. 1999), pp. 264–323. url: citeseer.ist.psu.edu/jain99data.html.

[JH05] James A. Jones and Mary Jean Harrold. “Empirical evaluation of the Tarantula automatic

fault-localization technique”. In: ASE. Ed. by David F. Redmiles, Thomas Ellman, and Andrea

Zisman. ACM, 2005, pp. 273–282.

http://doi.acm.org/10.1145/960116.53994
http://doi.acm.org/10.1145/960116.53994
citeseer.ist.psu.edu/jain99data.html

123

[Jon+02] James A. Jones, Mary Jean Harrold, and John T. Stasko. “Visualization of test information to

assist fault localization”. In: ICSE. ACM, 2002, pp. 467–477.

[JR94] Daniel Jackson and Eugene J. Rollins. Chopping: A Generalization of Slicing. Tech. rep.

Pittsburgh, PA, USA, 1994.

[JS07] Lingxiao Jiang and Zhendong Su. “Context-aware statistical debugging: From bug predictors

to faulty control flow paths”. In: ASE. Ed. by R. E. Kurt Stirewalt, Alexander Egyed, and

Bernd Fischer. ACM, 2007, pp. 184–193.

[KL07] Emre Kiciman and V. Benjamin Livshits. “AjaxScope: a platform for remotely monitoring

the client-side behavior of web 2.0 applications”. In: SOSP. Ed. by Thomas C. Bressoud and

M. Frans Kaashoek. ACM, 2007, pp. 17–30.

[KL88] Bogdan Korel and Janusz W. Laski. “Dynamic Program Slicing”. In: Inf. Process. Lett. 29.3

(1988), pp. 155–163.

[Kun+94] David Chenho Kung, Jerry Gao, Pei Hsia, F. Wen, Yasufumi Toyoshima, and Cris Chen.

“Change Impact Identification in Object Oriented Software Maintenance”. In: ICSM. Ed. by

Hausi A. Müller and Mari Georges. IEEE Computer Society, 1994, pp. 202–211.

[Lal+06] Akash Lal, Junghee Lim, Marina Polishchuk, and Ben Liblit. “Path Optimization in Programs

and its Application to Debugging”. In: 15th European Symposium on Programming. Ed. by

Peter Sestoft. Vienna, Austria: Springer, Mar. 2006, pp. 246–263.

[Lev69] David A. Levine. “Algorithm 344: Student’s t-distribution [S14]”. In: Commun. ACM 12.1

(1969), pp. 37–38.

[Liba] Ben Liblit. CBI Documentation: Compiling Instrumented Executables. http://research.

cs.wisc.edu/cbi/developers/guide/ar01s02.html.

[Libb] Ben Liblit. The Cooperative Bug Isolation Project. http://www.cs.wisc.edu/cbi/.

[Lib+03] Ben Liblit, Alexander Aiken, Alice X. Zheng, and Michael I. Jordan. “Bug isolation via

remote program sampling”. In: PLDI. ACM, 2003, pp. 141–154.

http://research.cs.wisc.edu/cbi/developers/guide/ar01s02.html
http://research.cs.wisc.edu/cbi/developers/guide/ar01s02.html
http://www.cs.wisc.edu/cbi/

124

[Lib+05] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I. Jordan. “Scalable

statistical bug isolation”. In: PLDI. Ed. by Vivek Sarkar and Mary W. Hall. ACM, 2005,

pp. 15–26.

[Lib07] Ben Liblit. Cooperative Bug Isolation (Winning Thesis of the 2005 ACM Doctoral Dissertation

Competition). Vol. 4440. Lecture Notes in Computer Science. Springer, 2007.

[Lib08] Ben Liblit. “Reflections on the Role of Static Analysis in Cooperative Bug Isolation”. In:

Proceedings of the 15th International Static Analysis Symposium. European Association for

Programming Languages and Systems. Valencia, Spain, July 2008, pp. 18–31.

[Liu+05] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. “SOBER: statistical

model-based bug localization”. In: ESEC/SIGSOFT FSE. Ed. by Michel Wermelinger and

Harald Gall. ACM, 2005, pp. 286–295.

[LR03a] James Law and Gregg Rothermel. “Incremental Dynamic Impact Analysis for Evolving

Software Systems”. In: ISSRE ’03: Proceedings of the 14th International Symposium on

Software Reliability Engineering. Washington, DC, USA: IEEE Computer Society, 2003,

p. 430.

[LR03b] James Law and Gregg Rothermel. “Whole Program Path-Based Dynamic Impact Analysis”.

In: ICSE. IEEE Computer Society, 2003, pp. 308–318.

[LS05a] Zhenkai Liang and R. Sekar. “Automatic Generation of Buffer Overflow Attack Signatures:

An Approach Based on Program Behavior Models”. In: ACSAC. IEEE Computer Society,

2005, pp. 215–224.

[LS05b] Zhenkai Liang and R. Sekar. “Fast and automated generation of attack signatures: a basis for

building self-protecting servers”. In: ACM Conference on Computer and Communications

Security. Ed. by Vijay Atluri, Catherine Meadows, and Ari Juels. ACM, 2005, pp. 213–222.

[Mil+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce

Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. “The Paradyn Parallel

Performance Measurement Tool”. In: IEEE Computer 28.11 (1995), pp. 37–46.

125

[Mis+05] Jonathan Misurda, James A. Clause, Juliya L. Reed, Bruce R. Childers, and Mary Lou

Soffa. “Demand-driven structural testing with dynamic instrumentation”. In: ICSE. Ed. by

Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh. ACM, 2005, pp. 156–165.

[MS01] Eduard Mehofer and Bernhard Scholz. “A Novel Probabilistic Data Flow Framework”. In:

Proceedings of the 10th International Conference on Compiler Construction. London, UK,

UK: Springer-Verlag, 2001, pp. 37–51.

[MW47] H. B. Mann and D. R. Whitney. “On a Test of Whether One of Two Random Variables is

Stochastically Larger than the Other”. In: The Annals of Mathematical Statistics 18.1 (1947),

pp. 50–60.

[NS05] James Newsome and Dawn Xiaodong Song. “Dynamic Taint Analysis for Automatic Detection,

Analysis, and SignatureGeneration of Exploits on Commodity Software”. In: NDSS. The

Internet Society, 2005.

[Ors+02] Alessandro Orso, Donglin Liang, Mary Jean Harrold, and Richard J. Lipton. “Gamma system:

continuous evolution of software after deployment”. In: ISSTA. 2002, pp. 65–69.

[Ors+03] Alessandro Orso, Taweesup Apiwattanapong, and Mary Jean Harrold. “Leveraging field

data for impact analysis and regression testing”. In: ESEC / SIGSOFT FSE. ACM, 2003,

pp. 128–137.

[Ors+04] Alessandro Orso, James A. Jones, Mary Jean Harrold, and John T. Stasko. “Gammatella:

Visualization of Program-Execution Data for Deployed Software”. In: ICSE. IEEE Computer

Society, 2004, pp. 699–700.

[PO11] Chris Parnin and Alessandro Orso. “Are automated debugging techniques actually helping

programmers?” In: Proceedings of the 2011 International Symposium on Software Testing

and Analysis. ISSTA ’11. Toronto, Ontario, Canada: ACM, 2011, pp. 199–209. url: http:

//doi.acm.org/10.1145/2001420.2001445.

http://doi.acm.org/10.1145/2001420.2001445
http://doi.acm.org/10.1145/2001420.2001445

126

[Qin+07] Feng Qin, Joseph Tucek, Yuanyuan Zhou, and Jagadeesan Sundaresan. “Rx: Treating bugs as

allergies–a safe method to survive software failures”. In: ACM Trans. Comput. Syst. 25.3

(2007).

[Ram96] G. Ramalingam. “Data flow frequency analysis”. In: SIGPLAN Not. 31.5 (May 1996), pp. 267–

277.

[Rei+06] Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. “Browser-

Shield: Vulnerability-Driven Filtering of Dynamic HTML”. In: OSDI. USENIX Association,

2006, pp. 61–74.

[Ren+04] Xiaoxia Ren, Fenil Shah, Frank Tip, Barbara G. Ryder, and Ophelia Chesley. “Chianti: a tool

for change impact analysis of java programs”. In: OOPSLA. Ed. by John M. Vlissides and

Douglas C. Schmidt. ACM, 2004, pp. 432–448.

[RH97] Gregg Rothermel and Mary Jean Harrold. “A safe, efficient regression test selection technique”.

In: ACM Trans. Softw. Eng. Methodol. 6.2 (Apr. 1997), pp. 173–210. url: http://doi.acm.

org/10.1145/248233.248262.

[RM06] Philip C. Roth and Barton P. Miller. “On-line automated performance diagnosis on thousands

of processes”. In: PPOPP. Ed. by Josep Torrellas and Siddhartha Chatterjee. ACM, 2006,

pp. 69–80.

[Rot+06] Gregg Rothermel, Sebastian Elbaum, Alex Kinneer, and Hyunsook Do. Software-artifact

Intrastructure Repository. http://sir.unl.edu/portal/. Sept. 2006.

[RR03] Manos Renieris and Steven P. Reiss. “Fault Localization With Nearest Neighbor Queries”.

In: ASE. IEEE Computer Society, 2003, pp. 30–39.

[RR07] Xiaoxia Ren and Barbara G. Ryder. “Heuristic ranking of java program edits for fault

localization”. In: ISSTA. Ed. by David S. Rosenblum and Sebastian G. Elbaum. ACM, 2007,

pp. 239–249.

http://doi.acm.org/10.1145/248233.248262
http://doi.acm.org/10.1145/248233.248262
http://sir.unl.edu/portal/

127

[RR95] Thomas Reps and Genevieve Rosay. “Precise interprocedural chopping”. In: Proceedings of

the 3rd ACM SIGSOFT symposium on Foundations of software engineering. SIGSOFT ’95.

Washington, D.C., United States: ACM, 1995, pp. 41–52. url: http://doi.acm.org/10.

1145/222124.222138.

[San+10] Raul Santelices, Mary Jean Harrold, and Alessandro Orso. “Precisely Detecting Runtime

Change Interactions for Evolving Software”. In: Proceedings of the 2010 Third International

Conference on Software Testing, Verification and Validation. ICST ’10. Washington, DC,

USA: IEEE Computer Society, 2010, pp. 429–438. url: http://dx.doi.org/10.1109/

ICST.2010.29.

[SH10] Raul Santelices and Mary Jean Harrold. Probabilistic Slicing for Predictive Impact Analysis.

Tech. rep. GIT-CERCS-10-10. Georgia Tech, Nov. 2010.

[Sin06] Jeremy Singer. “Towards Probabilistic Program Slicing”. In: Beyond Program Slicing. Ed. by

David W. Binkley, Mark Harman, and Jens Krinke. Dagstuhl Seminar Proceedings 05451.

Dagstuhl, Germany: Internationales Begegnungs- und Forschungszentrum für Informatik

(IBFI), Schloss Dagstuhl, Germany, 2006. url: http://drops.dagstuhl.de/opus/

volltexte/2006/485.

[Stö+06] Maximilian Störzer, Barbara G. Ryder, Xiaoxia Ren, and Frank Tip. “Finding failure-inducing

changes in java programs using change classification”. In: SIGSOFT FSE. Ed. by Michal

Young and Premkumar T. Devanbu. ACM, 2006, pp. 57–68.

[TH05] Mustafa M. Tikir and Jeffrey K. Hollingsworth. “Efficient online computation of statement

coverage”. In: Journal of Systems and Software 78.2 (2005), pp. 146–165.

[Vas+07] Kapil Vaswani, Aditya V. Nori, and Trishul M. Chilimbi. “Preferential path profiling: compactly

numbering interesting paths”. In: Proceedings of the 34th annual ACM SIGPLAN-SIGACT

symposium on Principles of programming languages. POPL ’07. Nice, France: ACM, 2007,

pp. 351–362. url: http://doi.acm.org/10.1145/1190216.1190268.

http://doi.acm.org/10.1145/222124.222138
http://doi.acm.org/10.1145/222124.222138
http://dx.doi.org/10.1109/ICST.2010.29
http://dx.doi.org/10.1109/ICST.2010.29
http://drops.dagstuhl.de/opus/volltexte/2006/485
http://drops.dagstuhl.de/opus/volltexte/2006/485
http://doi.acm.org/10.1145/1190216.1190268

128

[Wan+04] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf Zugenmaier. “Shield: vulnerability-

driven network filters for preventing known vulnerability exploits”. In: SIGCOMM. Ed. by

Raj Yavatkar, Ellen W. Zegura, and Jennifer Rexford. ACM, 2004, pp. 193–204.

[Wei06] Eric W. Weisstein. “Boolean Function”. In: MathWorld–A Wolfram Web Resource (2006).

http://mathworld.wolfram.com/BooleanFunction.html.

[Wei81] Mark Weiser. “Program Slicing”. In: ICSE. Ed. by Seymour Jeffrey and Leon G. Stucki.

IEEE Computer Society, 1981, pp. 439–449.

[Yin+04] Annie T. T. Ying, Gail C. Murphy, Raymond T. Ng, and Mark Chu-Carroll. “Predicting

Source Code Changes by Mining Change History”. In: IEEE Trans. Software Eng. 30.9

(2004), pp. 574–586.

[Yu+05] Yuan Yu, Tom Rodeheffer, and Wei Chen. “RaceTrack: efficient detection of data race

conditions via adaptive tracking”. In: SOSP. Ed. by Andrew Herbert and Kenneth P. Birman.

ACM, 2005, pp. 221–234.

[Zel99] Andreas Zeller. “Yesterday, my program worked. Today, it does not. Why?” In: Proceedings

of the 7th European software engineering conference held jointly with the 7th ACM SIGSOFT

international symposium on Foundations of software engineering. ESEC/FSE-7. Toulouse,

France: Springer-Verlag, 1999, pp. 253–267. url: http://dx.doi.org/10.1145/318773.

318946.

[Zha+06] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. “Pruning dynamic slices with confidence”.

In: SIGPLAN Not. 41.6 (2006), pp. 169–180.

[Zha+08] Sai Zhang, Yu Lin, Zhongxian Gu, and Jianjun Zhao. “Effective identification of failure-

inducing changes: a hybrid approach”. In: PASTE. Ed. by Shriram Krishnamurthi and Michal

Young. ACM, 2008, pp. 77–83.

[Zhe+06] Alice X. Zheng, Michael I. Jordan, Ben Liblit, Mayur Naik, and Alex Aiken. “Statistical

debugging: simultaneous identification of multiple bugs”. In: ICML. Ed. by William W. Cohen

http://mathworld.wolfram.com/BooleanFunction.html
http://dx.doi.org/10.1145/318773.318946
http://dx.doi.org/10.1145/318773.318946

129

and Andrew Moore. Vol. 148. ACM International Conference Proceeding Series. ACM, 2006,

pp. 1105–1112.

	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Cooperative Bug Isolation
	Relevance of Static Program Information

	Offline Analysis of Compound Predicates
	Adaptive Instrumentation
	Identifying Failure-inducing Changes
	Contributions

	Background
	Instrumentation Schemes
	Sampling
	Statistical Bug Isolation
	Scoring Predicates
	Iterative Bug Isolation

	Evaluation of the Output of Fault Localization

	Compound Predicates
	Compound Predicates: Formalization
	Deriving Compound Predicates
	Pruning Computation of Scores

	Usability Metric
	Case Studies
	exif
	printtokens

	Experiments
	Top-scoring Predicates
	Bug-relevance of Compound Predicates
	Experiments on Larger Benchmarks
	Effectiveness of Pruning
	Effect of Effort and Sampling

	Summary

	Adaptive Bug Isolation
	Overview of Adaptive Bug Isolation
	Practical Considerations

	Binary Instrumentation
	Basic Instrumentation and Reporting
	Static Removal of Instrumentation
	Binarization and Dynamic Removal
	Performance Impact

	Adaptive Instrumentation
	Forward Analysis of the Program
	Backward Analysis of the Program
	Scoring Heuristics
	Waiting for Sufficient Data
	Design Alternatives

	Evaluation
	Comparison of Heuristics
	Instrumentation Selectivity
	Multiple Bugs
	Performance Impact
	Comparison with Holmes

	Summary

	Identifying Failure-inducing Changes
	Conditional Coverage Estimation
	Basic Definitions
	Estimating Co-occurrence of Nodes
	Handling Function Calls
	Recursion and Loops
	Sources of Imprecision
	Change Impact Analysis

	Experimental Setup
	Performance

	Isolating Failure-inducing Changes
	Associating Changes with Predictors
	Associating Changes with Failing Locations
	Association using Forward Slices

	Summary

	Related Work
	Survey of Statistical Debugging Techniques
	Extensions from the CBI Project
	Fault Localization Tools

	Related Work for Compound Predicates
	Related Work on Adaptive Instrumentation
	Related Work for Conditional Coverage Profiles
	Change Impact Analyses
	Identifying Failure-inducing Changes
	Probabilistic Static Analyses

	Conclusion
	Interoperability of the Contributions
	Closing Thoughts

	Bibliography

