ElO: Error Handling 8 Occasionally Correct

Haryadi S. Gunawi, Cindy Rubio-Gonzalez,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, BelhtLib
Computer Sciences Department, University of Wisconsidis®a

Abstract Without correct error propagation, any comprehen-
sive failure policy is useless: recovery mechanisms and

The reliability of file systems depends in part on howPolicies cannot be invoked if the error is not propa-
well they propagate errors. We develop a static analy-9ated. Incorrect error propagation has been a signifi-
sis technique, EDP, that analyzes how file systems ang@ntproblemin many systems. For example, self-healing
storage device drivers propagate error codes. RunningyStems cannot heal themselves if error signals never
our EDP analysis on all file systems and 3 major storage'®ach the self-recovery modules [6, 26], components be-
device drivers in Linux 2.6, we find that errors are often Nind an interface do not receive error notifications [16],
incorrectly propagated; 1153 calls (13%) drop an error @nd distributed systems often obtain misleading error
code without handling it. codes [15, 30], which turns into frustration for human de-

We perform a set of analyses to rank the robustnesfU99ing. In summary, if errors are not propagated, then
of each subsystem based on the completeness of its éP—e effort spent detecting and recovering from those er-

ror propagation; we find that many popular file systemsrors [4.5, 18,21, 22, 28, 29]is Worthless.. ,

are less robust than other available choices. We con- 10 @nalyze how errors are propagated in file and stor-
firm that write errors are neglected more often than read ag((ja systelm _codeh we have develrc])p_ed a stat|cH§,ource-
errors. We also find that many violations are not corner- €0d€ analysis technique. Our technique, narBeor

case mistakes, but perhaps intentional choices. Finally,DeteCtion and Propagation (EDRjnalysis, shows how

we show that inter-module calls play a part in incorrect error codes flow through the file system and storage
error propagation, but that chained propagations do not. drivers. EDP performs a dataflow analysis by construct-

In conclusion, error propagation appears complex anding a function-call graph showing how error codes prop-
hard to perform correctly in modern systems.

agate through return values and function parameters.
We have applied EDP analysis to all file systems and
3 major storage device drivers (SCSI, IDE, and Software
1 Introduction RAID) implemented in Linux 2.6. We find thatrror
handling is occasionally correct Specifically, we see
The robustness of file systems and storage systems {fat low-level errors are sometimes lost as they travel
a major concern, and rightly so [32]. Recent work through the many layers of the storage subsystem: out
has shown that file systems are especially unreliablef the 9022 function calls through which the analyzed
when the underlying disk system does not behave as exrror codes propagate, we find that 1153 calls (13%) do
pected [20]. Specifically, many modern commodity file not correctly save the propagated error codes.
systems, such as Linux ext3 [31], ReiserFS [23], IBM's Our detailed analysis enables us to make a number of
JFS [1], and Windows NTFS [27], all have serious bugsconclusions. First, we find that the more complex the
and inconsistencies in how they handle errors from theile system (in terms of both lines of code and number of
storage system. However, the question remains unarfunction calls with error codes), the more likely it is to
swered as to why these fault-handling bugs are presentincorrectly propagate errors; thus, these more complex
In this paper, we investigate what we believe is onefile systems are more likely to suffer from silent failures.
of the root causes of deficient fault handlingcorrect Second, we observe that 1/O write operations are more
error code propagationTo be properly handled, a low- likely to neglect error codes than 1/O read operations.
level error coded.g, an “I/O error” returned from a de- Third, we find that many violations are not corner-case
vice driver) must be correctly propagated to the appropriimistakes: the return codes of some functions are con-
ate code in the file system. Further, if the file system issistently ignored, which makes us suspect that the omis-
unable to recover from the fault, it may wish to pass thesions are intentional. Finally, we show how inter-module
error up to the application, again requiring correct errorcalls play a major part in causing incorrect error propa-
propagation. gation, but that chained propagations do not.

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

Error Code Channel Channel _
Information Construction Analysis Single Full Subsystem
Endoont j— Subsystem (seconds) (seconds) Size (Kloc)
" Endpoints " Categorize
EIO construction error-complete, VFS 4 - 34
EROES = Channel err1ror—b|roken Mem. Mgmt. 3 - 20
construction: channels XES) 13 71
ENOMEM call path, * Fault inject i
dataflow brokenjchannel ReiserFS 3 8 24
analysis ext3 2 7 12
Apple HFS 1 6 5
VFAT 1 5 1
Figure 1. EDP Architecture. The diagram shows the All File Systems Together 47 372

framework for Error Detection and Propagation (EDP) analy-
sis of file and storage systems code.

Table 1: EDP Performance. The table shows the EDP

runtime for different subsystems. “Single” runtime remets

The rest of this paper is organized as follows. We de-he time to analyze each subsystem in isolation without-inte

scribe our methodology and present our results in Secaction with other subsystems (e.g., VFS and MM). “Full” run-
tion 2 and 3 respectively. To understand the root causeme represents the time to analyze a file system along wéth th
of the problem, we perform a set of deeper analyses ifyirtual file system and the memory management. The last row
Section 4. Section 5 and 6 discuss future work and ref€Ports the time to analyze all of the file systems together.

lated work respectively. Finally, Section 7 concludes.

2 Methodology The abstraction that we introduce in EDP is that error
codes flow alonghannelswhere a channel is the set of
To understand the propagation of error codes, we havéunction calls between where an error code is first gener-
developed a static analysis technique thatwe nem@& ated and where it is terminateel g, by being either han-
Detection and Propagation (EDP)n this section, we dled or dropped). As shown in Figure 1, EDP contains
identify the components of Linux 2.6 that we will ana- three major components. The first component identifies
lyze and describe EDP. the error codes that will be tracked. The second con-
structs the channels along which the error codes propa-
2.1 Target Systems gate. Finally, the third component analyzes the channels

_ 3nd classifies each as being either complete or broken.
In this paper, we analyze how errors are propagate

through the file systems and storage device drivers in Table 1 reports the EDP runtime for different subsys-
Linux 2.6.15.4. We examine all Linux implementations t€ms, running on a machine with 2.4 GHz Intel Pentium
of file systems that are located in 51 directories. Thesé CPU and 512 MB of memory. Overall, EDP analysis
file systems are of different types, including disk-baseds fast; analyzing all file systems together in a single run
file systems, network file systems, file system protocolsOnly takes 47 seconds. We now describe the three com-
and many others. Our analysis follows requests througiRonents of EDP in more detail.

the virtual file system and memory managementlayers as

well. In addition to file systems, we also examine three
major storage device drivers (SCSI, IDE, and software, .
RAJI D), as V\?ell as all Iower-lev(el drivers. Beyond these 221 Error Code Information
subsystems, our tool can be used to analyze other Linu

The first component of EDP identifies the error codes
components as well.

to track. One example i§l O, a generic error code

. that commonly indicates I/O failure and is used ex-
2.2 EDP Analysis tensively throughout the file system; for example,
The basic mechanism of EDP is a dataflow analysisin ext3, El O touches 266 functions and propagates
EDP constructs a function-call graph covering all caseghrough 467 calls. Besided O, many kernel subsys-

in which error codes propagate through return values otems commonly use other error codes as defined in
function parameters. To build EDP, we harness C In- ncl ude/ asm generi c/ errno. h. In total, there are
termediate Language (CIL) [19]. CIL performs source-hundreds of error codes that are used for different pur-
to-source transformation of C programs and thus can bposes. We report our findings on the propagation of 34
used in the analysis of large complex programs such abasic error codes that are mostly used across all file sys-
the Linux kernel. The EDP analysis is written as a CIL tems and storage device drivers. These error codes can
extension in 4000 lines of code in the OCaml language. be found ini ncl ude/ asm generi c/ err no- base. h.

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

2.2.2 Channel Construction fil ecops—read). Although this technique connects

The second component of EDP constructs ¢thannel ~ MOSt of the mappings, a function pointer assignment
in which the specified error codes propagate. A channefould still occur in an instruction rather than in a global
can be constructed from function calls and asynchronougtructure instance. Thus, our tool also visits all funcdion
wake-up paths; in our current analysis, we focus On|yandf|nds any assignment that maps an implementation to

on function calls and discuss asynchronous paths in Se@" interface. For example, if we find an assignment such

tion 5.3. asf op->read = nt f s_read, then we addt f s_read
We define a channel by its two endpoints: generatiod® the list off i I e_ops —r ead implementations.
and termination. Thegeneration endpoinis the func- In the last phase, we change function pointer calls to

tion that exposes an error code, either directly througtflirect calls. For example, if VFS makes an interface call
a return value €.g, the function contains aeturn Suchagf op->read) (), thenwe automatically rewrite
_El O statement) or indirectly through a function argu- SUch an assignment to:
ment passed by reference. After finding all generation _
endpoints, EDP marks each function that propagates the S‘Mtggsg .ekzzl{ ext2 read(): break:
error codes;propagating functionseceive error codes case ext3: ext3 read(): break:
from the functions that they call and then simply prop- case ntfs: ntfs_read(); break;
agate them in a return value or function parameter. The
termination endpoints the function in which an error
code is no longer propagated in the return value or a pa-
rameter of the function.

One of the major challenges we address when con
structing error channels is handling function pointers.
The typical approach for handling function pointers is

to implement a points-to analysis [13] that identifies the : !
2865 function pointer calls, we connect all except 564

set of real functions each function pointer might point :
at; however, field-sensitive points-to analyses can be exSalls (20%). The unconnected 20% of calls are due to in-

pensive. Therefore, we customize our points-to analysi§jlreCt implementation assignment. For example, we can-

to exploit the systematic structure that these pointers ex?0t map assignment such Bp- >read =T, wheref
hibit. is either a local variable or a function parameter, and not

First, we keep track of all structures that have function® fqncﬂon name. While it is feasible to traceba}ck such
pointers. For example, the VFS read and write interfaceé‘_sSlgnments using stro_ng(_ar and maore expensive analy-
are defined as fields in the | e_ops structure: sis, we assume that major interfaces linking modules t(_)-

gether have already been connected as part of global in-
struct file_ ops { stances. If all calls are connected, more error propagation
int (*read) chain can be analyzed, which means more violations are

int (~write) likely to be found.

Across all Linux file systems and storage de-
vice drivers, there are 191 structural interfacesy(
fileops), 904 function pointer fieldse(g, read),
5039 implementationse(g, ext2.read), and 2685
function pointer calls€.g, (f _op->read) ()). Out of

0
0
b

.Since each file sy_stem _needs to de_fine its OWN, 5 2 channel Analysis
fil e_ops, we automatically find all global instances of
such structures, look for the function pointer assignmentd he third component of EDP distinguishes two kinds
within the instances, and map function-pointer imple-0f channels: error-complete and error-broken channels.
mentations to the function pointer interfaces. For examAn error-completechannel is a channel that minimally

ple, ext2 and ext3 define their file operations like this: checks the occurrence of an error. An error-complete
channel thus has this property at its termination endpoint:
struct file_ops ext2_f_ops {

.read = ext2_read; 3 if (expr) { ... }, where
.wite = ext2_wite; errorCodeVariable C expr
b
struct f'd' °_0ps oxt 3_8__095 { which states that an error code is considered checked if
e = extaur it there exist ari f condition whose expression contains
}: - the variable that stores the error code. For example, the

functiongoodTer ni nat i onEndpoi nt in the code seg-
Given such global structure instances, we add the inment below carries an error-complete channel because
terface implementationse(g, ext 2_read) to the im- the function saves the returned error code (line 2) and
plementation list of the corresponding interfacegy(checks the error code (line 3):

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

1 voi d goodTer ni nati onEndpoi nt () { these characteristics. Nevertheless, by just focusing on
2 i Pt err = generationEndpoint(); the propagation of basic error codes via function call, we
i I (err) have found numerous violations that need to be fixed.
5} A more complete tool that covers the properties above
6 int generationEndpoint () { would uncover even more incorrect error handling.

7 return -El O

81}

3 Results

%e have performed EDP analysis on all file systems and
torage device drivers in Linux 2.6.15.4. Our analysis
tudies how 34 basic error codesd, El OandENOVEM

8efined in i ncl ude/ asm generi c/ errno-base. h

propagate through these subsystems. We examine these

basic error codes because they involve thousands of func-
tions and propagate across thousands of calls.
In these results, we distinguish two types of viola-
. tions that make up an error-broken channel: unsaved and
ther unsaveduncheckedor overwritten For example, .
unchecked error codes (overwritten codes have been de-

the functiorbadTer mi nat i onEndpoi nt below carries ferred to future work; see Section 5.1 for more informa-
an error-broken channel of unchecked type because ﬂ}e

function saves the returned error code (line 2) but itneverlon)' An unsaved error codés found when a callee
.) i propagates an error code via the return value, but the
checks the error before the function exits (line 3):

caller does not save the return valie.(it is treated

Note that an error could be checked but not handle
properlye.g.no error handling in thef condition. Since
error handling is usually specific to each file system, an
hence there are many instances of it, we decided to b
“generous” in the way we define how error is handled,
i.e. by just checking it. More violations might be found
when we incorporate all instances of error handling.

An error-brokenchannel is the inverse of an error-
complete channel. In particular, the error code is ei-

1 voi d badTer mi nati onEndpoi nt () { as a void-returning call even though it actually returns an
2 int err = generationEndpoint(); error code). Throughout the paper, we refer to this type
i) return; of broken channel as @#&d call” An unchecked error

codeis found when a variable that may contain an error

An error-broken channel is a serious file system bugcode is ne_lther checked nor used in the future; we always
refer to this case as an unchecked code.

because it can lead to a silent failure. In a few cases,
we inject faults in error-broken channels to confirm the
existejnce of silent failures. We utilize our block-level 3.1 Unsaved Error Codes

fault injection technique [20] to exercise error-broken First, we report the number of error-broken channels due
channels that relate to disk I/O. In a broken channelto a caller simply not saving the returned error code
we look for two pieces of information: which workload (i.e., the number of bad calls). The simplified HFS
and which failure led us to that channel. After finding code below shows an example of unsaved error code.
the necessary information, we run the workload, injectThe functionfi nd.i nit accepts a new uninitialized
the specific block failure, and observe the 1/O traces and i nd_dat a structure (line 2), allocates a memory space
the returned error codes received in upper layerg,(for the sear ch key field (line 3), and returnENOVEM

the application layer) to confirm whether a broken chan-error code when the memory allocation fails (line 5).
nel leads to a silent failure. The reader will note thatHowever, one of its caller$; | e_| ookup, does not save
our fault-injection technique is limited to disk 1/O re- the returned error code (line 10) but tries to access the
lated channels. To exercise all error-broken channelssear ch_key field which still points toNULL (line 11).
technigues such as symbolic execution and directed tesHence, a null-pointer dereference takes place and the
ing [9, 10] that simulate the environment of the compo-system could crash or corrupt data.

nent in test would be of great utility.
1// hfs/bfind.c

224 Limitations 2int find_init(find_data *fd) {

3 fd->search_key = kmalloc(..)
Error propagation has complex characteristics: correct 4 if (!fd->search_key)
error codes must be returned; each subsystem uses both 2 return - ENOVEM

generic and specific error codes; one error code could 5 }
be mapped to another; error codes are stored not only 8 // hfs/inode.c
in scalar variables but also in structuresg, control 9 int][i | g_l OOKEJ][J((j; {/ /

. 0 ind_init ; [+ NOT-SAVED E. C =
Iglocks), and error codes flow not_ o_nly through func . fd->search key->cat = ... /+ BADI! +/
tion calls but also asynchronously via interrupts and call- 1,

backs. In our static analysis, we have not modeled all 13 }

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

Viol# Caller — Callee Filename Line#
A file_lookup findinit inode.c 493
B fill _super findinit super.c 385
C lookup findinit dir.c 30
. LEGEND
D brecupdtprnt __brecfind | brec.c 405 Py
E brecupdtprnt __brecfind | brec.c 345 @ Error-broken (\A/}‘ Function A calls
F catdelete freefork | catalog.c 228 termination endpoint l function B (and
G catdelete findinit catalog.c 213 B) error-code flows
H catcreate findinit catalog.c 95 Zj Generation endpoint NP from B to A)
| file_trunc freeexts extent.c 507 £ h |
) U rror channe
J f!le_trunc f_reeg)fts extent.c 497 (function) Propagate function
K file_trunc find.init extent.c 494 =" and generation endpoint
L extwrite_ext find.init extent.c 135 Viol # Broken channel
M extreadext findinit extent.c 188 S : —— (tagged with
N Propagate function LI
N brecrmv _brecfind | brec.c 193 (function) ~ - zrr%r-complete violation label)
O readdir findinit dir.c 68 termination endpoint
P catmove findinit catalog.c 280
Q brecinsert __brecfind | brec.c 145
R freefork freeexts extent.c 307
S freefork find.init extent.c 301
(getﬁ&ocks?
Gk map_aloe
|
(ur)lipKi“Iﬁ[mdi[:i‘ (g{{(::nd |_file>

1 [

b

rd
calfdelete m ead_e add_ext

‘ A

-) |l
R M

S @D | (free_exts

. find_init brec_goto

Figure 2: A Sample of EDP Output. The lower figure depicts the EDP output for the HFS file sys@ome function names
have been shortened to improve readability. As summarizgeeiupper right legend, a gray node with a thicker borderespnts
a function that generates an error code. The other gray negeasents the same thing, but the function also propaghgesrtor
code received from its callee. A white node represents a @oction, i.e. it either propagates the error code to itslealor

if it does not propagate the error code it minimally checks énror code. A black node represents an error-broken teatiom
endpoint, i.e. it is a function that commits the violationuoaved error codes. The darker and thicker edge comingromi &
black node implies a broken error channel (a bad call); amerode actually flows from its callee, but the caller drops #rror
code. For ease of debugging, each bad call is labeled witloktion number whose detailed information can be found éupper
left violation table. For example, violation #E found in thettom left corner of the graph is a bad call madeltsyec _updt _pr nt
when calling__br ec_f i nd, which can be located ifis/ hf s/ br ec. ¢ line 345.

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

HFS+ [22bad /84 calls, 26%]

Figure 3: More Samples of EDP Output. The figures illustrate the prevalent problem of incompleterepropagation
across different types of file systems. Details such asitmcames and violation numbers have been removed. Graysedge
represent calls that propagate error codes. Black edgesesgmt bad calls. The number of edges are reported in [X /Y] Z%
format where X and Y represent the number of black and all(grad black) edges respectively, and Z represents the dracti X

and Y. For more information, please see the legend in Figure 2

Appears in the Proceedings of the 6th USENIX ConferenceleraRd Storage Technologies (FAST '08)

IBM JFS [61 bad/340 calls, 18%]

S —r o) N0) ﬂ
N o \eee ol 1], 2 e d
WV~ | T — =
iV TR \

.

) [\ ‘}/ /// |

(o] o b oo To— @ DO Q 6)
s DR TN I
[I \\
ANa / ® ?Q??})? \q
| AN
| MR SRS

i \~

00200 OOQOOO!O
700

:7{ O%QQ 1 \ 3

Figure 4:More Samples of EDP Output (Cont'd). Please see caption in Figure 3.

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

File Systems File Systems (Cont'd)

Bad EC Size Frac Viol/ Bad EC Size Frac Viol/

Calls Calls (Kloc) (%) Kloc Calls Calls (Kloc) (%) Kloc
XFS 101 1457 71 6.9 1.4 FUSE 4 48 3 8.3 1.5
Virtual FS 96 1149 34 8.4 2.9 Automounter4 4 53 2 7.5 2.7
IBM JFS 95 390 17 244 5.6 NFS Lockd 3 21 4 143 0.8
ext3 80 362 12 221 7.2 Relayfs 2 5 1 40.0 2.7
NFS Client 62 482 18 129 3.6 Partitions 2 3 4 66.7 0.6
CIFS 43 339 21 127 2.1 ISO 2 19 3 105 0.7
ReiserFS 42 399 24 105 1.8 HugeTLB Sup 2 10 1 20.0 3.0
Mem. Mgmt. 40 351 20 114 2.0 Compr. ROM 2 3 1 66.7 4.5
Apple HFS+ 25 98 7 255 3.7 ADFS 2 30 2 6.7 1.3
JFFS v2 24 153 11 15.7 2.2 sysfs sup. 1 29 2 34 0.8
Apple HFS 20 76 5 263 4.8 romfs sup. 1 3 1 333 2.4
SMB 19 196 6 9.7 3.5 ramfs sup. 1 6 1 16.7 6.0
ext2 18 103 6 175 3.3 QNX 4 1 8 2 125 0.9
AFS 16 62 7 258 2.6 proc fs sup. 1 44 6 2.3 0.2
NTFS 15 186 18 8.1 0.9 0S/2 HPFS 1 18 6 5.6 0.2
NFS Server 15 265 14 5.7 1.2 FreeVxFS 1 4 2 250 0.7
NCP 13 169 5 7.7 2.6 EFS 1 3 1 333 1.4
UFS 12 44 5 273 2.6 devpts 1 2 1 50.0 6.2
JBD 10 43 4 23.3 2.6 Boot FS 1 9 1 111 1.2
FAT 9 81 4 111 2.9 BeOS 1 5 3 20.0 0.5
Plan 9 9 80 4 112 2.4 Automounter 1 41 2 2.4 1.0
System V 7 30 3 233 3.2 Amiga FFS 1 34 3 29 0.3
JFFS 7 56 5 125 1.4 exportfs sup. 0 1 1 0.0 0.0
UDF 6 50 9 120 0.7 Coda 0 149 3 00 0.0
MSDOS 5 39 1 128 9.3
VFAT 4 39 1 103 5.0 Total 833 7278 366 - -
Minix 4 31 4 129 1.2 Average 16.3 142.7 7.2 17.0 2.4

Storage Drivers Storage Drivers (Cont'd)

Bad EC Size Frac Viol/ Bad EC Size Frac Viol/

Calls Calls (Kloc) (%) Kiloc Calls Calls (Kloc) (%) Kiloc
SCSiI (root) 123 628 198 19.6 0.6 IDE legacy 2 3 3 66.7 0.8
IDE (root) 53 223 15 23.8 35 Blk Layer Core 2 65 8 3.1 0.3
Block Dev (root) 39 195 36 20.0 1.1 SCSI megaraid 1 30 6 3.3 0.2
Software RAID 31 290 32 107 1.0 Blk Dev (Eth) 1 5 2 200 0.7
SCSI (aacraid) 30 76 7 395 4.8 SCSI(sym53c8) 0 6 10 00 0.0
SCSiI (Ipfc) 14 30 16 46.7 0.9 SCsI (gla2xxx) 0 8 49 0.0 0.0
Blk Dev (P-IDE) 11 17 8 64.7 1.5
SCSI aic7xxx 8 62 37 129 0.2 Total 320 1744 430 - -
IDE (pci) 5 106 12 47 0.4 Average 21.3 116.3 28.6 22.4 1.1

Table 2:Error-broken channels due to unsaved error codes. These tables report the number of bad calls found across
all file systems and storage device drivers in Linux 2.6.15Meach table, from left to right column we report the namehef
subsystem, the number of bad calls, the number of error éiarfine., the number of calls to functions that propagaterecodes),

the size of the subsystem, the fraction of bad calls overmit-eclated calls (ratio of 2nd and 3rd column), and finatlye number

of violations per Kloc (ratio of 2nd and 4th column). We catéze a directory as a subsystem. Thus, for storage driv@nge
different SCSI device drivers exist in the first-level of sleesi / directory, we put all of them as one subsystem. SCSI device
drivers that are located in different directories (e.ggsi /| pf ¢/, scsi/ aacrai d/) are categorized as different subsystems.
The same principle is applied to IDE.

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

To show how EDP is useful in finding error propaga- these file systems, error-codes propagate throughout 180
tion bugs, we begin by showing a sample of EDP analysi¢o 340 function calls. The error propagation in NFS is
for a simple file system, Apple HFS. Then, we presentmore structured compared to other file systems. Finally,
our findings on all subsystems that we analyze, and fiamong all file systems we analyze, XFS has the most

nally discuss false positives. complex error propagation chain; almost 1500 function
calls propagate error-codes. Note that each graph in Fig-
3.1.1 EDP on Apple HFS ures 3 and 4 was produced by analyzing each file sys-

Figure 2 depicts the EDP output when analyzing thetem in isolation (e., the graph only shows intra-module
propagation of the 34 basic error codes in the Apple HFSUt not inter-module calls), yet they already illustrate th
file system. There are two important elements that EDFEomplexity of error code propagation in each file sys-
produces in order to ease the debugging process. Fird€m. Manual code inspection would require a tremen-
EDP generates an error propagation graph that only indous amount of work to find error-propagation bugs.
cludes functions and function calls through which the an- Next, we analyzed the propagation of error codes
alyzed error codes propagate. From the graph, one ca#cross all file systems and storage device drivers as a
easily catch all bad calls and functions that make the bathole. All inter-module calls were connected by our
calls. Second, EDP provides a table that presents morfgéDP channel constructor, which connects all function

detailed information for each bad cadl.¢, the location ~ pointer calls; hence, we were able to catch inter-module
where the bad call is made). bad calls in addition to intra-module ones. Table 2 sum-

Using the information that EDP provides, we found Marizes our findings. Note that the number of violations
three major error-handling inconsistencies in HFS. Firstfeported is higher than the ones reported in Figures 2, 3,
11 out of 14 calls td i nd_i ni t drop the returned er- and 4 because we catch more bugs when we analyze each
ror codes. As described earlier in this section, this budile system in conjunction with other subsysteresy(
could cause the system to crash or corrupt data. Se@xt3 with the journaling layer, VFS, and the memory
ond, 4 out of 5 total calls to the functianbr ec_fi nd management).
are bad calls (as indicated by the four black edges, E, Surprisingly, out of 9022 error channels, 1153 (or
D, N, and Q, found in the lower left of the graph). The nearly 13%) constitute bad calls. This appears to be
task of this function is to find a record in an HFS node@ long-standing problem. We ran a partial analysis in
that best matches the given key, and retBR@ENT (no Linux 2.4 (not shown) and found that the magnitude
entry) error code if it fails. The only call that saves this Of incomplete error code propagation is essentially the
error code is made by the wrapper,ec_find. Inter- sSame. In Section 4, we try to dissect the root causes of
estingly, all 18 calls to this wrapper propagate the errotthis problem.
code properly (as indicated by all gray edges coming into .
the function). 3.1.3 False Positives

Finally, 3 out of 4 calls td r ee_ext s do not save the Itis important to note that while the number of bad calls
returned error code (labeled R, I, and J). This functionis high, not all bad calls could cause damage to the sys-
traverses a list of extents and locates the extents to biem. The primary reason is what we callauble error
freed. If the extents cannot be found, the function returngode some functions expose two or more error codes at
El O. More interestingly, the developer wrote a commentthe same time, and checking one of the error codes while
“panic?” just before the return statement (maybe in thegnoring the others can still be correct. For example, in
hope that in this failure case the callers will call panic, the ReiserFS code below, the error code returned from
which will never happen if the error code is dropped).sync_di rty_buf f er does not have to be saved (line 8)
By and large, we found similar inconsistencies in all theif and only if the function performs the check on the
subsystems we analyzed. The fact that the fraction osecond error code (line 9); the buffer must be checked
bad calls over all calls to a function is generally high is whether it is is up-to-date.

intriguing, and will be discussed further in Section 4.3. 11/ fs/buffer. c

. . 2 int sync_dirty_buffer (buffer_head* bh) {
3.1.2 EDP on All File Systems and Storage Drivers

Figure 3 and 4 show EDP outputs for six more file sys-
tems whose error-propagation graphs represent an inter-
esting sample. EDP outputs for the rest of the file sys-
tems can be downloaded from our web site [11]. A small
file system such as HFS+ has simple propagation chains, 50
yetbad calls are still made. More complex error propaga- 11
tion can be seen in ext3, ReiserFS, and IBM JFS; within 12 }

return ret; // RETURN ERROR CODE
}
/1 reiserfs/journal.c
int flush_commt _list() {
sync_dirty_buffer(bh); // UNSAVED EC
if (!buffer_uptodate(bh)) {
return -El O

©oo~NOO U~ W

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

journal _recover ()
/* BROKEN CHANNEL =*/
sync_bl ockdev();

journal_recover

sync_bl ockdev()

ST nolblooasy ret = fmfdatawite();
q\r—/> err = fmfdatawait();
/ \ if(lret) ret = err;
o e e e [+ PROPAGATE EI O */
(flemap fdatawait @T?E—Eaiﬂv@ return ret;

Figure 5:Silent error in journal recovery. In the figure
on the left, EDP markgour nal _r ecover as atermination

terminates. All these three operations could return er-
ror codes, but the implementation@fsd_dosync does
not save any return values. As a result, the NFS client
will never notice any disk write failures occurring in the
server. Thus, even a careful, error-robust client cannot
trust the server to inform it of errors that occur.

In the NFS server code, we might expect that at least
one return value would be saved and checked properly.
However, no return values are saved, leading one to ques-

endpoint of a broken channel. The code snippet on the rightion whether the returned error codes from the t e

shows thaj our nal r ecover ignores theEl O propagated
bysync_bl ockdev.

To ensure that the number of false positives we repor
is not overly large, we manually analyze all of the code
shippets to check whether a second error code is bein

or sync operations are correctly handled in general. It
could be the case that the developers are not concerned
about write failures. We investigate this hypothesis in
§ection 4.2.

3.3 Unchecked Error Code

checked. Note that this manual process can be automategstly, we report the number of error-broken channels

if we incorporate all types of error codes into EDP. We
have found only a total of 39 false positives, which have

due to a variable that contains an error code not being
checked or used in the future. For example, in the IBM

been excluded from the numbers we report in this papeFS code belowr c carries an error code propagated

Thus, the high numbers in Table 2 provide a hintto a real
and critical problem.

3.2 Silent Failures: Manifestations of
Unsaved Error Codes

To show that unsaved error codes represent a serious
problem that can lead to silent failures, we injected disk

block failures in a few cases. As shown in Figure 5,
one serious silent failure arises during file system recov
ery: the journaling block device layer (JBD) does not
properly propagate any block write failures, including in-
ode, directory, bitmap, superblock, and other block write

fromt xCommi t (line 4), butr c is never checked.

1// jfsljfs_txnnmgr.c

2int jfs_sync () {

int rc;

rc = txComit(); // UNCHECKED 'rc’
/1 No usage or check of 'rc’

/1 after this line

~N~No obhw

}

This analysis can also report false positives due to the
double error code problem described previously. In ad-
dition, we also find the problem @iverloaded variables
that contribute as false positives. We define a variable to
be overloaded if the variable could contain an error code

failures. EDP unearths these silent failures by pinpoint-yy 5 data value. For instandg,knumin the QNX4 code

ing thej our nal _recover function, which is responsi-
ble for file system recovery, as it calync_bl ockdev
to flush the dirty buffer pages owned by the block de-
vice. Unfortunatelyj our nal _recover does not save
the error code propagated bync_bl ockdev inthe case
of block write failures. This is an example where the
error code is dropped in the middle of its propagation
chain;sync_bl ockdev correctly propagates th# Oer-
ror codes received from the two function calls it makes.
A similar problem occurs in the NFS server code.
From a similar failure injection experiment, we found
that the NFS client is not informed when a write fail-
ure occurs during aync operation. In the experiment,
the client updates old data and then sendgrc oper-

below is an example of an overloaded variable:

1 // qgqnx4/dir.c
2 int gnx4_readdir () {
int bl knum
struct buffer_head *bh;
bl knum = gnx4_bl ock_map();
bh = sb_bread (bl knun;
if (bh NULL)
/] error

©oo~NOO O~ W

}

In this code,qnx4_bl ock_map could return an er-
ror code (line 5), which is usually a negative value.
sb_br ead takes a block number and returns a buffer head
that contains the data for that particular block (line 6).

ation with the data to the NFS server. The NFS serveiSince a negative block number will lead towaLL buffer

then invokes thef sd_dosync operation, which mainly
performs three operations similar to thenc bl ockdev

head (line 7), the error code storeduhknumdoes not
have to be explicitly checked. The developer believes

call above. First, the NFS server writes dirty pages to thehat the other part of the code will catch this error or
disk; second, it writes dirty inodes and the superblockeventually raise related errors. This practice reduces the

to disk; third, it waits until the ongoing I/O data transfer

10

accuracy of our static analysis.

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

based on two rankings. In both rankings, we only ac-

By % Broken By Viol/Kloc count file systems that are at least 10 Kloc in size with at
Rank | FS Frac.| FS Viol/kloc least 50 error-related callse. we only consider “com-

1 IBM JFS 24.4| ext3 7.2 plex” file systems.
2 ext3 22.1| IBMJFS 5.6 L.
3 JEES v2 15.7| NES Client 36 A noteworthy observation is that ext3 and IBM JFS
4 NES Client 12.9| VFS 29 are ranked as the two least robust file systems. This fact
5 CIES 12.7| JEESv2 2.2 affirms our earlier findings on the robustness of ext3 and
6 MemMgmt 11.4| CIFS 2.1 IBM JFS [20]. In this prior work, we found that ext3
7 ReiserFS 10.5 MemMgmt 2.0 and IBM JFS are inconsistent in dealing with different
8 | VFS 8.4 | ReiserFS 18 kinds of disk failures. Thus, it might be the case that
9 | NTFS 8.1| XFS 1.4 these inconsistent policies correlate with inconsistent e
10 | XFS 6.9 | NFS Server 1.2 ror propagation.

Among storage device drivers, it is interesting to com-
Table 3: Least Robust File Systems. The table shows Pare the robustness of the SCSI and IDE subsystems. If
the ten least robust file systems using two ranking systems. Iwe compare SCSI and IDE subsystems using the first
the first ranking system, file system robustness is rankestlbas ranking system, SCSI and IDE are almost comparable
on the fraction of broken channels over all error channetg(t (21% vs. 18%). However, if we compare them based
5th column of Table 2). The second ranking system sorts fileyn the second ranking system, then the SCSI subsystem
systems based on the number of broken channels found in evey qimost four times more robust than IDE (0.6 vs. 2.1
Kloc (the 6th column of Table 2). errors/Kloc). Nevertheless it seems the case that SCSI
utilizes basic error codes much more than IDE does.
Since the number of unchecked error code reports is When the robustness of storage drivers and file sys-
small, we were able to remove the false positives and findems is compared using the first ranking, on average stor-
a total of 3 and 2 unchecked error codes in file systemsige drivers are less robust compared to file systems (22%
and storage drivers, respectively, that could lead totsilenvs. 17%, as reported in the last rows of Table 2). On the

failures. other hand, in the second ranking system, storage drivers
are more robust compared to file systems (1.1 vs. 2.4
4 Analysis of Results mistakes/Kloc). From our point of view, the first rank-

ing system is more valid because a subsystem could be
In the following sections, we present five analysescomprised of submodules that do not necessarily use er-
whereby we try to uncover the root causes and impacfor codes; what is more important is the number of bad
of incomplete error propagation. Since the number ofca|is in the population of all error-related calls.
unchecked and overwritten error codes is small, we only

consider unsaved error codes (bad calls) in our analy- .
ses; thus we use “bad calls” and “broken channels” in-4-2 Neglected Write Errors

terchangeably from now on. First, we made a correlans mentioned in Section 3.2, we have observed that er-
tion between robustness and complexity. Second, we anpr codes propagated im i t e or sync operations are
alyzed whether file SyStemS and Storage device driveréften ignored_ ThUS, we investigate how many write er-
give different treatment to errors occurring in I/O read rors are neglected compared to read errors. This study
vs. I/O write operations. From that analysis we find thatjs motivated by our findings in that section as well as by
many write errors are neglected; hence we perform theyr earlier findings where we found that at least for ext3,
next study in which we try to answer whether ignored er-read failures are detected, but write errors are often ig-
rors are corner-case mistakes or intentional choices. Inored [20].

the final two analyses, we analyze whether chained er- 1q nerform this study, we filter out calls that do not re-

ror propagation and inter-module calls play major partSaie to read and write operations. Since it is impractical

In causing incorrect error propagation. to do that manually, we use a simple string comparison
. to mark calls that are relevant to our analysis. That is
4.1 Complexity and Robustness we only take a caller-callee pair where the callee con-
In our first analysis, we would like to correlate the num- tains the string ead, wri t e, sync, orwai t . We include
ber of mistakes in a subsystem with the complexity ofwai t -type calls because in many casest -type callees
that subsystem. For file systems, XFS with 71 Kloc hag(e.g, fi | emap_dat awai t) represent waiting for one or
more mistakes than other, smaller file systems. Howevernore 1/0 operations and could return error information
it is not necessary that XFS is seen as the least robust filen the operation. Thus, in our study,i t e-, sync-, and
system. Table 3 sorts the robustness of each file systemai t -type calls are categorized as write operations.

11

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

Bad EC Frac. CDF of Inconsistency Frequency vs. #Bad Calls

Callee Type Calls Calls (%) 1153 ‘ ‘ ‘ ‘ 1
Read 26 603 4.3 » 1000 08 o
Sync 70 236 29.7 3 T8
Wait 27 70 386 g 8007 1 0s 8
Write 80 598 13.4 £ 600l 17
Sync+Wait+Write 177 904 19.6 H ! o =
Specific Callee S 400 t 1 E
filemapf dat awai t 22 29 759 E 1 o2 3

filemap_fdatawite 30 47 63.8 O 2007 10

sync_bl ockdev 15 21 714 0+ ‘ ‘ 0

0 20 40 60 80 100

Inconsistency Frequency

Table 4: Neglected write errors in file system code.
The table shows that read errors are handled more correctlyFigure 6:Inconsistent calls frequency. The figure shows
than write errors. The upper table shows the fraction of bad thatinconsistent calls are not corner-case bugs. The z-&(-
calls over four category of calls: read, sync, wait, and writ resents the inconsistent-call frequency of a function. 0842
The later three can be categorized as a write operation. Themeans that there is one bad call out of five total calls; x=80%
lower table shows neglected write errors for three spedificf ~ means that there are four bad calls out of five total calls. The
tions. The 297) violated read calls are all related to reada- left y-axis counts the cumulative number of bad calls. Fer ex
head and asynchronous read; in other words, all error codesample, below the 20% mark, there are 80 bad calls that have
returned in synchronous reads are being saved and checked. an inconsistent-call frequency of less than 20%. As repldrte
Table 2, there exist a total of 1153 bad calls. The right ysaxi
shows the cumulative fraction of bad calls over the 1153 bad

The upper half of Table 4 reports our findings. The ¢aS-

last column shows how often errors are ignored in the
file system code. Interestingly, file systems have ateng 3 |nconsistent Calls:
dency to correctly handle error code; propagated from Corner Case or Majority?
r ead-type calls, but not those fromw i t e-type calls
(4.3% vs. 19.6%). The 29 (4.3%) unsaved read erroin this section, we consider the nature intonsistent
codes are all found in readahead operations in the mengalls. For example, we found that 1 out of 33 calls to
ory management subsystem; it might be acceptable to ig-de_set up_pci _devi ce does not save the return value.
nore prefetch read errors because such reads can be re@ne would probably consider this single call as an in-
sued in the future whenever the page is actually read. consistent implementation because the majority of the
As discussed in Section 3.1, a function could returncalls to that function save the return value. On the
more than one error code at the same time, and checkingther hand, we also found that 53 out of 54 calls to
only one of them suffices. However, if we know that a unr egi st er fi | esyst emdo not save the return error
certain function only returns a single error code and yetcodes. Assuming that most kernel developers are essen-
the caller does not save the return value properly, thetially competent, this suggests that it may actually be safe
we would know that such call is really a flaw. To find to not check the error code returned from this particular
real flaws in the file system code, we examined three imfunction.
portant functions that we know only return single error To quantify inconsistent calls, we define the-
codes: sync_bl ockdev, fil emapfdatawite, and consistent call frequencyf a function as the ratio
fil emap_fdat awai t . A file system that does not check of bad calls over all error-related calls to the func-
the returned error codes from these functions would obtion, and correlate this frequency with the number of
viously let failures go unnoticed in the upper layers. bad calls to the function. For example, the incon-
The lower half of Table 4 reports our findings. Many sistent call frequencies farde_set up_pci bl ockdev
error codes returned from the three methods are simplgndunr egi ster fi | esyst emare 3% (1/33) and 98%
not saved £ 63% in all cases). Two conclusions might (53/54) respectively and the numbers of bad calls are 1
be drawn from this observation. First, this could sugges@ind 53 respectively.
that higher-level recovery code does not exist (since if it Figure 6 plots the cumulative distribution function of
exists, it will not be invoked due to the broken error chan-this behavior. The graph could be seen as a means to
nel), or it could be the case that errors are intentionallyprioritize which bad calls to fix first. Bad calls that fall
neglected. We consider this second possibility in greatebelow the 20% mark could be treated @sner cases
detail in the next section. i.e.we should be suspicious on one bad call in the midst

12

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

of four good calls to the same function. On the other
hand, bad calls that fall above the 80% mark could hint B""lfl Ecli Fgac.
that either different developers make the same mistake Cals _Calls (%)

. . o . File Systems
?nkd ignore it, or it is probably safe to make such a mis rermodlle 307 1944 158
aKe. . o . Inter-file 367 2786 13.2
One perplexing phenomenon visible in the graph is Intra-file 159 2548 6.2

that around 871 bad calls fall above the 50% mark. In Storage Drivers

other words, they cannot be considered as corner-case Inter-module 28 199 241
bugs; the developers might be aware of these bad calls, Inter-file 92 495 18.6
but probably justignore them. One thing we have learned Intra-file 180 1050 17.1

from our recent work on file system code is that if a file
system does not know how to recover from a failure, it
has the tendency to just ignore the error code. For examlable 5: Calls based on location distance. The ta-
ple, ext3 ignores write failures during checkpointing sim- ble shows that the fraction of bad calls in inter-module sél
ply because it has no recovery mechanisng{ chained higher than the one in |nt§r-flle calls. Slmllar‘l‘y, mtereﬂtalls
transactions [12]) to deal with such failures. Thus, wedre less r_obust thar_l |r_1tra-f|Ie calls. Note that mtc_er-flleéfers

. - to cross-file calls within the same module. Inter-file calisoas
Sl_JSpeCt that there are dee_per design Shortc_om'ngs bﬁﬁ‘ferent modules are categorized as inter-module.
hind poor error code handling; error code mismanage-
ment may be as much symptom as disease.

Our analysis is similar to the work of Engletal.on direct-error and propagate-error calls are similar for file
findings bugs automatically [8]. In their work, they use system code but the other way around for storage driver
existing implementation to imply beliefs and facts. Ap- code. In particular, for file systems, the ratio of bad over
plying their analysis to our case, the bad calls that fallall direct-error calls is 10%, and the ratio of bad over all
above the 80% mark might be considered as good callaropagate-error calls is 14%. For storage drivers, they
However, since we are analyzing the specific problemare 20% and 15% respectively.
of error propagation, we use that semantic knowledge Lastly, in the second characteristic, we categorized
and demand a discipline that promotes checking an erragalls based on the location distance between a caller
code in all circumstances, rather than one that followsand a callee. In particular, we distinguish three calls:

majority rules. inter-module, inter-file (but within the same module),
and intra-file calls. Table 5 reports that intra-file calls
4.4 Characteristics of Error Channels are more robust than inter-file calls, and inter-file calls

are more robust than intra-file calls. For example, out of
1944 inter-module calls in which error codes propagate
in file system, 307 (16%) of them are bad calls. How-

Finally, we study whether the characteristic of an error
channel has an impact on the robustness of error cod
propagation in that channel. In particular, we explore) K oS
two characteristics of error channels: one based on th&Ve": out of 2786 inter-file calls within the same module,

. . . 0, -fi
error propagation distance and one based on the locatio ere are only 367 (13%) bad calls. Intra-file c_alls only
distance (inter- vs. intra-file calls). exhibit 6% bad calls. The same pattern occurs in storage

With the first characteristic, we would like to find out device drivers. Thus, we conclude that the location dis-

whether error codes are lost near the generation endpoi nce between the caller and the callee plays a role in the
or somewhere in the middle of the propagation Chain_robustness of the call.

We distinguish two calls: direct-error and propagate-

error calls. In adirect-error call, the callee is an error- 5 Future Work

generation endpoint. In@opagate-error callthe callee In this section. we discuss some of the iSSUes we previ-
is not a generation endpoint; rather it is a function that ! lon, we ciscu ISSUES We previ

propagates an error code from one of the functions that i9usly defer_red regarding hO.W to build _complete and ac-
calls,i.e. it is a function in the middle of the propagation curate static error propagation analysis. In general, we

chain. Next, we define baddirect-error (or propagate- plan to refine our static analysis with the intention of un-
error) call as a direct-error (or propagate-error) calt thaf[:;r\rl]esrggkmore violations within the file and storage sys-
does not save the returned error code. '

Initially, we assumed that the frequency of bad .
propaga)tle-error calls would be higher?han t)rl1at of bad5'1 Overwritten Error Codes
direct-error calls; we assumed error codes tend to bén this paper, we examined broken channels that are
dropped in the middle of the chain rather than near thecaused by unsaved and unchecked error codes; broken
generation endpoint. It turns out that the number of bacthannels can also be causeddwerwritten error codes

13

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

in which the container that holds the error code is over-of containers. A complete EDP analysis must recognize
written with another value before the previous error isall transformations. With a more complete analysis, we
checked. For example, the CIFS code below overwritegxpect to see even more violations.

(line 6) the previous error code received from another

call line 4). 5.3 Asynchronous Error Channels
; (/tCiSf sg;;an_sm” . C Finally, we plan to expand our definition of error chan-
3 'n i ﬁ? rcf:e' ve O { nels to includeasynchronous pathdNe briefly describe
4 rc = cifs_sign_smb(); // PROPAGATE E.C. two examples of asynchronous paths and their complex-
5 ... /1 No use of "rc’ here ities. First, when a lower layer interrupts an upper one
g } re = smb_send(); // OVERWRITTEN to notify it of the completion of an 1/O, the low-level

I/0O error code is usually stored in a structure located in

Currently, EDP detects overwritten error codes, but reh€ heap; the receiver of the interrupt should grab the
ports too many false positives to be useful. We are in thestructure.and check the error it carries, .but tracking this
process of fine-tuning EDP so that it provides more accuPropagation through the heap is not straightforward. An-
rate output. The biggest problem we have encountered i@ther example occurs during journaling: a journal dae-
due to the nature of the error hierarchy: in many cases, 10N is woken up somewhere in theync() path and
less critical error code is overwritten with a more critical Propagates a journal error code via a global journal state.
one. For example, in the memory management code paVhen we consider asypchr_onous error channels, we also
low, when first encountering a page error, the error codé€xPect the number of violations to increase.
is set toEl O (line 6). Later, the function checks whether
the flags of amp structure carry a no-space error code6 Related Work
(line 8). If so, theEl Oerror code is overwritten (line 9)
with a new error cod&NOSPC. Previous work has used static techniques to understand

variety of problems in software systems. For example,

177 i filemap. c Meta-level compilation (MC) [7, 8] enables a program-

2 int wait_on_page_witeback _range (pg, map) {

3 int ret = 0 mer to write simple, system-specific compiler extensions
4 . to automatically check software for rule violations. With
5 it (PageError(pg)) their work, one can find broken channels by specifying a
6 ret = -EIQ “ . "
7 o rule such as “areturned variable must be checked.” Com-
8 if (test_bit(AS _ENOSPC, &map->flags)) pared to their work, ours presents more information on
9 ~ ret = -ENGSPC, how error propagates and convert it into graphical output
1(1) h (trgft b tEI gAS—E' O &map->flags)) for ease of analysis and debugging.
12 return r;t; ' Another related project is FiSC [32], which uses the
13 } model-checking tool CMC [17] to find file system errors

. . . in the Linux kernel. Every time the file system under test

Manually inspecting the results obtained from EDP,ransitions to a new state, FiSC runs a series of invari-
codes: one each in AFS and FAT, and three in CIFS. Wes found, one can trace back the states and diagnose the
believe we will find more cases as we fine-tune our ana'sequence of actions that lead to the error. One aspect of

ysis of overwritten error codes. our work that is similar to FiSC is that we unearth silent
. failures. For example, FiSC detects a bug where a sys-
5.2 Error Transformation tem call returns success after it calls a resource allatatio

Our current EDP analysis focuses on the basic erroroutine that failse.g.due to memory failures.

codes that are stored and propagated mainly in integer In recent work, Johansson analyzes run-time er-
containers. However, file and storage systems also us@r propagation based on interface observations [14].
other specific error codes stored in complex structurespecifically, an error is injected at the OS-driver integfac
that can be mapped to other error codes in new error corby changing the value of a data parameter. By observ-
tainers; we call this issuerror transformation For ex- ing the application-OS interface after the error injection
ample, the block layer clears thpt odat e bit stored they reveal whether errors occurring in the OS environ-
in a buffer structure to signal I/O failure, while the VFS ment (device drivers) will propagate through the OS and
layer simply uses generic error codes suclEe® and affect applications. This run-time technique is comple-
EROFS. We have observed a path where an error conmentary to our work, especially to uncover the eventual
tainer changes five times, involving four different typesbad effects of error-broken channels.

14

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

Solving the error propagation problem is also similar Preaching that developers follow error handling conven-
to solving the problem of unchecked exceptions. Sacrations and hoping the resulting systems work as desired
mentoet al. found too many unchecked exceptions, thusseems naive at best. New approaches to error detection,
doubting programmers’ assurances in documenting expropagation, and recovery are needed; in the future, we
ceptions [25]. Nevertheless, since using exceptions is ngtlan to explore a range of error architectures, hoping to
a kernel programming style, at least at the current statefind methods that increase the level of robustness in the
solutions to the problem of unchecked exceptions mighstorage systems upon which we all rely.
not be applicable to kernel code. Only recently is there
an effort in employing exceptions in OS code [3]. Acknowledgments

Ourtoolis also similar to Jex [24]. While Jex is a static
analysis tool that determines exception flow informationWe thank the members of the ADSL research group
in Java programs, our tool determines the error code floWor their insightful comments. We would also like to
information within the Linux kernel. thank Geoff Kuenning (our shepherd) and the anony-

To fix the incomplete error propagation problem, de-mous reviewers for their excellent feedback and com-
velopers could simply adopt a simple set-check-usénents, many of which have greatly improved this paper.
methodo|ogy [2] However, itis interesting to see thatThe second author wishes to thank the National Coun-
this simple practice has not been applied thoroughly ir€il on Science and Technology of Mexico and the Secre-
file systems and storage device drivers. As mentionedgriat of Public Education for their financial support.
in Section 4.3, we suspect that there are deeper design This work is supported by the National Science Foun-

Shortcomings behind poor error code hand"ng_ dation under the fOIIOWing grantS: CCF-0621487, CNS-
0509474, CCR-0133456, as well as by generous dona-
7 Conclusion tions from Network Appliance and Sun Microsystems.

Any opinions, findings, and conclusions or recom-
In this paper, we have analyzed the file and storage sysnendations expressed in this material are those of the
tems in Linux 2.6 and found that error codes are not conauthors and do not necessarily reflect the views of NSF
sistently propagated. We conclude by reprinting someor other institutions.
developer comments we found near some problematic

cases: References
CIFS —"Not much we can do if it fails anyway, ig- [1] Steve Best. JFS Overview. www.ibm.com/developer
nore rc. works/library/I-jfs.html, 2000.
CIFS —"Should we pass any errors back?" [2] Michael W. Bigrigg and Jacob J. Vos. The Set-Check-Use

Methodology for Detecting Error Propagation Failures in

ext3 —“Error, skip block and hope for the best.” s 8
X P P I/0 Routines. InWDB '02, Washington, DC, June 2002.

]?th - 'It'gere sKn 0 ;vasj/. (:f re?ortlng error retgrngd [3] Bruno Cabral and Paulo Marques. Making Exception
rom _e’>,< markinodedirty() to userspace. So ig- Handling Work. InHotDep I, Seattle, Washington, Nov
nore it 2006

IBM JFS —“Note: todo: log error handler” [4] George Candea, Shinichi Kawamoto, Yuichi Fuijiki, Greg
ReiserFS “We can't do anything about an error Friedman, and Armando Fox. Microreboot — A Tech-
here” nique for Cheap Recovery. 1@SDI '04, pages 31-44,

)])) San Francisco, CA, December 2004.
XFS —*"Just ignore errors at this point. There is

nothing we can do except to try to keep going.” [5] Crispin Cowan, Calton Pu, Dave Maier, Heather Hin-

_ ton, Jonathan Walpole, Peat Bakke, Steve Beattie, Aaron
SCSI —“Retval ignored?” Grier, Perry Wagle, and Qian Zhang. StackGuard:
SCSI —“Todo: handle failure” Automatic adaptive detection and prgventlon of b.uffer-
overflow attacks. IFJSENIX '98 SecuritySan Antonio,
These comments from developers indicate part of the TX, January 1998.
problem: even when the developers are aware they argg) paniel Ellard and James Megquier. DISP: Practical, Ef-
not properly propagating an error, they do not know how ficient, Secure, and Faul-Tolerant Distributed Data Stor-
to implement the correct response. Given static analysiS age. ACM Transactions on Storage (TQ3)1):71-94,
tools to identify the source of bugs (such as EDP), devel- Feb 2005.

opers may still not be able to fix all bugs in a straightfor- [7] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth
ward manner. Hallem. Checking System Rules Using System-Specific,
Due to these observations, we believe it is thus time Programmer-Written Compiler Extensions .DI 00,

to rethink how failures are managed in large systems. San Diego, CA, October 2000.

15

Appears in the Proceedings of the 6th USENIX Conferencelerahil Storage Technologies (FAST '08)

[8] Dawson Engler, David Yu Chen, Seth Hallem, Andy [23] Hans Reiser. ReiserFS. www.namesys.com, 2004.
Chou, and Benjamin Chelf. Bugs as Deviant Behavior: [24] Martin P. Robillard and Gail C. Murphy. Designing Ro-

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A General Approach to Inferring Errors in Systems Code.
In SOSP '01pages 57-72, Banff, Canada, October 2001.

Dawson R. Engler and Daniel Dunbar. Under-constraine(gZS]

execution: making automatic code destruction easy an
scalable. InSSTA '07 London, United Kingdom, July
2007.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. [26]

DART: Directed Automated Random Testing. RLDI
'05, Chicago, IL, June 2005.

Haryadi S. Gunawi. EDP Output for All File

Systems. www.cs.wisc.edu/adsl/Publications/eio-tist0 [27]

readme.html.
Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krish-

nan, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-[28]

Dusseau. Improving File System Reliability with I/O
Shepherding. II5OSP '07 pages 283-296, Stevenson,
Washington, October 2007.

29
Michael Hind. Pointer Analysis: Haven't We Solved This [

Problem Yet? IFPASTE '01 Snowbird, Utah, June 2001.

Andreas Johansson and Neeraj Suri. Error PropagatiorP30]

Profiling of Operating Systems . DSN '05 Yokohoma,
Japan, June 2005.

George Kola, Tevfik Kosar, and Miron Livny. Faults in 131]

Large Distributed Systems and What We Can Do About
Them. InEuro-Par, August 2005.

Philip Koopman and John DeVale. Comparing the Ro- 132]

bustness of POSIX Operating Systems. HNCS-29
Madison, Wisconsin, June 1999.

Madanlal Musuvathi, David Y.W. Park, Andy Chou,
Dawson R. Engler, and David L. Dill. CMC: A Prag-
matic Approach to Model Checking Real Code.Q8DI
'02, Boston, MA, December 2002.

George C. Necula, Jeremy Condit, Matthew Harren, Scott
McPeak, and Westley Weimer. CCured: Type-Safe
Retrofitting of Legacy Software ACM Transactions on
Programming Languages and Systeig3), May 2005.

George C. Necula, Scott McPeak, S. P. Rahul, and West-
ley Weimer. Cil: An infrastructure for ¢ program analy-
sis and transformation. 168C '02, pages 213-228, April
2002.

Vijayan Prabhakaran, Lakshmi N. Bairavasundaram,
Nitin Agrawal, Haryadi S. Gunawi, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. IRON File Sys-
tems. INSOSP '05pages 206—220, Brighton, UK, Octo-
ber 2005.

Feng Qin, Shan Lu, and Yuanyuan Zhou. Exploiting
ECC-memory for detecting memory leaks and memory
corruption during production runs. [RPCA-11 San
Francisco, California, February 2005.

Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and
Yuanyuan Zhou. Rx: Treating Bugs As Allergies. In
SOSP '05Brighton, UK, October 2005.

16

bust Java Programs with Exceptions. H8E '0Q San
Diego, CA, November 2000.

Paulo Sacramento, Bruno Cabral, and Paulo Marques.
Unchecked Exceptions: Can the Programmer be Trusted
to Document Exceptions? [IWNET '06, Florianopoalis,
Brazil, October 2006.

Stelios Sidiroglou, Michael E. Locasto, Stephen W. 8oy
and Angelos D. Keromytis. Building a Reactive Immune
System for Software Services. USENIX '05 Anaheim,
CA, April 2005.

David A. Solomon. Inside Windows NT Microsoft
Programming Series. Microsoft Press, 2nd edition, May
1998.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the Reliability of Commodity Operating Sys-
tems. INSOSP '03Bolton Landing, NY, October 2003.

Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Recovering device drivers. @SDI '04, pages 1-16, San
Francisco, CA, December 2004.

Douglas Thain and Miron Livny. Error Scope on a Com-
putational Grid: Theory and Practice. HPDC 11 Ed-
inburgh, Scotland, July 2002.

Stephen C. Tweedie. Journaling the Linux ext2fs File
System. InThe Fourth Annual Linux ExpoDurham,
North Carolina, May 1998.

Junfeng Yang, Paul Twohey, Dawson Engler, and Madan-
lal Musuvathi. Using Model Checking to Find Serious
File System Errors. I@®SDI '04, San Francisco, CA, De-
cember 2004.

