Crosstalk

A system for plain-text request/response processing

Andrew Weinrich
March, 2003

TRUTOAUCTION «eeeneeaaenneeeeeeeneeeeeeeeeveeeeerevreeesseessssssessssassosssssssssssssssssssssasssssssssssssssnsssssssne 1

Overview 1
Document Conventions 1
MOAUIESaeaaaaanneeeeeineeeiieieeiieceiesieeesiessssessisssass 1
Module File Conventions 2
Module Configuration 2
Loading Modules 3
Module Types 4

1LY T USRS 4

1LY 103 1 VL7) SRS 4
SEIVICE ...vveutieieeeiesteeiteete st ete et e bt etesetesteesseesaateesseassasseenseessa s e enseessasseenseessasseenseassasseanseessesseenseansesseensensaensean 5
ROULETS ...t ettt et et e st e e st e e s ateesteesbeesaseesaseenseeenseesnseesnseessesnseesnseesnseanns 5

5 BT 1T 1S SRS 6
IMIANAZETS ..ottt b e s h e h e e b bbb bbb e h e a e h e a e a e a e a b a e 7
COMMUNICALION SYSLEM....eeeeeeeeeeeeeeerererrrrrrersrssne 7
Message Classes 7
CrOSStALKIIMESSAZE ...ttt ettt ettt ettt b et e ettt b et et e et a et a et n e 7
Crosstalk::Message: :COmMMANcceirieirieiieiieeneeeeee ettt et s e sae e s eene e 8
Crosstalk::MesSage: TIMEAccooveirieiriiirie ettt sttt st 8
Messaging Implementation 9
Message Routing 9
Other Features AnA NOLESueeeeeeeueeeeveeesvevvseesveessssssvsssssssssssssssssssssssssssssssssssses 10
Timed Events 10
TEETTACE ..ottt ettt e e st et e s te e st e esb e e sa et e esseesaesseesseeseessaenseeseeseenseesaeseensesseensaans 10
IMPIEMENTALION.eeeiiieiireiietitet ettt ettt ettt st st b e eb e st n st sa et sne et e e enesnenes 10
Security Issues 11
Crosstalk Installation 12
REQUITEIMEIILS ..ottt ettt b et a et s a et n et n e enenenes 12
INStAllation LAYOULc.ooviiiiiiriiieiiieeeerecrceet ettt st sttt 12
TOCRIICAL ISSUESeeeeeeenneeneeevneaeeerneeaeasrseesvessssessissas 13
Use of Threads 13
DISAAVANTAZES....c.eeveeeveieiieieieetei ettt sttt ettt st st b e b e st a et sa et n et s e en e nenes 13
AQVANTAZES ...ttt ettt st sttt et b e e st et b et h e b e n et a et a et n et n e n e 14
Local Scoping 15
EXAMPLE MOAUIESuuueeneeeeeeeeveaeeeeerreeeeeerreeeeeesssssssssssssssesssssssssssssssssssssssssssssssssssses 16
Monitors 16
FHLE ettt ettt et e e ta et e et e et a et e eateeaa et e et e estebeenteenteteenseesaeteenseeraesaans 16
Services 16
0 PRSP 16

TS 101 TSI o Y] QSRR
1808 013 ol 1) AR

Introduction

Overview

This paper describes Crosstalk, a Perl system for providing services based on plain-text
requests and responses. Unlike other Instant Message- or Web-only systems, which are
limited both in their external interface and the services they provide, Crosstalk decouples
the central logic from both ends, becoming a sort of “middleware” server that connects
request handlers to external services, with neither end requiring knowledge of the other.

Crosstalk itself is a core server program with well-documented APIs for its extensions:

* An unrestricted number of arbitrary interfaces to external services, such as Instant
Messenger networks and HTTP

* An equally unrestricted number of “back-end” request handlers that can connect
to web services, use other programs, or generate responses themselves

* Modules to route requests from external interfaces to the appropriate back-end
request handlers

* User-defined system management and monitoring interfaces.

This document describes
* the functions of, and interfaces for, writing Crosstalk modules
* Crosstalk’s internal communication system between modules
* Other miscellaneous features of the system
* Technical issues concerning Crosstalk’s implementation
* Descriptions of the example modules developed for Crosstalk

Document Conventions

In this document, the following text formats have special meanings:
* ltalicized Helvetica
This string of text is the name of a file. It may contain interpolated environment
variables.
* Courier
Represents code: function or variable names, subroutine signatures, or other
terms.

Modules

Crosstalk is built around the idea of modules, independently-executing units of code that
perform specific tasks and communicate via messages. The entire Crosstalk system is
composed of modules that operate without direct interaction, communicating with each
other and the main program (which can itself be considered a module). All modules
conform to specific conventions and APIs that allow them to operate in the Crosstalk
server without conflicts.

Module File Conventions

All module files must be syntactically correct Perl, following these conventions:

* The name of the file is the name of the module. Thus, no .p1l extension should be
used. The module must be placed in the proper directory within the Crosstalk
home. If you have a Service module called HTTP, it must reside in the file
$CROSSTALK_DIR/Services/HTTP (see the section on Crosstalk
Installation).

* Modules should not put themselves into a namespace the way Perl libraries do.

* Since modules will be loaded with the perl function do, they must return a true
value, just like regular Perl libraries. This is usually accomplished by having a
true statement such as 1; on the last line of the file.

* All modules must define the functions Init and Quit. These function will be
called by the Crosstalk bootstraps when the module is loaded or unloaded. These
functions can be used to perform operations such as opening and closing files or
sockets, or initializing hashes and arrays. They must be defined even if the
module has no work to do in them.

* Other functions must also be defined, depending on the module types. Those
functions will be described along with the module types themselves.

All modules are loaded in the protected namespace Local: :, so they may define
whatever other functions or variables they want without worrying about name collisions.
The following names are exported into the Local namespace, so that the modules may use
Crosstalk resources without specifying the main: : package:
* &Receive
&Send
&Log
&SetTimer
&ConfigGet
&ConfigSet
&ConfigDelete
Sname
Stype
$basedir

The last three are variables: the name and type of the module itself, and the location of
the root Crosstalk directory (equivalent to the environment variable
$CROSSTALK_DIR). The functions will be described later on.

Module Configuration

Crosstalk supports a system for storing and retrieving configuration information for

modules. Configuration data is stored in the §CROSSTALK_DIR/Config directory,
under subdirectories for each module type.

Only one hash is stored for each module; it is written out using the standard Perl
Data: :Dumper module, and read in during module initialization. This file looks just

like Perl code, and can be edited by hand to set up a module. Hash keys and values can be
manipulated with the following functions:

Svalue = ConfigGet(S$Skey)
Returns the configuration value associated with the specified key. The value is not
necessarily a scalar, and in fact can be any arbitrarily complex Perl data structure
(barring non-serializable objects like functions and typeglobs).

ConfigSet(key, Svalue)
Sets a configuration value, which may be a reference to a data structure. If the key
does not exist, it is created. The configuration file is saved immediately.

ConfigDelete($key)
Deletes a configuration key. Does not fail if the key does not exist. The
configuration file is saved immediately.

Loading Modules

To make the interface for modules as simple as possible, much bootstrapping work is
done in several functions within the Crosstalk executable:

($Ssuccess, S$SresultString) = InitModule($moduleType,
$moduleName, @arguments)
This function is called by the Main thread whenever a module is to be loaded.
InitModule creates the necessary data structures (message queues, etc) for the
module, starts the actual thread, checks for the module’s successful initialization,
and reports the success of the loading back to its caller.

LoadModule ($SmoduleType, S$moduleName)
This function acts as the root of the thread that is created by InitModule.
LoadModule does the actual work of parsing and loading the module file,
checking for errors, loading the module’s Config file, running the Init function of
the module, and setting up the protected namespace for the module’s declarations.

LoadModule reports its status back to InitModule via semaphores, since it
cannot use return without terminating the thread. After successfully loading the
module, its runs the appropriate Run function (described below) inside an eval
block. This block acts as a try/catch to trap errors that may occur during execution
of the Run function. If an error is caught, LoadModule logs it, sends Main a
command to restart the failed module, and exits.

RunMonitor, RunHandler, RunService, RunRouter, RunManager
The actual running of a module is accomplished by one of the five functions listed
above. Depending on the type of module, these functions may do nothing more
complicated than simply call the Run function defined in the module’s file, or it
may do the work of receiving messages and calling appropriate functions within

the module. The exact structure of each kind of Run function is described below,
in the module type descriptions.

Module Types

Main

The Main module can be considered the “root” of the program; it is the initial thread from
which all other threads are spun off. The Main thread takes care of loading and unloading
modules, handling errors, and executing commands from the user. Because it is the initial
thread in the program, it has no bootstrapping routines.

Monitor

The Monitor thread provides a flexible interface for recording information about the state
of the running Crosstalk program. During program execution, modules can call the
function

Log($eventType, $data, $isError)

to send an event to the active Monitor module to be logged. The $eventType argument
allows the Monitor to filter events by their general category. There are no set values for
SeventType, but common ones include Error, Initialization, Routing, Handling, and
Message. $isError allows for explicit marking of an exceptional event.

The logged events are placed in a queue, which is continually polled by the Monitor
bootstrap function. When an event is received, the bootstrap function calls the module-
defined function Record with the following arguments:

Record($moduleType, S$moduleName, $time, S$threadId,
$filename, $line, S$subroutine, $kind, $string,
$isError)

This function is the only definition required in a Monitor module, besides Init and
Quit. Record gives the Monitor module comprehensive information about when and
where the event occurred. The module may then do as it wishes with the event. The
implemented Monitor module, File, simply records all events to a log file (the desired
event types are specified in the configuration file). Other Monitor modules could post
updates to a web page, or send out email or instant messages about exceptional events
like errors.

Only one Monitor module is active during the running of Crosstalk, and it can not be
dynamically loaded and unloaded like the other modules.

The RunModule function inside Server.pltakes log entries (which are three-tuple
arrays, not Crosstalk: :Message objects) off its queue directly, without using
Receive () (see the discussion of the Crosstalk communication system below). It calls
Local: :Record for each log entry. If the object coming off the queue is a

Crosstalk: :Message: :Command of ‘Quit’ from the Main module,
RunMonitor calls Local : : Quit, then exits the thread.

Service

Services are Crosstalk’s interfaces to the outside world: they are responsible for receiving
requests from the user and sending responses back. Services are typically synchronous,
such as HTTP/SOAP, Instant Messenger, or command-line based, but they may also be
asynchronous, such as email.

Due to the fact that Service modules must listen to the outside world, their interface is
much simpler, requiring more work and customization inside the module itself. The only
function a Service module must define is Run, which is called by the RunService
function inside Server.pl (and is the only thing that RunService does).

This function, Run, is then responsible for connecting to any outside sockets and
listening for responses. However, the Service module must also be listening to interior
messages from Crosstalk itself: commands to shut down or suspend the generation of
requests. There are two main methods to accomplish this: spin off another thread to wait
on Receive () for internal messages, or to use non-blocking methods to continually
switch between looking at the internal queue and the external socket. The former would
be more ideal, but Perl’s thread system introduces its own problems, not the least of
which is the inability to share filehandles between threads, destroying much of a
multithreaded Service’s utility.

In practice, then, a Service will still have two threads: one that does request-at-a-time
listening to the outside world, and another that waits for internal messages to shut down
or suspend listening. In that case, the inward-facing thread can send a special, escaped
message to the outward-facing thread’s normal listening channel, telling it what to do.
This design is inelegant, but the best compromise given the limits of Perl’s thread system.

Routers

Routers are responsible for examining the messages that come from Services and
determining which Handlers they are bound for. Routers are given rules for each Handler
module, and must apply those rules to incoming messages, being wary both of no
matches and of multiple matches.

Router files must define three main functions:

$success = AddRules($handlerName, @ruleset)
Record the given rules for the specified handler. The ruleset may be rejected if
one or more rules are invalid.

$success = RemoveRules($handlerName)
The inverse of AddRules. This is usually called when a Handler is being
unloaded.

Srequest = RouteRequest(Srequest)
Check the given request against the current rulesets, mark it appropriately (see the
discussion on communication systems below), and return it.

The actual format of rules is completely specified by the Router, although it is required
that each ruleset for a Handler be a list of simple strings. These strings could be
individual characters, keywords, regular expressions, or more complex grammar types.
The Router may reject rulesets that are not valid (i.e. a regular expression with syntax
errors).

Routers may perform pre-processing on requests in the course of routing them, and
storing results in the request using the additional info method. An example is the
Regex router, which pulls out groupings from the request text and places them in
additional_ info so that the Handler does not have to repeat the work.

Routers are given priorities in Main’s config file. This determines which Router sees a
request first. If that Router cannot find a match, it moves to the next Router in the list. If
not Router can match a request, or a Router finds a request to be ambiguous, it is returned
with the appropriate status to the originating Service module.

The RunRouter function inside Server.pl checks both for incoming requests and for
commands from Main to add/remove rules and to quit, and calls the appropriate
functions.

Handlers

Handlers perform the actual information-gathering and request processing. After a
request has successfully been routed, it is processed in the destination Handler by calling
the function HandleRequest with the request object as its sole argument.
HandleRequest should do whatever is necessary to fulfill the request, set its response
text and success status, then return. HandleRequest may mark a request as
unsuccessful if it is nonsensical or impossible.

When HandleRequest receives a request object, it has been marked with which
Router matched it, as well as the results of any preprocessing the Router has done. This
allows the Handler to quickly decide what to do with the message, including how to
interpret the contents of the request text, instead of forcing it to essentially duplicate the
Router’s effort.

A Handler module is also required to define the hash $rules, which should contain the
names of Routers and the rulesets for them. Upon loading, RunHandler will pull out
these rules and send commands to the active Router modules to add them.

If a Handler dies during the processing of a request, this could hang the Service waiting
on that request to return. Instead, RunHandler calls HandleRequest inside its own
eval block. If there is an error, it zeros the request’s success flag and sets the error

string, and sends it back to the Service. The exception is then rethrown so that
LoadModule may process it normally.

Managers

Managers are the interfaces for Crosstalk administrators. They allow run-time inspection
of the current state of the Crosstalk system, as well as loading and unloading of Service,
Handler, and Router modules. Only one Manager can be loaded, and that module must be
specified during in the Main configuration file.

Managers need only define one function, Run, in their files. This single function is called
by the RunManager bootstrap. Run is responsible for listening for commands from the
administrator, then sending the appropriate Crosstalk: :Message: : Command
messages to the Main module, which actually does the work of executing the command.

Interfaces that Managers can use may include email, HTTP, or command-line programs.
Specifics, including security measures, are left strictly up to the individual Manager
modules.

Communication System

The use of threads to isolate modules requires a sophisticated communication system.
Like many multi-threaded systems, Crosstalk uses message passing to take requests from
the Service interfaces, through the Routers, to the Handlers, and back out to the Services.

Message Classes

With the mechanism for passing messages established, the actual messages themselves
are rather simple. Messages in Crosstalk are members of a simple hierarchy of classes
that encapsulate message origin, destination, other parameters, as well as allowing for
arbitrary data to be passed back and forth. For more extensive description of the
interfaces presented here, see the Crosstalk POD documentation.

Crosstalk::Message

The base class Crosstalk::Message provides methods for identifying messages, tagging
them with success and error conditions, and setting destinations.

The origin module type and name of a Message object is set automatically in the
constructor, through use of the localized $type and $name global variables. The
destination may be specified at creation, or deferred until the destination is determined
(for example, until a Router module correctly routes a request).

All messages have both success and error status. The success attribute is initially
undefined, and should be set to either 0 or 1 once a message has been processed as far as
possible. If the message is unsuccessful, the attribute error should be set with the error
string.

Each Message created has a unique number stored in the attribute id, which can be used
to keep track of outstanding messages. The Main module uses this attribute to determine
what commands to various modules have not yet been completed.

Crosstalk::Message should never be instantiated itself; in fact, the class’ constructor
checks for this case and dies if it is attempted. It is intended as a virtual base class for the
specialized message types.

Crosstalk::Message::Command

Crosstalk::Message::Command is used for internal, inter-module messages: “Stop your
thread’s execution”, “Load the routing rules for this Handler”, or “Tell me about your
current state”. Command messages typically originate in a Manager module, which takes
administrator input, converts that into a Command, then sends the command to the Main
thread. The Main thread handles the command as appropriate, which usually involves
creating another Command message to send to the module whose management is being
requested.

A list of arguments and results may be attached to a Command message. For example,
the arguments are used to send a Handler’s ruleset to a Router in an “AddRules”
command. The results list is typically used in commands that poll for the current state of
the system or of individual modules.

Command messages may be flagged as requiring a response. Usually, a response to the
command is desired, either to return information (as in a poll of a module’s current state)
or to indicate success or failure of the command’s execution. In some cases, however, a
command is not even returnable. Take the example of a module whose bootstrap function
catches a runtime exception. All modules run their functions inside the equivalent of
try/catch blocks, which in Perl equatestoeval { .. }; if $@ { .. }.Ifanerroris
caught in this manner, the module has no choice but to shut down and terminate the
thread. However, the Main module must be informed of the module’s failure, and told to
restart it. The logical way to do this is by sending Main a Command message indicating
such. But, if Main tried to return the command, it would be sending it back to a thread
that has finished! This is an exceptional case, but its nature requires the use of non-
mandatory responses to commands.

Crosstalk::Message::Timed

Crosstalk::Message::Timed is a specialty class, designed for the asynchronous
communication of the Timed Services Interface (which is described later). Timed
messages are only of use to Handlers, which may be designed to set up periodic “pushes”
of data out to the user. These messages have no origin; instead, they are provided only as
a notification that an event should occur.

A Timed message contains as its argument a single string, which is set during the creation
of the timer.

Messaging Implementation

The actual message-passing apparatus involves nothing more than instances of the
standard Perl class Thread::Queue. This queue class implements the locking and sharing
needed to pass simple scalars from one thread to another. Each module is allocated one
queue upon initialization, and it can pull messages out of this queue as necessary. The
actual queues are hidden by two functions:

Send(S$message)
Smessage = Receive().

Send places takes a message and routes it to the appropriate module’s queue; Receive
waits for a message to come in to the current module’s queue and returns it.

Receive is a blocking operation; it will wait until a message is placed into the queue by
another module. In almost every case, this is desirable behavior, and helps to simplify the
communication logic.

A very important feature of Receive is that it automatically determines which module
is currently active, and so on which queue to wait. This is accomplished via Perl’s
dynamic scoping operator Llocal; during initialization, LoadModule localizes the
variables $type and $name to be the module type and name of the current module,
making them in effect global variables that have values specific to each thread. Numerous
Crosstalk functions use these localized variables to ensure that they are operating on the
correct module’s data.

Message Routing

Message routing is largely automatic in Crosstalk; a module does not have to specify
where a message should go, and the “destination” fields of a message are not always
where the message will go. Instead, Send routes messages according to the following
rules:

If the message is a Request:
If it has no destination set and has not visited all Routers:
Its current Router number is incremented (starting at 0), and it is sent to
that Router, as determined by the router priorities.
If it has no destination set and it has visited all the Routers:
No Router matched it, so it is marked as unsuccessful and sent back to the
origin (usually a Service)
If it has a destination set and has not had its success marked:
It is sent to the destination
If it has had its success marked:
Send back to the origin, for either successful or unsuccessful requests.
Unsuccessful requests can include ambiguous requests from a Router or
failure from a Handler.
If the message is a Command:
If the message has not had its success marked:

Send to the destination.
If the message has had its success marked and is returnable:
Return to the origin.
If the message has had its success marked and is not returnable:
Drop.
If the message is Timed:
It is sent directly to the destination module.

In this manner, all possible types of messages are routed automatically, without the
individual modules having to do any routing decisions.

Other Features and Notes

Timed Events

While Crosstalk is designed to support mostly synchronous communications — a user
submits a request, it is handled, and the response is returned — there is also usefulness in
allowing for asynchronous events. A canonical example would be a Handler that wants to
watch an RSS news file, and send a user an instant message whenever new stories appear
on a website.

To support this, Crosstalk has a simple Timed Services interface that allows for modules
to set messages to be delivered back to them at specified times in the future.

Interface

SetTimer ($time, $message)
Calling the function registers the text string Smessage to be returned to the
calling module at time $time. $time is a Unix-style timestamp, the number of
seconds after some date, such as midnight, January 1, 1970 GMT.

The Perl built-in function t ime returns the current timestamp. Because of the platform-
specific nature of timestamps, as well as allowances for timezones, timestamps should
always be calculated by taking t ime and adding the desired number of seconds.

When the timer goes off, a Crosstalk: :Message: : Timed message is sent to the
module’s message queue, where it may be retrieved with Receive. The simple text
string $message will be held in the Timed object.

Recurring timers cannot be set with this method. If desired, the calling module should
call SetTimer again once the Timed message has been received and processed.

Implementation

The official advice on using signals (which are what all timers require) and threads in
Perl is “don’t”. Although much work with threads has been done, a large issue remains in
that Perl has no way of guaranteeing which thread will be active when the signal is

10

received; timers cannot be directed towards specific threads or objects, as they can in
languages like Python and Java.

This would seem to forbid asynchronous events, but the communications system of
Crosstalk actually makes it relatively simple. Upon startup, Crosstalk sets a timer to go
off every second, using the itimer system call as exposed in the Time: :HiRes
module. When a module calls SetTimer, the timed message is stored in a shared hash
with its time of execution (in seconds) as the key. Every second, the timer wakes up a
SIGALRM handler, which looks in the hash for messages that have timestamps less than
the current time. Those messages are removed from the hash, wrapped into Timed
objects, and placed in the queue of the destination module using Send.

This solves several major problems. For one, no additional mechanism of handling timed
events is necessary, since the modules will get the message through Receive as it
would anything else. Second, it doesn’t matter what module is currently running when
the timer goes off, since the hash of messages is shared between all threads, and the
message is delivered to the thread’s message queue.

One disadvantage is that, because of the 1-second interval of the timer, as well as the
unpredictability of thread scheduling, fine-grained events are not possible. For
Crosstalk’s purposes, this is not problematic, as most users will not be able to notice a
one- or two-second delay of, for example, their RSS feeds.

Security Issues

If a system such as Crosstalk is to be anything more than a toy, security inevitably
becomes a concern. Crosstalk is built to allow an arbitrary number of users to access
arbitrary services from arbitrary interfaces, and a Crosstalk system wishing to provide
useful services will need to make sure that those services are not misused or abused.

Crosstalk allows a basic framework for security, by attaching a username to each
incoming request. This username logically maps to the kind of Service producing the
request: an email address, an Instant Messenger screenname, or an authenticated HTTP
username. Handler modules may then examine the Service and username combination
and decide what kind of requests may be honored. Alternately, the username can allow
Handlers to have a memory of “sessions”, being able to recognize a chain of requests
coming from one source.

This is a positive feature, since it allows all of the work of setting up user accounts and
authenticating to be offloaded to the Service. With usernames and domains (Services)
effectively provided, it is up to the individual Handlers to implement their own security
policies. Although this may seem like an undue burden upon Handler writers, building a
comprehensive, flexible security into Crosstalk’s core would have been too difficult.
Handler that manage stock portfolios will want very rigorous security; an Eliza program
may want none. Besides, with authentication and domains already handled, all that
remains is writing heuristics for resource access. Crosstalk provides enough of a platform

11

that very sophisticated security policies may be built on top of it with little effort. See the
entry for the Shell Handler for an example.

Crosstalk Installation

Requirements

The following environment must be in place to use Crosstalk:
* A Unix system is required. Only Mac OS X has been tested, although Linux and
*BSD should be compatible.
e Perl 5.8.0 must be installed, and specially compiled to use ithreads.
* The Perl package Time::HiRes must be installed from CPAN

Crosstalk may be easily installed by simply decompressing the tar-gzip file, editing the
config files inside to the desired state, and setting the CROSSTALK_DIR variable.

Installation Layout
Crosstalk uses the following directory structure to store its files:

$CROSSTALK_DIR/ The root directory of Crosstalk. This directory must be
defined as the environment variable
CROSSTALK DIR
Config/ Contains all the configuration files for modules. Each
module type has its own subdirectory

Handler/
Main/
Main The Main/ configuration directory only contains a
single configuration file, for the Main thread itself.
This configuration, unlike all the others, stores more
than one variable and has predetermined fields.
Manager/
Monitor/
Router/
Service/
Documentation/ Contains all the documentation, in POD format
HTML/ HTML files created by pod2html are stored here.
Handlers/ Contains the files for Handler modules
Library/ This library directory is included with the use lib
directive, and holds all of Crosstalk’s internal
libraries and classes
Crosstalk/ This second directory is necessary to be able to prepend
module names with Crosstalk::
Config.pm This library is not a proper module, but merely defines

functions for reading and saving configuration
information for modules

12

Encode.pm

Holds routines for “encoding” objects so that they may
properly be passed between threads.

Message/
Command.pm The Command message subclass
Request.pm The Request message subclass
Timed.pm The Timed message subclass
Messsage.pm The base class of Crosstalk inter-module messages
Timer.pm Defines the functions for setting timed events and
handling the timer when it goes off
Managers/ Contains the files for Manager modules
Monitors/ Contains the files for Monitor modules
Routers/ Contains the files for Router modules
Scripts/ Holds scripts useful to running the Crosstalk system,
including commands to start/stop the server and
update the HTML documentation
crosstalk Controls execution of the Crosstalk system. Takes one
of three arguments: start, stop, or restart.
makedoc Uses the pod2html program to convert all the POD

send-request

start _crosstalk

Server.pl
Services/

documentation in the Library/and Documentation/
directories to generate HTML in
Documentation/HTML/.

Used for sending a request message to the HTTP
Service

A bootstrap script that properly runs Server.plin the
background. Should not be executed directly;
instead, use “crosstalk start”

The actual Crosstalk executable

Contains the files for Service modules

Technical Issues

Use of Threads

Crosstalk is built as a multithreaded application, which is something of a rarity in the Perl
world. It is only within the last two years that Perl has had thread support, and only
within the last nine months that those threads have actually been usable. The decision to
use threads came as a tradeoff with heavy penalties.

Disadvantages

A primary disadvantage of using threads in Perl is that it requires a custom-built perl
executable of the latest version, 5.8.0. All dynamic libraries that link to external compiled
code must also be rebuilt for threads. This new, thread-enabled build of Perl not only runs
slower and consumes more memory, even on non-threaded programs, it also is slightly
less stable.

13

Besides the problems of the Perl executable, almost no Perl libraries have been rewritten
to be thread-enabled. If an object from a Perl library is only to be used in a single thread,
this is not a problem, since be default all data is duplicated between threads. However, if
an object is to be passed between threads, that object must be explicitly marked as shared
in the library’s constructor function, as must any objects it contains, etc.

Although this problem can be solved by editing every library to explicitly make object
instances shared, it is impossible for modules that are based on filehandles. Filehandles in
Perl 5 are not first-class objects like scalars or hashes; instead, they are references to
unique, autogenerated typeglobs. Typeglobs cannot be shared between threads, for a very
good reason: while moving a shared scalar or reference into another’s thread’s address
space presents no problems, moving a typeglob has the potentially disastrous effect of
modifying that thread’s symbol table (symbol tables are always unique to threads in Perl).
In the worst case, a filehandle being imported from another thread could overwrite a
filehandle from the same package, since the typeglob names are usually produced in
predictable manners (something like “prefix” . $i++).

This restriction, which is quite reasonable, prevents threads from giving filehandles to
each other — including socket connections. The original design of the HTTP service had a
single listener thread that would create a connection object, then hand it off to a worker
thread that would process the request. This is impossible, since the filehandle cannot be
shared, and as a result, the HTTP service only handles one connection at a time. Although
it is of little comfort now, Perl 6 will fix this problem by making filehandles first-class
entities in the language, and allow them to be shared between threads.

Another complication is that programming with threads is that, since the Perl debugger is
not thread-enabled, getting information about the state of a running program is limited to
print statements or whatever output is sent through the Monitor module.

If that were not enough, Perl’s thread model is extremely heavyweight. In creating a
thread, Perl actually creates an entirely new interpreter process in the same address space,
duplicating all the data currently addressed, except for what has been explicitly marked as
shared using the “my $scalar : shared” construction. As such, creating threads
“on the fly” to handle individual requests would have unacceptable performance. This hit
can be mitigated somewhat, however, by the standard techniques of either creating and
maintaining a constant pool of threads, or, in the case of heterogeneous threads, creating
them all at startup, to move the cost away from run-time.

Advantages

With such problems arising from threads, their benefits would have to be very great to
choose their use. Despite their numerous problems, threads offer several indispensable
benefits.

The main reason to use threads is to simplify the communication model between

modules, and to allow for pieces of the program to execute asynchronously. While a non-
threaded Crosstalk could conceivably use the same module interfaces, but only handle

14

one request at a time — in fact, early versions of Crosstalk did just this — it would make it
impossible to have asynchronous events or simultaneous handling of requests,
significantly decreasing the server’s robustness and utility.

Threads also make the writing of modules with external interfaces much easier. One of
Crosstalk’s design parameters is that it support an arbitrary number of interfaces to the
outside world. Typically, these interfaces involve opening up a socket for connections,
then listening for a request. The only way to accomplish this in Unix without multiple
processes (which introduces its own communication problems) or threads is by use of
select. This is a perfectly reasonable way to write a web server, or any kind of process
that handles a number of homogeneous connections. However, Crosstalk supports any
kind of protocol for incoming data, making the logic of select much more difficult and
destroying the componentized nature of Service modules.

Although these may seem like small design gains, they are essential to creating the
flexibility and simplicity of the Crosstalk module interfaces. By using threads, Crosstalk
subsumes all of the complexity into the server core, allowing the modules to be written
easily and without concern for the rest of the system.

Local Scoping

Many of Crosstalk’s utility functions, including the messaging, configuration, and timing
subsystems, need to know which module is calling their functions. If implemented in the
most obvious way, this would require every function call to have arguments specifying
the type and name of the module. This is both inconvenient, as it makes the interfaces
needlessly complicated for the programmer, and dangerous, since it requires the module’s
name and type to be specified in numerous places, increasing the odds that one of them
will be incorrect.

To solve this problem, Crosstalk exploits an ancient, normally useless feature of Perl —
localized variable scoping — and a normally undesirable effect of threading — the
duplication of all data.

Localization allows a lexical scope — a function, or a loop — to take a package variable
and temporarily give it a new value. The old value is restored upon the scope’s exit. This
is a fine workaround if lexical variables are not available, but has one significant side
effect: functions called by the localizing scope also get the localized value of the variable.

This allows Server.plto set up two variables — $main: :type and $main: :name —
then, in LoadModule, localize them to the type and name of the module being
initialized. The variables are aliased into the module’s protected namespace, and
instantly, any function invoked by a module — such as SetTimer or ConfigGet —
knows which module has called it.

Although the main: : package is being modified, each thread gets its own copy of the

package variables, except those explicitly marked as shared. This allows $type and
$name to be set and localized without interfering with the other threads.

15

Example Modules

This section describes the example modules developed along with Crosstalk,
demonstrating parts of its design and functionality.

Monitors

File
This simple Monitor writes out all events it receives to a log file. It can be configured to

screen log messages based on their event type, to let Crosstalk administrators only record
desired messages.

Services

HTTP

The HTTP Service uses the Perl HTTP::Daemon library to listen on a user-specified port
for incoming POST requests. It does not perform CGI decoding, but rather takes the
POST contents as the plain-text request. The response text is then returned as the HTTP
response (again, without CGI or HTML encoding).

HTTP does not perform authentication (although it could); instead, every request it
generates has a username of ‘Anonymous’.

AIM

This Service signs onto the AOL Instant Messenger network and listens for incoming
messages. Each message is translated to a request, and the username of the request is set
to the screenname of the message’s sender. The response text is sent back to that
screenname as an Instant Message.

Routers

Keyword

This simple Router takes lists of words as its rulesets. Incoming messages are tokenized
on whitespace and punctuation, and compared against each set of keywords to see how
many match. The Handler whose ruleset has the most matching keywords is set as the
destination. Ties are not marked as “Ambiguous”, but are rather broken in first-come-
first-served order.

Regex

The Regex Router applies Perl 5 regular expressions against incoming requests, and
routes the request to the Handler who has a match. Ambiguous queries are marked as
such, and sent back to the originating Service.

Regex also makes use of the additional info attribute of Request objects. If a
pattern in a ruleset includes capturing parenthesis operators, those captured subpatterns

16

are returned in the additional info list, preceded by the index of which pattern
matched. The Handler receiving the request then knows what form the request text
follows, as well as have the significant parts already isolated. This eliminates the
duplication of effort that otherwise would occur when the Handler reparsed the request
text. See the description of the Eliza handler below for an example of this.

Managers

Web

The Web Manager provides a simple interface to query the current state of the system, as
well as load and unload modules. It also uses the HTTP::Daemon library to bind to a
user-specified port and present three services (accessed as HTTP GET paths):
/status Presents a page that lists the currently installed modules, as well as
all available modules, with links to add or remove as appropriate
/add When accessed with CGI arguments of name and type, loads that
module on the fly. The /status page is then reloaded to reflect
changes.
/remove Like /add, uses name and type CGI arguments to dynamically
unload a module, then reload the /status page.
The Web Manager does not perform any security checks, but could be altered to include
HTTP authentication by using a different Perl library.

Handlers

eliza

Implements a standard Eliza program with a limited set of patterns. The Eliza handler
uses the additional info attribute of its Request object to form response text
without complex logic. Each rule (or regex pattern) in the ruleset for the Regex Router
has a corresponding anonymous subroutine in an array called @responses. When a
request is received, the first element of additional_ info, the index of the matched
rule, is used to call the appropriate subroutine, which returns a response string from
interpolating the matched subpatterns of the original request — the rest of the values in
additional_ info. New patterns and phrases can be added simply by inserting a new
pattern and response subroutine at the appropriate places in the two arrays, without any
additional logic.

verbose stock

Fetches stock information from Yahoo! Finance and returns it. Upgraded from the
original terse_stock handler to be more functional, as well as use the Regex Router.
Plain-English requests like “Tell me the close price of msft” are supported, and the
response will also be given in English.

17

timer_test

A demonstration of the Timed Services interface, the timer_test Handler simply registers
a message to be returned to it 10 seconds after loading. When that message is received, it
prints “Hello, world!” to stdout.

Shell

The Shell Handler both allows remote machine access and implements a security policy
on top of the Crosstalk username/domain framework.

This module allows a user to send a command in the request text, which will then by
executed as a command-line program using Perl’s backtick operator, and the output
returned as the response text. To prevent the glaring security flaw of giving anyone shell
access to the Crosstalk system’s machine, the Shell handler only permits certain users to
execute commands. In its configuration file, lists of usernames are associated against
Service names, and those lists associated against the usernames that Crosstalk might be
running under on its own system. When a request comes to the Shell handler, it looks at
Crosstalk’s current username, the name of the incoming request’s Service, and the name
of the user on that Service, and sees if that user is allowed to run commands. This is a
very simple security policy, but it provides very tight security, barring only the
compromise of the user’s domain and name (for example, a stolen Instant Messenger
account).

18

