Efficient Cross-Platform Method Dispatching for Interpreted Languages

Andrew Weinrich
2007-12-18

1 Introduction

Most work on modern compilers is still targeted towards
lower-level languages, such as C and C++. However,
a great deal of modern programming effort takes place
in very high-level languages like Python, JavaScript, and
Ruby that sacrifice execution time for increased flexibility
and expressiveness. An interesting point of intersection is
scripting languages that are designed to work in tandem
with more traditional, compiled languages. For example,
there are several languages like F# that are implemented
on Microsoft’s CLR; programs written in F# can use ob-
jects developed in the more conventional C#.

Objective-C is the language of choice for development on
Mac OS X. Unlike Java and C#, Objective-C is com-
piled to actual machine code, but it retains a very flexi-
ble runtime that includes the ability to create new classes
and methods on the fly. These abilities are exploited by
some parts of Apple’s frameworks, but they also open
the door to creating new scripting languages that use the
Objective-C runtime as a platform. Such languages can
provide different programming styles while making use of
the large body of existing Objective-C code.

F-Script is one such language; it brings Smalltalk syntax
and APL-style array processing to Cocoa (the name of
Apple’s programming environment). The FSClass mod-
ule allows new classes to be written directly in F-Script;
an example is given in Figure 1. Instead of a compiled
function, the method implementation is provided by a
Block, an object that contains an expression tree and can
be evaluated as a closure. Instance variable access is also
provided through methods.

The FSClass module must provide implementations of
these methods to the Objective-C runtime. Property ac-
cessors must be able to find the variable inside the object
structure, and method implementations must be able to
locate the correct Block, evaluate it, and return the result.
This paper describes how FSClass performs these tasks
efficiently, while taking into account the multi-platform
requirements of Mac OS X.

2 Adding Methods and Classes to
the Objective-C Runtime

Objective-C has a low-overhead runtime system imple-
mented in C. Creating new classes and adding methods
to those classes is accomplished by creating C structures
and using special functions to register them with the run-
time. When adding a method, a function pointer of type
IMP is used. This typedef is variadic to support methods
with different numbers of parameters, but method imple-
mentations must always take two special implicit param-
eters. The first is an id that holds the receiver of the
message, usually called self or this. (id is a pointer
to an object of any class). The second is the selector:
a special charx that is registered with the runtime and
holds the name of the message. This allows methods to
discover their own names, which will be crucial for our
naive method implementations. The definitions of these
types are reproduced in Figure 2.

Different typedefs and methods are used when methods
that return doubles or structs, but they are irrelevant
to our purposes.

To properly implement new classes, FSClass must provide
these function pointers to the Objective-C runtime. We
will first present naive versions of these methods, then
discuss the shortcomings that lead to a more complicated
but efficient implementation.

2.1 Naive Implementation of Method
Stubs

The inclusion of the method selector as an implicit param-
eter suggests a very simple way of implementing methods.
There will be a single function, dispatch method, that
will be the clearinghouse for all method calls in FSClass.
This function will compute the object’s class, then look in

MyClass := FSClass newClassWithProperties:
{’foo’, ’bar’}.

MyClass onMessage:#doStuff do:[:self :val |
((self foo) + (self bar)) / val
1.

Figure 1: Sample class created in F-Script.

// generic object pointer
// method name

typedef voidx id;
typedef char* SEL;

// pointer to a method implementation
typedef id
(IMP*) (id receiver, SEL selector, ...);

Figure 2: Data types used by the Objective-C runtime.

a dictionary to find the Block that implements the given
method. If the class contains no Block for that method
name, the dispatcher will move up the inheritance hierar-
chy, until it either finds the appropriate Block or reaches
the top and raises an exception.

This approach is very simple and easy to implement, but
horribly inefficient. It reproduces a similar search through
the inheritance chain that the Objective-C runtime al-
ready performs, and does so much more slowly. To reduce
the overhead to an acceptable level, we will need to create
dedicated stub functions for every method.

3 Trampolines as Alternative

As described above, the one-size-fits-all naive implemen-
tations suffer from significant performance problems. Be-
cause the runtime requires C function pointers as imple-
mentations, the only alternative is to create new blocks of
compiled code as methods are created. Such dynamically-
created pieces of code to perform redirection are usually
called trampolines. This leaves us with two choices: per-
form a full just-in-time compilation from some interme-
diate form, or use a template that is modified slightly for
each new trampoline.

The better choice by far is to stamp out custom trampo-
lines from a template. Each trampoline will have three
variable values: a pointer to the implementation Block,
the proper selector, and the address of the Block’s evalua-
tion method. The most obvious way to write these tram-
polines is to include these variables as inlined arguments
to immediate load instructions. This approach has pit-
falls, however, including problems those caused by the ne-
cessity of FSClass to run on multiple architectures.

3.1 Multiplatform Concerns

In 2005, Apple announced that it was abandoning the
PowerPC platform for Intel-supplied x86. Although Ap-
ple has no plans for returning to PowerPC, there is an
immense installed base of PowerPC Macintoshes, and it
will be quite some time before Apple can drop support
for the architecture. The problem is compounded by the
introduction of 64-bit support in the most recent release
of OS X for both PowerPC and x86. Since we want to

header start

start + 8 block address
start + 16 selector
start + 32 method address
start + 48
mov %eax
Trampoline jmp ...
template add
code push
_>
pop

Figure 3: Structure of a method-dispatching trampoline.

build native-code methods on the fly, we will need to have
separate code bodies for each of the four architectures,
wrapped in #ifdef tests to only include the proper code
at runtime.

Another problem is that, especially on 64-bit architec-
tures, many immediate values cannot be loaded in one
chunk; instead, they must be split into pieces that are
moved into a register by separate instructions. 64-bit
PowerPC requires 5 instructions to load a 64-bit imme-
diate value. The code to insert all these large words into
the appropriate places involves a great deal of bit-masking
shifting that is difficult to write. Additionally, if we ever
change the source code for the trampoline - say by reor-
ganizing instructions to reduce stack use - we will have
to update the corresponding code that inserts those val-
ues.

3.2 Ideal Trampoline Builder

The ideal trampoline-generating system would have the
exact same C code for each system; the only #ifdef’d
components will be the content of the trampoline itself.
In an ideal system like this, the trampoline code could be
changed or optimized without affecting the C construc-
tion code, and the same construction code could be used
on all platforms.

We can realize this ideal by putting all of the variable
data in a header in the front of the trampoline. In this
system, the trampoline code will not be modified by the
template at all, but a new copy will be made each time
a trampoline is created. Figure 3 shows the structure of
a trampoline with header, including the address that will
be given to the runtime system.

This presents the problem of how the trampoline is to
access the data in the header. Encoding the address of
the header into the trampoline won’t work, as that sim-
ply reproduces the inlined-constant problem. We can take
advantage of the fact that the header always has the same
relative position to the code that needs it. If the tram-
poline code could discover its own location at runtime, it
could calculate the location of the header, and load the
appropriate pointers directly from there.

The remainder of this paper describes the methods for
detecting the runtime location of trampolines; extracting
information from the headers; and manipulating the stack
before calling the implementing Block.

4 32-bit PowerPC Method Tram-
polines

One interesting feature of the PowerPC instruction set is
that it does not distinguish between jumps and calls, as
most processors do. Instead, there is a set of “branch”
instructions which perform both functions. Branches can
be absolute or conditional, and can be to a 16-bit local off-
set or an absolute address in a register. Most importantly
for our purposes, a bit can be set on a branch instruction
that will tell the compiler to leave the return address in
a special-purpose “link register”. Beyond having return
addresses deposited in it, the link register can be manip-
ulated by special instructions to move its contents to or
from another general-purpose register, or to branch di-
rectly to the address it contains. The former are used to
save and restore return addresses to the stack, and the
latter takes the place of the return instruction found on
x86.

The following code will discover its own location at run-
time:

trampoline:
; save return address
mflr r0
Xor. ri6, ri16, ri6
bnel trampoline
mflr rl6
subi rl6, ri6, 28
mtlr r0

The instructions in this trampoline header perform the
following steps:

1. Temporarily save the contents of the link register.
At the beginning of the procedure, it contains the
return address of the caller.

2. xor general-purpose register r16 with itself. The
choice of this register is arbitrary. The . on the

end of the opcode tells the assembler to set a special
bit in the instruction. This bit will cause the proces-
sor to set special flags on the result of the operation,
including whether the result was zero or non-zero/

3. bnel stand for “Branch if Not Equal to zero and
Link”. This branch will execute only if the result
of the previous operation was non-zero. Because we
XORed a register with itself, we know that the result
was zero, and hence that this conditional branch will
not execute. However, in either case, the instruction
will leave the return address - the address of the next
instruction - in the link register.

4. Extract the “return address” from the link register.
r16 now holds the address of the fourth instruction
in the trampoline.

5. All PowerPC instructions are 32 bits, so the value
of r16 is 12 bytes from the label trampoline:. The
trampoline header is 16 bytes, so by subtracting 28,
we have the

6. Now that our use of the link register has ended, we
restore the caller’s return address to the link register.

4.1 Argument Manipulation

Like most other RISC architectures, PowerPC has 32
general-purpose registers, making it feasible to use them
for passing parameters. On Mac OS X, the first seven
integer parameters are passed in registers 3 through 10;
floating point and vector parameters are passed in other
registers, but since F-Script uses only object pointers as
parameters, we may ignore this complication.

The Block that is implementing our method requires dif-
ferent arguments than those that are passed to the tram-
poline. In particular, the Block itself must be the receiver,
and the selector must be changed from its original value
to a message name that will invoke the Block’s evaluation.
The original receiver is the first parameter to the Block;
any original parameters to the method must be moved
back one slot. The Block address and selector value are in
the trampoline header, and must be extracted and placed
in the appropriate headers.

Figure 4 shows the parameter registers on PowerPC at the
point of trampoline entrance and exit. This reconfigura-
tion is trivial to accomplish with register-based parameter
passing. The following code will move the parameters into
the appropriate places, and load the needed data from the
trampoline header:

; move parameters back one space
mr r8, r7 ; third param
mr r7, r6 ; second param
mr r6, rb5 ; first param

r3 receiver r3 Block

r4 selector rd | value: selector
r5 param1 r5 receiver

ré param2 ré param1

7 param3 r7 param2

r8 r8 param3

Trampoline entrance Trampoline exit

Figure 4: Register contents for PowerPC trampoline.

mr r5, r3 ; receiver

lwz r3, 0(ri6)
lwz r4, 8(r16)

; load target Block
; load selector

The selector is located eight bytes from the beginning of
the header to allow for 64-bit pointers. On 32-bit archi-
tectures, the extra space will be unused.

4.2 Final Trampoline Structure

The final step of the trampoline is to evaluate the Block
by invoking the appropriate method (which is different for
different Block arities). After rearranging the parameters,
we have effectively changed the call stack to look like what
the Block expects. We can then load the address of the
Trampoline’s method implementation and directly jump
to it, without setting up a new stack frame. From the
Block’s perspective, it will have been called directly from
the trampoline’s caller.

The complete procedure for the trampoline is:
1. Identify its location
2. Shuffle arguments into their proper locations
3. Pull required information from the trampoline
4. Jump to the Block evaluation function

Figure 13 shows the completed PowerPC trampoline code
for a 3-argument method. Trampolines for methods
of other arities would be identical, save more or fewer
parameter-swapping instructions.

5 32-bit x86
lines

Method Trampo-

5.1 Self-location for x86

Unlike PowerPC, x86 does not use an explicit link reg-
ister, but it does have an explicit stack. The CALL in-

struction leaves the return address on the top of stack,
but jumps do not. This makes using the PPC approach
impossible, because although x86 does have conditional
branches, it does not have a conditional CALL.

However, x86 does have a relative CALL that can be used.
The relative CALL takes an inlined 4-byte offset from the
location of the next instruction after the call itself. This
will allow the trampoline to “call” to a location in itself,
and then take the “return address” from the stack. With
this knowledge, we can use the following code to calculate
the location of the trampoline at runtime:

trampoline:

call next_line
next_line:

pop ecx

sub ecx, 21

The assembler will turn the first instruction into a relative
CALL with offset 0. When the code executes, the call
will have no noticeable effect other than advancing to the
next instruction and leaving the return address on the
stack. The return address will of course be the address
of the next instruction. After popping it from the stack,
we now have the location of the second instruction of
the trampoline stored in ecx. A relative CALL is 5 bytes
long: one byte for the opcode, and 4 bytes for the offset.
Combined with the 16 bytes for the header, this gives an
offset of 21. After subtracting that from the call’s return
address, we have the address of the trampoline header in
ecx.

5.2 Manipulating the x86 Stack

Due to its paucity of registers, all subroutines in x86 must
pass their arguments on the stack. Like most downward-
growing stacks, arguments for Darwin function calls are
pushed right-to-left. This would appear to make the
trampoline simpler: instead of having to shuffle all the
parameters, we only have to move up the return address
and insert the selector and Block pointer from the tram-
poline header:

As shown, the arguments do not have to be changed at
all. However, this approach would cause catastrophic er-
rors at runtime. We have just increased the size of the
stack, with the intention of transferring control to another
method. Since we want to jump directly to the implemen-
tation without returning, the caller of the trampoline will
have to clean up the stack. But the caller is unaware that
we have pushed an additional element, and in its stack
cleanup code after the call to objc_msgSend will not re-
move it. Due to this problem, the x86 trampoline cannot
simply hand off control to the implementing Block as the
PowerPC version did; instead it will need to repair the
stack after the Block has returned, before itself returning
to the caller.

Stack when entering Stack just before calling

trampoline method implementation
param 3 param 3
param 2 param 2
param 1 param 1

selector receiver

/
\

return address

%oesp: X Y%esp: x+4

Figure 5: Possible stack for x86 trampoline.

This restriction produces the following general structure
for the x86 trampoline:

1. Calculate the current trampoline offset

2. Rearrange the top of the stack, as shown in the (di-
agram 1)

3. Call the Block implementation
4. Remove the top value from the stack
5. Return to the caller

The stack frame that the caller created for the trampoline
may also be used when calling the Block’s implementa-
tion, so the arguments will not have to duplicated on the
stack. Additionally, since the arguments are not being
moved, we need only write one version of the trampo-
line that can be used to implement methods of all ari-
ties.

The above procedure appear sound, but in fact a surpris-
ing error occurs when it is used: the processor raises a
“MOVNTPS alignment exception”! As described in the
Intel TA32 reference, MOVNTPS is an MMX(©instructions;
it is used to move 128 bits of data in a single step while
avoiding cache pollution. As with most SIMD instruc-
tions, the address must be aligned to a 128-bit/16-byte
boundary.

When reporting the above error, gdb claims stack corrup-
tion and does not provide a backtrace. This makes it very
likely that the error is related to the trampoline, which
gdb cannot tie back to any source file. However, there are
no SIMD instructions in our code at all!

A clue about what is happening comes from Apple’s ABI
documentation for x86:

The caller ensures that the stack is 16-byte aligned at the
point of the function call.

receiver value: selector |«@—— from
trampoline
return address Block header

Stack when entering Stack just before calling

trampoline method implementation
param 3 param 3
param 2 param 2
param 1 param 1

selector selector

receiver receiver

16-byte boundary

return address return address

param 3
param 2 16-byte boundary
param 1
- from
receiver /trampoline
value: selector header
Block 16-byte boundary

%esp: X %esp: x+32-4

Figure 6: Final stack configuration for x86 trampoline.

“At the point of the function call” means just before the
CALL instruction is executed, the top of the stack. No fur-
ther explanation is given, but an inference can be made:
the Darwin kernel is using SIMD instructions to quickly
move data on the stack, possibly during context switches.
We have violated this alignment by pushing an extra word
onto the stack, which causes the SIMD instruction to fail
at an unpredictable time.

Due to this alignment requirement, we will in fact be
forced to create a new stack frame for use with calling
the Block; because these size of these frames will be dif-
ferent for different arities, we will need several different
trampolines. Figure 4 shows how the new stack frame
will be created for the three-argument x86 trampoline.
As shown, due to the alignment, some space on the stack
will be unused. Figure 14 contains the assembly code for
the three-argument x86 trampoline.

5.3 64-bit PowerPC Trampolines

The PowerPC instruction set was designed with future
expansion to 64 bits in mind. When running in 64-bit,
all instructions are identical, although some care must
be taken when using 32-bit words. The function ABI
is also identical, and parameters are passed in the same
registers as they are for 32-bit mode. The only changes
necessary to the 32-bit trampolines are to double the size
of the header and the offsets into it. Figure 15 shows the
barely-modified code for the three-argument trampoline
on 64-bit PowerPC.

5.4 64-bit x86 Trampolines

Although the first x86 processors Apple used were 32-bit,
by 2006 they had introduced computers that used Intel
processors with AMD’s x86-64 extensions. In the fall of
2007, the release of Mac OS X version 10.5 enables 64-
bit applications. Currently, F-Script is only available as
a 32-bit framework, but it is worth considering how the
eventual move to 64-bit will be made.

The x86-64 instruction set fixes many of the problems
that had plagued x86 for decades. The most important
for compiler engineers is the introduction of 8 more gen-
eral purpose registers, making it feasible. This makes
passing arguments in registers feasible for most functions,
including the sorts used for trampolines.

AMD maintains a reference ABI for C and C++ on x86-
64, based on System V Unix; Apple completely defers
to this model instead of designing their own. On this
ABI, the first six integer parameters to a function are
passed in %rdi, %rsi, %rdx, %rex, %r8 and %r9. Unlike
PowerPC, the x86-64 ABI has mixed register-stack usage
for parameters; the six registers are always used first, but
additional parameters will be passed on the stack.

To keep the assembly from becoming too complicated,
FSClass only implements trampolines for methods with
three or fewer parameters. Figure 7 shows the configura-
tion of the registers when entering and exiting the tram-
poline, and Figure 16 shows the assembly code for the
3-parameter trampoline.

6 Analysis and Conclusions

6.1 Trampoline Performance

To evaluate the performance of trampoline as a method-
dispatching system, the program in Figure 9 was run
with versions of FSClass that had trampoline dispatch-
ing and naive dispatching. For comparison, run times
for an empty loop (Figure 11), and for a program that
uses an equivalent of static dispatch (Figure 10) are in-
cluded. These programs create a class MyClass with a
single method that returns nil , then create an instance
m of that class. The programs then execute a loop for
a certain number of iterations (upperBound, passed as a
command-line argument).

Figure 8 shows the performance of the naive, trampoline,
and static dispatch methods. It is apparent that using
trampolines enormously reduces the overhead for method
calls; the savings is close to 100%.

Interesting, although static dispatch was assumed to be
the fastest possible performance for executing the body of

Yordi receiver Yordi Block
%orsi selector %rsi | value: selector
Y%ordx param1 Y%ordx receiver
%orcx param2 %rcx param1
%Ir8 param3 %Ir8 param2
%r9 %r9 param3

Trampoline entrance Trampoline exit

Figure 7: Register use for x86-64 trampoline.

50.0

37.5

Execution Time (seconds)

S
PEFLLLLLLLLESLLSL LS LSS

& QQQ v>°° Q@ S ESLS LSS QQ SELSLSELSLSESLS S

L% A R EF S S F LS S

Number of Loop Iterations

<> Baseline 1 Trampoline Dispatch Naive Dispatch O Static Dispatch

Figure 8: Performance.

the method, using trampolines is actually slightly faster.
This is likely due to implementation details of the F-
Script interpreter; looking up the function referred to in
the loop body appears to be slightly slower than sending
a message directly to the object.

6.2 Impact of Using Trampolines

Although the overhead reduction of trampolines is con-
siderable, the overall benefits to an F-Script program
are much more modest. Most F-Script objects are im-
plemented in Objective-C, which already has an ex-
tremely efficient method-dispatch system based on hash-
ing. These calls to compiled code make up the large bulk
of method calls in an F-Script program. Additionally,
while removing the overhead of calling a method is im-
portant, the large bulk of method execution time is going
to be in evaluating the Block’s syntax tree. It is possi-
ble to compile F-Script to bytecode - its parent language,
Smalltalk, had one of the earliest virtual machines - but
at the moment, the interpretation costs far outweigh the
dispatching overhead.

Currently, there is not a sufficiently large body of code
that uses classes written in F-Script to determine the
real-world impact of using trampolines in this manner.
If the language and tools become more popular, it may
become possible to measure the actual performance ben-
efits.

6.3 Applicability Other Lan-

guages

to

The trampolines described in this paper benefit from the
language design of F-Script: every object has exactly one
class, and that class exactly determines the capabilities of
that object. This model is the same shared by Java and
C++ (to the extent that multiple inheritance is not used).
Many scripting languages, however, have a more flexible
object model, largely derived from Self. Both Ruby and
JavaScript treat individual objects as dictionaries, whose
methods are closures attached to individual properties of
the object. Any object can add or remove methods to
itself, with the class being used as a fallback.

This makes using trampolines at the class level impossi-
ble, as when an object is sent a message, the interpreter
must inspect the object’s dictionary to see if it individ-
ually overrides the class’s method definition. Depending
on the design of the interpreter, trampolines may not be
useful or may not offer enough performance benefits to
justify its additional complexity. More research is needed
to determine if the approaches described above are prof-
itable in other scripting languages.

7 References

1. Intel Architecture Software Developers Manual. In-
tel, 2000

2. Mac OS X ABI Function Call Guide. Apple Com-
puter, 2007

3. PowerPC Microprocessor Family. IBM, 2000

4. Mach-O Programming Topics. Apple Computer,

2007

5. Objective-C' Runtime Reference. Apple Computer,

2007
6. PC Assembly Language. Paul A Carter, 2006

7. PowerPC / OS X (Darwin) Shellcode Assembly. B-
r00t, 2003

8. System V Application Binary Interface. AMD, 2006

8 Evaluation Code Listings

upperBound := (args at:0) intValue.

MyClass := FSClass newClass:’MyClass’.

MyClass onMessage:#doStuff:withThing:
do:[:self :stuff :thing |
nil.

1.
m := MyClass alloc init autorelease.

1 to:upperBound do: [
m doStuff:5 withThing:3.

1.

Figure 9: Test program for method dispatching
upperBound := (args at:0) intValue.
MyClass := FSClass newClass:’MyClass’.
method := [:self :stuff :thing |

nil.
1.
m := MyClass alloc init autorelease.

1 to:upperBound do: [
method value:m value:5 value:3.

1.
Figure 10: Static dispatch test program

upperBound := (args at:0) intValue.

MyClass := FSClass newClass:’MyClass’.

MyClass onMessage:#doStuff:withThing:
do:[:self :stuff :thing |
nil.

1.
m := MyClass alloc init autorelease.
1 to:upperBound do: [

nil.

1.

Figure 11: Baseline test program

9 Trampoline Code Listings

// gets the property that has the same name as the selector

id _getProperty(id thisId, SEL selector) {
NSMutableDictionary* properties;
object_getInstanceVariable(thisId, IVAR_PROP_DICTIONARY, (voidx*) (&properties));
NSString* propName = NSStringFromSelector(selector);

id object = [properties objectForKey:propName];

// if this object doesn’t exist in the properties dictionary, get the class’s default value
if (object==nil) {

FSClass* currentClass;

object_getInstanceVariable(thisId, IVAR_FS_CLASS, (void**) (¤tClass));

id defaultObject = [currentClass defaultValueForProperty:propName];

// set the default value and return it
[properties setObject:(defaultObject==nil ? [NSNull null] : defaultObject) forKey:propName];
return defaultObject;
}
else if (object == [NSNull null]) {
return nil; // substitute out an NSNull for an actual nil

}
else {
return object;

+

}
Figure 12: Naive property-access method.

trampolined:

mflr rO ; save return address

XO0r. rl6, ri6, ri16 ; rle =0

bnel _main ; branch to _main if not equal

mflr ri6 ; r1l6 = main + 12

subi ri6, ri6, 28 ; rl6 = main - 16 = beginning of trampoline

; move parameters back one space

mr r8, r7 ; third param

mr r7, r6 ; second param

mr r6, r5 ; first param

mr r5, r3 ; receiver

lwz r3, 0(r16) ; load target Block into r3
lwz r4, 4(r16) ; load selector to rd

; extract objc_msgSend from thunkoline and call it

mtlr r0 ; return address

luz r15, 8(r16) ; load objc_msgSend to ri5

Xor rl6,r16,r16

mtctr ri1b ; copy objc_msgSend to count register

bctr ; jump to objc_msgSend, do not update link register

Figure 13: Three-argument general purpose trampoline for ppc.

;55 Three-argument trampoline

trampoline3:

call next_line3 ; (5) actual function pointer start
next_line3:

pop ecx ; put address of current line into ecx

sub ecx, 21 ; [header length (16) + offset to line ’pop ecx’ (5)]

; create new stack frame - 16-byte aligned, so more space than required
add esp, (32-4) ; the stack currently has the return address on the other
; side of the boundary, so leave space for it

mov edx, [esp+48] ; move parameter 3
mov [esp+20], edx

mov edx, [esp+44] ; move parameter 2
mov [esp+16], edx

mov edx, [esp+40] ; move parameter 1
mov [esp+12], edx

mov edx, [esp+28] ; move receiver
mov [esp+8], edx

mov edx, [ecx] ; load impl block to first stack argument
mov [esp+4], edx
mov edx, [ecx+4] ; load value: selector to second stack argument

mov [esp]l, edx

mov edx, [ecx+8] ; load address of objc_msgSend and call the Block
call edx ; return value is now in eax

sub esp, 28 ; clean up stack frame

return

;55 end Three-argument trampoline

Figure 14: Three-argument general purpose trampoline for x86.

trampoli
mflr

Xor.
bnel
mflr
subi

; Mo
mr r
mr r
mr r
mr r

1ld r
1d r

ne3:

r0 ; save return address
ri6, ri6, rl6 ; rle =0
_main ; branch to _main if not equal
ri6 ; r16 = main + 12
rl6, ri6, 44 ; 16 = main - 32 = beginning of trampoline
ve parameters back one space
8, r7 ; third param
7, r6 ; second param
6, rb5 ; first param
5, r3 ; receiver
3, 0(r16) ; load target Block into r3
4, 8(r16) ; load selector to ré

; extract objc_msgSend from thunkoline and call it

mtlr r0 ; return address

1d r15, 16(r16) ; load objc_msgSend to rib

Xor rl6,r16,r16

mtctr ri1b ; copy objc_msgSend to count register

bctr ; jump to objc_msgSend, do not update link register

Figure 15: Three-argument general purpose trampoline for ppc64.

trampoline3:

call next_line3 ; (5) actual function pointer start
next_line3:

pop rl0 ; put address of current line into ri10

sub r10, 21 ; [header length (16) + offset to line ’pop ecx’ (5)]

mov r8, r9 ; move parameter 3

mov rcx, r8 ; move parameter 2

mov rdx, rcx ; move parameter 1

mov rdi, rdx ; MOV receiver

mov [r10], rdi ; load impl block to stack argument

mov [r10+8], rsi ; load value: selector to stack argument

mov ril, [r10+8] ; load address of objc_msgSend and jump

jmp riil

Figure 16: Three-argument general purpose trampoline for x86-64.

10

