Recursive Types Are not Conservative over F<
(extended abstract)

Giorgio Ghellil

Abstract. F< is a type system used to study the integration of inclusion and
parametric polymorphism.J4does not include a notion of recursitgpes, but
extensions of E with recursive types are widely used as a basis for foundational
studies about the type systems of functional and object-oriented languages. In this
paper we show that adding recursive types results in a non conseestwsion of

the system. This means that the algorithm fordubtyping(the kernel of the
algorithm for E typing) is no longer complete for the extended system, even when it
is applied only to judgements where no recursive type appears, and that most of the
proofs of known properties ofddo not hold for the extended system; tlssthe

case, for example, for Pierce’s proof of undecidability of However, we prove

that this non conservativity iimited to a very special class of subtyping
judgements, the “diverging judgements” introduced in [Ghe]. This last result implies
that the extension of SFwith recursive types could be still usefidr practical
purposes.

1 Introduction

F< is a minimal language integrating subtyping and bounded parametric polymorphism. It
is a simplification of the language Fun introduced in [CaWe]; the essential difference is
that Fun has recursive types and values, which are missing i<Fwas introduced in
[CuGhe] (seealso [BrLo], [CaMaMiSce] and [Calo]). Extensions of Bre being
exploited as a foundational tool in the research on the extensitire diype system of
functional languages with modules or with object-orierfestures. We refer to [CaWe],
[GheTh], [CuGhe] and [CaMaMiSce] for more motivations and details about F

In all the models of object-oriented type systems, as in nwhgr contexts,
recursive types play eentral role. It has been argued (see, e.g., [AmCa]) that recursion
can be added todquite painlessly, as a feature which is in some way “orthogonal” to the
rest of the system. In this paper we show that this is not the case: the mere “existence” of
recursive types changes the subtyping relations between non recursive types.

This result showghat “transitivity elimination” forF<, in the form proved in
[CuGhe], is not valid inuF<. Transitivity eliminationmeans, essentially, that every
provable subtyping can be proved without using the transitivity rule below:

I'-TsU TFU=<V
I'ET<V

Transitivity elimination is essential, from the point of view of type-checking. A subtype
checker uses deduction rules backward to generate subproblems from a subtype checking
problem; this approach is ngbssible with the transitivity rule, which transforms the
problemI'FT<V in the infinite disjunction of all thel{+T<U, I'FU<V) problems which

L Dipartimento di Informatica, Universita di Pisa, Corso lItalia 40, 1-56125, Pisa, Italy,
ghelli@di.unipi.it. This work was carried out with the partial support of E.E.C., Esprit Basic

Research Action 6309 FIDE2 and of “Progetto Finalizzato Sistemi Inforneat@alcolo Parallelo”
of the Italian National Research Council under grant No.91.00877.PF69.

can be generated by choosing any type U. From the point of view of theoretical studies,
the transitivity rule makes it impossible to reason about subtyping judgements via
induction on the types involved in their proof, since not only ased V in the premises

not proper subterms of T and V in the result, but, moreover, there is no relation, a priori,
between the size of U and that of T and V.

The fact that “transitivity elimination” does not hold has at least three important
conseguences:

» Implementation of type checkinghe standard type-checking algorithm fat, Rvhich
is completefor that system, is no longer complete when applied to the recursion-free
fragment ofuF<. In other words, extending that algorithm to the recursive case does
not mean just adding code to deal with recursive tyjpgsmeans altering its behavior
when dealing with non recursive types too. At present it is not clear how this can be
accomplished, thought our results might give some suggestions.

» Language design: the only known proof of the existence of a minimumfoype<,
which is based on transitivity elimination, is no longer validibe. The existence of
a minimum type is essential for the usability of the system as a basis for a programming
language and is importafdr writing efficient type-checkers. We conjecture thék
still enjoys that property, but we do not know how to prove it.

» Semantics: an interpretation of derivable fudgements which is defindaly induction
on their derivation proof, is coherent when it depends only on the judgement and not on
the proof. Coherence is a crucial property of interpretations. In [CuGhe] a set of
“coherence equations” was defined, which allow useduce the problem of checking
the coherence of any coercion-based modékotfo the validity of those equations in
that model.With non-conservativity, satisfaction of these equations could be not
sufficient to ensure even the coheremdehe interpretation ofiF< judgements not
involving recursive types.

F< subtyping is known to be undecidable [Pie]. Wienundecidable proof system is
conservatively extended, its undecidability is inherited by the extended system, since
otherwise the decision procedure for the “bigger” system could be used to decide
provability in the “smaller” one. Hence, our result implies that undecidabilityaf ot
immediately inherited byF<, but has to be proved independently. Moreover in this
paper we show that Pierce’s proof of undecidability cannot be trivially rephrased in the
context ofuF<.

However, as a partial conservativity result, we show that the set of subtyping judgements
which can be expressed ig But proved only ilnF< is contained in a very peculiatass

of judgements, the “diverging” judgements, i.e. those which make the standard subtype
checking algorithm diverge. This result is important since it shows that a strict relation
exists between the undecidability of &nd ournon-conservativity result, and suggests a
way to prove that recursive types are conservative over the decidable variantéilad F
Kernel Fun (see [Ghe] and [GhePie]) angdvithout Top(see [Ka]). Furthermore, it has
been argued that the behavior of a type checking algorithm on diverging judgésmehts

no practical interest, since there is, in practice, no possibilityatlatl program contains
such a judgement. This point of view is supported by the results in [Ghe] which describe
the structure of the diverging judgements, which seems far more complex than what is
actually used in practice. Adopting this point of view, our partial conservativity result
means that, restricting the attention to “practically relevant” judgemeis, is

conservative over£&

The paper is structured as follows. In Section 2 we give the preliminary definitions about
F< anduF<. In Section 3 we prove non conservativityudi< over F<. In Section 4 we
characterize the set of provable or diverging judgements as the maximal relation enjoying
some closure properties. This result is used in Section 5 to prove the partial conservativity
result. All the sketched proofs are fully developed in the full paper.

2 Definitions

21 Fe

The syntax of E subtyping judgements is defined as follows terms and typing
judgements have no relevance in this paper):

Types T ==t Top | T | VI<T. T
Environments r =0 |&T
Judgements J =TFT<T

F< types are either variables, Top, functiypes (F=T) or universally quantified types,

used to give a type to polymorphic functions, where the type variable can be bdunded.
subtype rules are listed in Appendix A. We wilften ignore function types in the
following since, from the point of view of subtyping, they behave exactlyVikgpes

where the quantified variable does not appear in the codomain. Variables are actually just
names for their De Bruijn indexes, so that judgements and types are always considered
moduloa. conversion and all substitutions must be performed in a capture free way.

Due to transitivity,F< subtype rules are not a gotabl for reasoning about non-
derivability of judgements. This problem was sohiad/CuGhe], by proving that any
derivable judgement admits a normal form proof, i.e. a proof where transitivity is used
only to prove judgements like+ t< U as a consequencebt- t < T'(t) andI' F T'(t) <
U whereI'(t) is the bound of t il" (i.e., if [= [, &T, ') then I'(t)=gef T). The
existence of such a normal form proof for any subtyping judgement is what we called
transitivity elimination in the introduction.

It is easyto show that an algorithm exists which, given any derivable subtyping
judgement, rebuilds a normal form proof tree for that judgement. That algorithm can be
described by the set of rewrite ruleslow. These rules transform a derivable judgement
into the premises of the last subtyping rule applied in the normal form proof of that
judgement.

(top) '+ T<Top > true

(varld) 'k u<u > true

(varTrans) TBu, T#ZTop= T F us<T > I'F TUP<T
(Ydom) I FViSTU'sVisTU » TFT<T
(Vcod) I FVisTUsVisTU » I, &TF Us<U3

The algorithm tries to build a normal-form proof tree starting from the conclusion and
building (backward) all theoranches by following all the possible rewriting chains
generated by the conclusion.dbme chain generates an irreducible judgement, different
from true, then the algorithm fails. When all chains terminate witle, the set of these

2 variables inI'(u) must be renamed to adocapture; e.g., we could rename all variables in
T'Fu<T so that no variable name is used twice.

3We could writel' + Vt<T.U'< Vt<T".U > T, t<T'F [t/tJU" < U to emphasize that t and t'
can be different.

chains represents a proof tree for the original judgéfners depicted in Figure &nd
the algorithm terminates with success.

t<Top, wt—t+u<t—=Top

>(varTrans)
t<Top, Et—t - t—=t < t—Top
>(—dom) >(—cod)
t<Top, Wwt—tH-t<t t<Top, wt—=t+t< Top
>(varld) >(top)
true true
(1d) (Top)
(Var) (=) <Top, wEt—t-t<t t<Top, Et—=t-t<Top
t<Top, Et—=tFu<t—t t<Top, Et—=tHt—=t<t—=Top

(Trans) t<Top, wEt—=tFu<t—=Top

Fig. 1: Correspondence between the chains generated by a judgement and its proof.

Proposition 2.1: The algorithm described by the five rules above is correct and complete
with respect to £ subtyping, i.e. it terminates with success on all and only the
derivable judgements, while it may either fail loop forever with non derivable
judgements [CuGhe,Ghe]. The looping behavior cannot be avoided, siscédfyping
is undecidable [Pie].

uF< extends k by adding recursive types:

Types Ti=t | X | Top | T | AST. T | uX.T—=T | uX.VIsT. T

For clarity, we use two different families and X for, respectively, bounded and
recursive type variable¥. andu bind the corresponding variables. We forbid recursive
types whose body is eithér X, Top or u X.T. This is a minor restriction which
simplifies some proofs without restricting the expressive power of the system. In fact a
recursive type denotes the regular tree which constitutes its infinite unfolding. So,
uX.Top, uX.t anduX.Y (X£Y) can be forbidden, since they would denote just Temd
Y. uX.X is forbidden, since it does not mean anything, and this is the only essential
restriction. Finally,uX.uY.T can be forbidden since its unfolding is the same as
uX.[X/Y]T [AmCal].

Different notions of type equality and subtyping can be defined for recursive types
(see [AmMCa] for an excellent discussion). The essential requireisi¢hat a recursive
type must be equal, or at least isomorphic, to any of its unfoldings. This requirement can
be expressed by the following ralgnote the use ofy, for uF< judgements):

4 Actually the rebuilt treds slightly different from the normal form proof, since a) the (exp) rule
does not transforft+<T into the axiomI+<I(t) plus TFT'(t)<T, but takes for granted the proof

of the axiom and generates olyI'(t)<T; b) the rewrite ruleproveI'T<T by analyzing step by

step the structure of T, applying identity only on atoms; these are just algorithmic optimizations
which do not affect the correspondence between the two approaches.

5 A less practical kinaf recursive types can be obtained by not requiringtal =[uX.T/X]T,

but simply that for each recursive type there exist two functiongyfelgt):[uX. T/X]T—=uX.T and
unfold(MXlT):MX.TQ[MX.T/X]T, such that fold(unfold(apa and unfoldgfold(a)}a; this approach

is adopted, for example, in Cardelli’s Fsub system [Ca]. Our result does not apply to this approach.

(unfold) 'y uX.T type
[y X T = [uX T/X]T

Since we are only interested in subtyping, and not in type equality, we will use the
following two rules instead:

(unfold-l) T ky [WX.T/XIT < U (unfold-r) T Fy U< [uX.T/X]T
T uXTsU [y UspXT

These are weak rules, whiclo not allow us to deduce all the subtyping judgements
which could be proved using the Amadio-Cardelli systemgf@mple you cannot prove
that uX.t—=t—=X is a subtype ofuX.t—X, even if the two types have the same infinite
unfolding (see [AmCa]). However we wilhow that these rules are already powerful
enough to extend~ subtyping in a non-conservative way, i.e. to prove subtyping
judgements which can be expressed but not proved in plain F

Using the backward notation, these two rules are written as follows:

I by uXT<Us Thy [WXTXIT <U (unfold-1)
I by USpX.T s Thy Us[uXCT/XIT (unfold-r)

Proposition 2.2: Adding the two rules above to the fiveles for & subtyping we obtain
a rule system fonF< judgements which is sound but not complete.

The fact that the seven-rule systens@ind can be easily verified, by showing that they
actually build, in a backward fashion, a valiéf< proof. The fact that they are not
complete, even with respect the weak recursive subtyping rules adopted, can be
verified by observing that the judgement, provablafa but not in k&, which we will
exhibit in the next section is not proved by the seven-rule system. Non completeness of
this set of rules is what we call “loss of transitivity elimination”, sinceathlky difference
between the backward rules and the complete system is that the backward rules only use
the limited form of transitivity formalized by the (varTrans) rule.

Soundness and completenessh#f five rules means that we can use them to prove
both derivability and non-derivability ind while the seven-rule set can be used only as
an alternative way to prove derivability yifr<.

3 TheCounterexample

In this section we will present a counterexample to the conservativity conjecture, i.e. an
F< judgement which cannot be derived inlsut can be derived imF< .

Notation: To improve readability, we will exploit the following conventions:
Vt.T standsfor Vt<Top.T

-T stands for F=Top

And we will exploit the following derived rules:
(Vd) T F VLT's VusU.T > LusU + [uflTh < T
) r+-T < -U > T F U < T

(var) T F t < Renamel((t)) > true
(in the last rule RenamE(t)) stands for ang-variant of the bound dfin I').

Let B=Vu.-Vv<u.-u. Then the following judgement cannot be deriveddn F
toSB = to < thSto.-tO

This can be proved by showing that the completsubtyping algorithm described in the
previous section diverges as follows:

let B=Vu.-Vv<u.-u:

to<B F 1o < Viysty-tp >(varTrans)
toSB = th-vtzgtl-tl < thSto-tO D(V)
toSB,t]_Sto = -VtzStl.-tl < -tO l>(-)
to<B, 1<ty ot < Vipstyoty

The judgement above is a special case (i=1) of the family below:
J =1<B,... L <t F oty < VoSt ot
For anyi that judgement is transformed in the judgemgnt J

to<B,... L 1<t F 1o < Vtio<tivg-tiyq >(varTrans)
to<B,... L 1<t F Vo -Viastiio-tio < VoSt -ty (V)

to<B, ... i<t tiostiyg B o-ViiaStiiotiyo < -ty >(-)
to<B,... L 1<t tipostivg B tiyq < Viia<tiio-tiyp >(varTrans)
to<B,... L 1<ttty F < Viia<tiio-tiyp >(varTrans)
e >(varTrans)
to<B,... L 1<ttty F 1o < Vtiia<tito.-tiyo

This implies that the algorithm never terminates on the original judgement, hence, by
completeness, that judgement cannot be provedfn F

We show now that ipF< there exists a (recursive) type T, such that:

(@ ©H<BFty<T
(b) to<B F T < Viy<tg.-tgy

So that, by transitivity, the judgement above is derivabjerg T is the following type:
T = uX. Vt<X.-X.

We give the backward representation of a proof of the two judgements (a) and (b) above.
When aV judgement can be rewritten two different ways we indicate with (1) the
beginning of the rewriting chain of the first premise and with (2) the beginning of the
rewriting chainof the second premise. Note that, while to prove non-derivability of the
judgement above indwe needed the backward representation, in this case, where we
are only interested in the derivability of the judgement, we could write its proof in the
usual tree form. We still resort to the backward representation to make it easier for the
reader to compare the behavior of these two judgements with the behavior of the
judgement above; the tree form of a proof of the judgement can be easily recovered.

(@ tpsB F tg = T >(varTrans)
toSB = th-vtzgtl-tl T I>(Unf0|d-r) (T:MXVtSX-X)
toSB = th-vtzgtl-tl thST-T I>(V)
toSB, tlST = -VtzStl.-tl -T l>(-)

to<sB, <T + T
tg<B, ST F Vio<T.-T
1 ty<B, ty<T oy

VtzStl.-tl I>(Unf0|d-|)
Vio<ty.-t; »(¥Ydom)ld; »(Vcod)2
T >(var) true

INIA N IN N IA

6 This underivable judgement was introduced in [Ghe]; before its discovery, it was widely
believed that the algorithm described in the previous section was terminating, and sg that F
subtyping was decidable. A variant of this judgement has then been used by Pierce to encode two-
counter Turing machines ag Bubtyping judgements, proving undecidability efdtibtyping [Pie].

2 toSB, tlST, t2£t1 = -T < -tl l>(-)
toSB, tlST, t2£t1 = tl < T 1>(Var) true
(b) t=<B FOT < Viystg.-tg >(unfold-l)
toSB + thST.-T < thStO'_tO >(Vdom)1,; »(Vcod)2
1 tp<B F o to < T >* true (see (a))
2 toSB,tlSto T < - >(-)
to<B,t1<ty F tg < T >* true (see (a),{ plays no role)

As already stated, the non conservativitybg w.r.t. F< implies that the undecidability

of the second system does not necessarily extend to the first one. Moreover the judgement
that we have shown to become derivabl@litx is exactly that judgement whose non
derivability has been used by Pierce to show undecidabilifix subtyping. This means

that it is seems rather difficult to adapt Pierce’s proof to shiegwundecidability.

It could even be conceivable that adding recursyyes to k types makes its type-
checking problem easier, in the same way as admitting rational infinite terms as solutions
for the unification problem makes its solution simplaifpwing us to avoid the occur
check. However, this optimistic hypothesis is not convincing, since we do not see, in
practice, how a complete algorithm foff< subtyping could be designed.

Our counterexample hints at a possible directmexplore in order to complete the
algorithm. Since the structure of the recursive type T “reflects” the structure of the
looping behavior othe judgement with respect to the standard type-checking algorithm
(an alternation oY and -steps), we could look for an algorithm which tries to build an
intermediate, possibly recursive, type whose structure is derivedtfrerbehavior of the
standard algorithm.

4 The Compatibility Relation Defined by Diverging Judgements

We want to prove that the effects of our non-conservativity result are limited to the
“pathological” set of the diverging< judgements, i.e. to those judgements which make
the K subtype checking algorithm diverge.
To prove this partial conservativity result we first need soasealts about the nature
of diverging judgements. To this aim, in this sectisa study the point of view that,
when the subtype-checking algorithm is not able to prove in a finite time that T is not a
subtype of U, this means that T is somehow “compatible” with U, eversifribt exactly
a subtype of U, and we will study the properties of this compatibility relation.
Compatibility will be defined by negation, as the complement of the notion of being
“provably not a subtype”We first model the failing runs of the subtyping algorithm
using the proof system below.

(t/Topz) T'F Topgt (TopNg) T+ Topg Vi<T.U
(Vitg) THVisT.Uzt (VarTrang) THI({M)g T Tt T£Top
CHteT
(Vrg) T, =THUz U Vlg) THTeT
'k VisT'.Ug VI<T.U' 'k VisT'.Ug VI<T.U'

Proposition 4.1: ' = T ¢z U if and only if thestandard type-checking algorithm fails (in a
finite time) on the judgemedt+ T < U.

Proof hint : By induction, on the number of steps executed by the algorithm in one

direction, and on the size of the prooflof T z U in the other one.

In this section we will always consider all the relations writtel BT £ U as ranging
on the universe J of well-formed judgements:

J={T,T,U|T'+Ttype,I' - U type}

HereafterI' - T z U denotes the intersection of the relation defined by the rules above
with J; note that it would be very easy to modify the proof systemsaf that it only
produces such judgements.

For the sake of compactness of notation, we define a funefion(“shape of T") from
F< types to the three element linearly ordered st §¥ < Top} as follows:

for any type variable u: S(u) =t
for any t,T,U: S(VisT.U) =V
S(Top) =Top

Then we collect the three axiomswinto one:
(Shape) S(M>sU) = T'kTzU
The compatibility relation can be now formally defined.
Notation: For any relation denoted &% T ® U:
TFT'FTRU <(gef <[,T,U>eJ and nol'+T R U.
(Note thatt# is just a classical negation, so that (R¢t(T RU)) <« T'T g U).
Definition: '+ Tc U (read: T is compatible with U w.rE) <gef I'F Tz U

By proposition 4.1 - T c U means that trying to proé - T < U results either in
success or looping. We call theelation “compatibility”, sincd™ - T c V means that V
is so nearto being a supertype of T that the standard algorithm is not able to prove the
opposite.

To study the compatibility relation, we first need a “positive” connotation for it. To
this aim, we first observe that compatibility shares sitibtyping a set of “compatibility
properties”.

Definition: A relation® on J iscompatible with subtyping (compatible, for short) if:

(VR) rEvisTUR VisTU «T'FT K T'andl, «THU R U’
(VarTranR)U#zTop, Utt=TFtR U <TFI{Mt)RU
(TopRr) T'ETR Top
(IdR) F'FtRt
(Shaper) TR U = 5(T) < S(V)

The compatibility properties give us a different way of characterigziagdc: we will
prove that they are respectively the minimum and the maximum compatible relations.
First, we show that any compatible relation has no intersection with the redation

Proposition 4.2: If ®is compatible andl' - T ¢z U, then['t/ T g U.

Proof hint : By induction on the proof of - T z U, and by cases on the last rule
applied. Essentially, any proof bf T z U corresponds to a chain of applications of
(VR) and (VarTrang) which transfornT" - T # U into a contradiction to (Shagg.

Now the “positive characterization” of the compatibility relation can be given; the

following proposition is all that is needed in the next secttonprove partial
conservativity.

Proposition 4.3: c is the maximum compatible relation on J.

Proof hint : First we prove that is compatible. Since is defined as the complement of
z, we first negate both sides of all the properties, to express them in tetms of

(Ve) Fr-vtsT UgVisT.U' «THTgTorL &THU gz U
(VarTrang) U#£Top, Ust=TFtz U <T'FI'{t)z U
(Tope) T'¥Tg Top
(Idg) I'iAtzt
(Shape) T'ETzU < §(T) > s(U)

Maximality ofc is a corollary of proposition 4.2: since, for any compatible
I'TgU=THKFTRU, thenTFTRU=TFTzU,iel-TcU.

Proposition 4.4: < is the minimum compatible relation on J.

Proof hint : Compatibility and minimality ok are consequences of completeness and
soundness of the subtype-checking algorithm presented in Section 2.

The fact that there arat least two different compatible relations could be surprising,
since the compatibility conditions are rather restrictive. They contain both positive
conditions, (Top) and (Id), which impose that something is in the relation, negative
conditions (Shape) imposing that somethinghé in the relation, and bidirectional
closure conditions M) and (VarTrans)which allow us to deduce both the presence and
the absence of something from the presence and the absence of somethMgrelseer

any judgement matches at least one of the five conditions, so that it seems that you can
use thoseconditions to decide whether any judgement belongg t®@bviously, this is

not the case, and the problem is that trying to use consistency conditions to decide
whether a pair of types is i can result in an infinite loop. On the other hand, in the
decidable variants off the repeated application of the compatibility conditions always
produces a negative or a positive axiom, so that in those systems subtyping is really the
only compatible relation. So, the existence of a full range of different compatible
relations is a feature ofdfwhich is strictly related to its undecidability.

Before going back to thenain stream of the paper let us pause to show that the
compatible relation is similar t& also by enjoyingthe properties of transitivity,
narrowing and irreflexivity (corollary 4.9).

We first prove that any compatible relation is irreflexive.

Definition: If t is defined in a context, the definition level of t i, written.(t,T"), is
the number of variable definitions Inwhich strictly precede the definition of t:
Lt (=A, 1)) =0
L(t, (iA, T)) = 4(t, 1)+1 (#u)
The definition level of a type T weformed inT", written £(T,I'), is the maximum
definition level of the variables which are free in T, and is O if no variable is free in T.

Fact 4.5: In any well-formed contexty(I'(t),[")<(t,I'), since all the free variables Ii(t)
have to be defined before t.

Lemma 4.6: Let® be a compatible relation. Thérn# I(t) R t.
Proof hint : By (Shapg), '+ T'(t) ® t would implyI'(t)=u for a certain u; by Fact 4.5,

this implies £(u,I')<£(t,I'); so wefind a contradiction by proving, by induction on
LuI), thatt TFugt and&#t) = (£(u,) > L(tI)).

Proposition 4.7: Any compatibler is irreflexive:I' FT® U andTT'FU R T = T=U.

Proof : By induction on the size of Tand U. By (Shgapel' FT® U andTHFU R T
implies thats(T)=5(U). Cases(T)=t is managed by 4.6, the others are routine.

Now the transitivity ofc can be proved. Since we cannot reason by induction on the
relation, we will reason by maximality, by proving that the transitive closureisfa
compatible relation which contains

Notation: If ® is a relation on J, its liftingg - to well formed environments is defined
inductively as follows:

0 ®r0
[T KA, €U <>gef I ®RpA andT - T g U

Now we define the transitive closuré of thec relation; condition (Narrow+) is strictly
needed, since narrowing is essentially another aspect of transitivity, as showprioahe
of Proposition 4.8. Condition®/¢) and (VarTrans+) are added to the definition-bfto
simplify the same proof.

Definition: ' Tct V is the relation defined by the following five deduction rules:

() F'ETeV = ['+TctV
(Trans+) I'FTctU andTHUcSHV = ['+TctV
(Narrow+) T+TctU andActT = AFTctU
(V+) [FTctTandl, €TFUct U' = TF VisT.Uct ViT.U'
(VarTrans+) FTop, Uzt, T'- T(t)ct U = I'ktctU

Proposition 4.8: ct is equal ta.

Proof : c* D c is immediate by conditiore) above. We show that" is compatible; the
thesis follows by maximality of among compatibleelations. We show the typical
case, Yc*): T'F VIST.Uct VisTU' < THTct T andl, &THUH U

=: by (V+)
=>: By induction on the size of the proof tHat- Vi<T'.U =t Vi<T.U' and by cases
on the last rule appliedz) by (Vc). (V+): immediate. (VarTrans+): impossible.

(Narrow+): exists\: I'e*A andAk Vi<T'.U ct VI<T.U'
=(Ind.) AFTc*TandA tTHUcH U
=(Narrow+)['+ T c* T'andl, t<TH U ct U

(Trans+): by (Shapg) the intermediate type has the shaftsV.W:
'k VisT.Uct VisV.W, T+ VisV.W c* VisT.U'
=(Ind.) F'EVetTandl, VUt W,
F'ETetVandl, &THWet U
=(Narrow+'-V c* T'andll, T U ct W,
F'ETetVandl, &THWet U
=(Trans+) ' Tc™ T"andll’, <TH U ct U

Corollary 4.9: e enjoys both transitivity and narrowing, i.e.:

I'tTcUand'FUcV = I'FTcV
I'Tc UandAcI = AFTcU

This study of compatible relations leaves two interesting problems open:

» Does compatibility imply transitivity?
* Is there some other compatible relation apart feorand c? Is there some other
interesting compatible relation apart frenandc=?

We have no answer for the first question, while the second will be answered in the next
section.

5 Conservativity of puF< Over Terminating Judgements

In Section 3 we showed that~< is not conservative over<F by exhibiting a non
provable k judgement which iprovable inuF<. That judgement is “divergent”, which
means that it makes the standbedtype-checking algorithm diverge. In this section we
generalize that observation, by showing that every “finitely failing” judgement, i.e. which
makes the standard:Rype-checking algorithm fail, is not provable <, so that non
conservativity is restricted to the “pathological” set of the diverging judgements.

We show this by proving thatF< subtyping is still a compatible relation, so that it
cannot relate more types than the maximum compatible relafion “

Definition: wJ is the set of triples which form well-formaé< judgements:
wl={T,T,U|lC I—M T type,I’ '_M U type}

Definition: A relation 8 onuJ isu-compatible when:

(VR) MFYSTUR VISTU' < THT K T andll &<THU g U'
(VarTranR) U#Top, Ust=T+HtR U sT'FTIHRU
(TopRr) TR Top
(IdR) rtRt
(Shaper) 'ET® U = 5(T) < 5(U)
(uR) I'FuXTRU < Tk [uX.T/X]T % U
(WRP TR uXU < I'ETR [uX.UX]U

Where, in condition (Shagg, S(uX.T)=gesS(T)
Proposition 5.1: The relation” I—M T < U isu-compatible.
Proof: See Appendix B.
Lemma 5.2: Any u-compatible relation is compatible when restricted to J.
Proof : Easy (see the full paper).
The main theorem now follows immediately.

Theorem5.3: If T '_M T<U andT, T and U do not contajn thenl' T = U

Proof : By proposition 5.1, t relation isu-compatible; by lemma 5.2, its restriction
to F< is compatible. The thesis follows from the maximalitg @mongthe compatible
relations (proposition 4.3).

We have proved that the restrictiongyf to J is strictly bigger thand~subtyping but is
contained inc. We can now prove tha:h restricted to J istrictly contained ire.

Lemma 5.4: Thec relation is co-R.E. but is not R.E.

Proof : See Appendix B.

Proposition 5.5: uF< subtyping restricted to J is R.E.

Proof : All the rules ofiF< subtyping are effective, so that they can be useshtonerate

all the provablaiF< subtyping judgements; J is a decidable subsgf of
Corallary: <u restricted to J istrictly contained irc.

Hence,s,, restricted to J defines third compatible relation, intermediate between F
subtyping and, and different from both of them.

This fact implies that there exists a looping judgement which is not provatoke:in
So, if we knew such a judgement, we could try to uge itephrase Pierce’s proof of
undecidability foruF<. The problem is recognizing that a loopifigdgement is not
provable inuF<. In fact, the only technique we know to prove that a judgement is not
provable inuF< is to apply backward the deduction rules to it to redute & judgement
violating the (Shap® condition. However we have proved that this process never ends
when is applied to a looping judgement (see proposition 4.3).

Note that compatibility oﬁu implies that, for every proof df-,, T < U, where the last
rule used is transitivity, a pro@kxists forl" -, T < U where the last rule used is either
(VarTrans) or a rule which is not transitivity; the key property, to prove this fact, is
(V<,,)- This sounds like a form of transitivity elimination. Actually, this fact only implies
that, for anyn, we can find a proof of +, T < U where full transitivity is not used in
any of the lash steps, but does not imply that wan find a proof where full transitivity

is never used. The point is thaintuitively, it is possible that whenever we remove a
transitivity instance from the bottom of tipeoof, we add some new transitivity instance
to the higher levels, so that the process of transitivity elimination never ends.

6 Conclusion and futurework

We have proved that recursive types are not a conservative extensionFarsyeem.
Moreover wehave shown that in the extended systér transitivity elimination does
not hold, i.e. it is not possible to substitute gemeral transitivity rule with the restricted
(VarTrans) version. This implies that a rich set of proofs of properti€x,ofvhich is
based on transitivity elimination, is not valid faF< (see, e.g., [CuGhe], [GheTh],
[CaMaMiSce], [CuGhe?2], [BrLo]). We have shown that the basic diverging judgemient
F< is provable inuF<, thus showing that Pierce’s proof of undecidability=afsubtyping
is not valid foruF< ([Pie]).

Non conservativity has serious practical consequences: it means that the standard
type checking algorithm fof< is no more completavith respect touF< judgements,
even for judgements not containing recursive types.

As a positive counterpart to this set of negative results, we have shown tHdfdience
between k anduF< is restricted to the set of the diverging judgements. This means that
the standard £ type-checking algorithm is at least sound, even if not complete, when
used to checkiF< subtyping orF< judgements, since it does not give any answer on
those judgementw/hose provability is different in the two systems. Furthermore, the
standard type-checking algorithm fog Fgoes wrong”, when applied tp-free uF<
judgements, exactly in the same cases when it goesg with respect té<, i.e. on the
diverging judgements. The only difference is that, in the cabe,ahe algorithm “goes
wrong” by looping in some cases when it should fail, while, wkk, it loops on a sebf
judgements containing both provable and not provable ones. But the essential point is that
those judgements have no serious possibility of appearing in a real program, so that a
looping behavior of the algorithm in those cases may be tolerated. However, the actual
impact of our result on the use# F< as a basis for language design should be more

seriously taken into consideration.

Finally, conservativity over terminating judgements shows that non-conservativity
recursion is connected to the problem of undecidability of subtyping, and gives
technique to prove that recursion is conservative over the decidable variagats of F

We chose a very weak form of recursive types for this study. This implies that the non
conservativity result has a wide applicability, since it holds for any notion of recursive
types which is stronger than the one adopted. On the other haride feame reason, our
partial conservativity result has a more limited applicability, since it immediately holds
only for notionsof recursive types which are weaker than the one adopted. So our next
step should be the definition of a strong notihrecursive types, generalizing the
[AmCa] approachto F<, to verify whether the partial conservativity result can be
extended to that system.

Acknowledgements

The counterexample was obtained by slightly modifying a judgement produced by
Roberto Bergamini whose suggestion sparked off this work.

This work was carried out in the framework of the Galileo project, aimed at the
design of a strongly typed object-oriented database language, and lead by Prof. A. Albano
at the University of Pisa.

References

[AmCa] R. Amadio, L. CardelliQubtyping Recursive Types, DEC SRC Research Report
62, short version in Proc. of the 18th ACM Symposium on Principid8rogramming
Languages, 104-118, 1991.

[BrLo] K. Bruce, G. Longo, A Modest Model of Records, Inheritarcel Bounded
Quantification,Information and Computation 87 (1/2), 196-240, 1990.
[Ca] L. Cardelli,Fsub: the System, note, 1991.

[CaLo] L. Cardelli, G. LongoA Semantic Basis for Quest, DEC SRC Research Report
55, short version in Proc. Conf. on Lisp and Functional Programming, Nice, 1990.

[CaMaMiSce] L. Cardelli, S. Martini, J. Mitchell, A. Scedrov, An Extension of System F
with Subtyping Proc. Conference on Theoretical Aspects of Computer Software, Sendai,
Japan, Springer-Verlag, Berlin, LNCS 526, 1991.

[CaWwe] L. Cardelli, P. Wegner, On Understanding Types, Data Abstraction and
Polymorphism ACM Computing Surveys 17 (4), 471-522, 1985

[CuGhe] P.-L. Curien, G. Ghelli, Coherence of Subsumptiorcjriviinimum Typing and
Type CheckingMathematical Structuresin Computer Science 2(1), 55-91, 1992.

[CuGhe2] P.-L. Curien, G. Ghelli, Subtyping + Extensionality: Conflueng@ntdp< in
F<, extended abstradProc. Conference on Theoretical Aspects of Computer Software,
Sendai, Japan, Springer-Verlag, Berlin, LNCS 526, 731-749, 1991.

[Ghe] G. Ghelli,Divergence of F< Type-checking, note, 1991.
[GhePie] G. Ghelli, B. Pierc&ounded Existentials and Minimal Typing, note, 1992.

[GheTh] G.Ghelli, Proof-theoretic Sudies about a Minimal Type System Integrating
Inclusion and Parametric Polymorphism, PhD Thesis, TD-6/90, Univ. of Pisa, 1990.
[Ka] D. Katiyar, S. Sankar, Completely bounded quantification is decidBbbe, of the
ACM S GPLAN Workshop on ML and its Applications, 1992.

[Pie] B. Pierce, Bounded Quantification is Undecidalieoc. of the 19th ACM
Symposium on Principles of Programming Languages, 305-315, 1992.

Appendix A: nF<.

Environments (sequences whose individual components have the form x<ITpr t
(Denv) () env

(genv) I''env THTtype ¢I7 (:env) I' env T'HT type ¥I'

I, «T env IxT env
Types
(VarForm) T, T, I" env (TopForm) I env
I &T, I"+t type I'kTop type
(—=Form) THT type I'U type ¥ Form) T, t<THU type
'FT—U type 'k Vi<T.U type
(wForm) Tk [Top/X]U type
T'FuX.U type
Subtypes
(Vars) I <T, " env (Tog) T'FTtype
=T, I H<T 'k T<Top
(—<) I'ET<T" I'UsU < 'T<T' T, &TFUsU
I'-T—=U<T-=U 'k VisT'.U < VisT.U'
(Id=) T'FTtype (Tfrany T'HFTsU TFUsV
'ET<T 'kTsVv
Recursive types
(unfold-l) Tk [uX.T/X]T <U (unfold-r) T F U< [uX.T/X]T
'FuX.T<U F'FU<uXT

Algorithmic subtype rules: drop (Trans<) and add:

(VarTrang) T, <T, I"-T<U U#Top, Uzt
[T, I"-t<U

Appendix B: Proofs of propositions 5.1 and 5.4.

Proposition 5.1: The relation” I—M T< U isu-compatible.
Proof : We have to prove that:

(V<) TFEVisT.UsVISTU «T'HFT<T andl, T U < U’
(VarTrang) U£Top, Utt=T'Ft< U <TFT{t)<U
(Top=) I'ET< Top
(ld=) rHt<t
(Shape) I'FT<U = S(T) < 5(V)
(u<l) T'uXT<sU < ' [uX.T/X]T <U
(u<y 'FT<suxX.U <I'FT<[uX.UXU

"We write eT if t < T is a component dF, for a certain T; similarly fore.

(Top=) and (Ik) are immediate. The condition (Shapés enforced by all the rules and

is transmitted inductively by theuj rules. (VarTrans), in the « direction, is a
consequence of the (\@rand (Trans) subtyping rules; the othee= implications,
including (Tog) and (I&), are equivalent to the corresponding subtyping rules. Now we
prove the= implications for ¥<), (u<l/r) and (VarTrans).

(V<) This is the crucial case. To prove it we strengthen the condition to the
conjunction of the following four conditions (where WX.Vi<T'.U and
R=uY.Vt<T.UY):

(V1) T+ VIST.USVIST.U' = TFT<T andl, &€TFU< U
(V2)TF uX. VT U< VisT.U'= TF T <[LUX]T and T, t<TF [L/X]U < U’
(V3)TF VIST.U< uY.Vi<T.U'= T [R/Y]T < T andT, &[R/Y]T U < [R/Y]U!

(V4) T F uX.VI<T".U < uY. Vi<T.U'
= T+ [RIY]T < [LIX]T and T, &[R/Y]T F[L/X]U < [R/Y]U'

We denote the four conditions at once as follows, whgi€)(.. means “optional
recursion” and [JU means “substitute the recursive variable in U, if needed” (this is just
an informal notation to avoid repeating four times some proofs):

(V*) TE (XIVIET. U< (WY IVIST.U'= TH [T < [T andT, <[]T F[JU < JU’
We prove the four conditions by induction on the minimum depth of a proof proving
*Tr I—M (WX)VEET .U € (WY)VIST. U

(*) can beproved by transitivity, byY) or by (unfold-l/r) (the (Shap® condition
leaves no other possibility).

(Trans): (the shape of the intermediate type is determined by Qhape
r I—M (WX) VT .U € (WZ.)VisR.S r I—M (WZ.)ViSR.S< (MY VT U

=(by induction) T+ [R<[T T[T <[R
LR QUS]S T ETH ISSU

=(by narrowin§) T, &[Tk, [JU<[S

=(by transitivity) T+ [T <[JT, T[Tk, [U < U

(V): The thesis is immediate

(unfold-r): Iy V[T U < (uY)VIsT.U
r I—M uX.Vt<T'.U < (WY)VIST.U'

By induction:I' - []T < [JT', (T, &[]T) I—M U < [JU'; (unfold-r) is identical.

(uslr) THuXV<U = TFuX.VIXV U

LetT" - uX.V < U. Either it has been proved by (unfold-l), and the thesis follows
immediately, or it has been proved by transitivity from:

F'kuXVs<sT TFT<U
=(induction) T'F[uX.V/IX]V T T'FT<U
=(Trans) 'k [uX.VIX]V U

8 Narrowing: AFT<U andI'spA = I' = T<U; proof hint: substitute any use of an axiom
AA'H<A(Y) in the proof ofAFT<U with the transitivity composition of an axiomMA'H<I'(t) and a
proof of [, A'FL () <A(t).

or it has been proved by (unfold-r) (W¥.T), from:

T'EuX.V < [uY. TY]T
=>(induction) 'k [uX.V/IX]V < [uY.T/Y]T
=>(unfold-r) T'F[uX.VIX]V <uY.T(=U)

(VarTrans) UzTop, U4, T'HtsU = TFI({)<U

LetI' - t< U. EitherT' t< U is proved by VarTrans (trivial) or by transitivity:
'ttsV T'kEVEU;

If V=t, the thesis is immediate; otherwise, by (Shap&)l &p:
=(induction) TFI()sV T'kFV<U
=(Trans) FrI@<U

orI'Ft< U is proved by (unfold-r) (UgY.T), from:

't [uY. TYIT

=(induction) 'k I'(t) < [uY.T/Y]T

=>(unfold-r) T'FTI() Y. T(=U)
a.

Lemma 5.4: Thec relation is co-R.E. but is not R.E.

Proof hint : Thec relation is co-R.E. since its complemenis semidecidable, because it
is semidecided byhe finite failure of the standard type-checking algorithm. Since
co-R.E, we prove that it is n®R.E. by proving that it is not decidable. This can be
proved using, essentially, the same proof used in [Pie] to show the undecidakility of
We cannot rephrase here the whole Pierce’s proof, but we will just give an outline.
Pierce defines a state machine, called the “rowing machine”, whose halting problem
is undecidable, since it is equivalent to the halting problem of two-counter Turing
machines. Then he considers the following subfsef J (F stands for “Flattenec‘l)f)

T = Top |VxqST 1. VX ST T
T = X | VXq... V- TF
F=r1mTett

he shows that the following two-rule reduction system is correct and confpteke
subtyping restricted td" Jriples:

(FTop) FT < Top > true

(FY-) F VX X T < WX ST T YX ST T s

F T g T Xl T S [T Tl T
finally he shows that every rowinmachine can be encoded as I:att’,iple which
terminates if and only if the rowing machine does, which implies that termination of the
two-rule system onFJtripIes is undecidable, hence that the provabilityFojfuﬂigements
is undecidable, and that subtyping on the whalésrundecidable.

Note that every'ﬁtriple is either a provable or a diverging judgement; to prove
undecidability of finite failure we just substitut€ @ith a different subsel® of J which
contains only finitely failing or diverging triples, by susbstituting Top with a fresh
variable y:

9 The actual definition ofRJis slightly more complex: firsin every typeVx1<T1...xn<Tn.-T,
no xi can be free in any Ti+j; furthermore, all the quantifier prefiek<T1...xn<Tn appearing in
a unique judgement must have the same length.

Y | VXST 1. VXST - T
x (with xy) | VXJ:...VXn.-T-'-
ysTop - T < T
Now we can rephrase Pierce’s proof by using the followadyction system, correct
and complete or3with respect to finite failure:

(Gy) y<Topr T g2y > true

(GY-) y<Top F ¥xq..Vxn-T" 2 Vxq<T 1. VX ST T o

y<Top F [T74/X1... T /XuIT™ 2 [T'llxl...T'n/xn]TJr

Now, by encoding rowing machines ovét triples, we prove thatinite failure of
subtyping is undecidable oﬁ:’,]and hence is undecidable on the whole J.

—
I

