
Recursive Types Are not Conservative over F≤
(extended abstract)

Giorgio Ghelli1

Abstract. F≤ is a type system used to study the integration of inclusion and
parametric polymorphism. F≤ does not include a notion of recursive types, but
extensions of F≤ with recursive types are widely used as a basis for foundational
studies about the type systems of functional and object-oriented languages. In this
paper we show that adding recursive types results in a non conservative extension of
the system. This means that the algorithm for F≤ subtyping (the kernel of the
algorithm for F≤ typing) is no longer complete for the extended system, even when it
is applied only to judgements where no recursive type appears, and that most of the
proofs of known properties of F≤ do not hold for the extended system; this is the
case, for example, for Pierce’s proof of undecidability of F≤. However, we prove
that this non conservativity is limited to a very special class of subtyping
judgements, the “diverging judgements” introduced in [Ghe]. This last result implies
that the extension of F≤ with recursive types could be still useful for practical
purposes.

1 Introduction

F≤ is a minimal language integrating subtyping and bounded parametric polymorphism. It
is a simplification of the language Fun introduced in [CaWe]; the essential difference is
that Fun has recursive types and values, which are missing in F≤. F≤ was introduced in
[CuGhe] (see also [BrLo], [CaMaMiSce] and [CaLo]). Extensions of F≤ are being
exploited as a foundational tool in the research on the extension of the type system of
functional languages with modules or with object-oriented features. We refer to [CaWe],
[GheTh], [CuGhe] and [CaMaMiSce] for more motivations and details about F≤.

In all the models of object-oriented type systems, as in many other contexts,
recursive types play a central role. It has been argued (see, e.g., [AmCa]) that recursion
can be added to F≤ quite painlessly, as a feature which is in some way “orthogonal” to the
rest of the system. In this paper we show that this is not the case: the mere “existence” of
recursive types changes the subtyping relations between non recursive types.

This result shows that “transitivity elimination” for F≤, in the form proved in
[CuGhe], is not valid in mF≤. Transitivity elimination means, essentially, that every
provable subtyping can be proved without using the transitivity rule below:

 G º T ≤ U G º U ≤ V
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

G º T ≤ V

Transitivity elimination is essential, from the point of view of type-checking. A subtype
checker uses deduction rules backward to generate subproblems from a subtype checking
problem; this approach is not possible with the transitivity rule, which transforms the
problem GºT≤V in the infinite disjunction of all the (GºT≤U, GºU≤V) problems which
1 Dipartimento di Informatica, Università di Pisa, Corso Italia 40, I-56125, Pisa, Italy,
ghelli@di.unipi.it. This work was carried out with the partial support of E.E.C., Esprit Basic
Research Action 6309 FIDE2 and of “Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo”
of the Italian National Research Council under grant No.91.00877.PF69.

can be generated by choosing any type U. From the point of view of theoretical studies,
the transitivity rule makes it impossible to reason about subtyping judgements via
induction on the types involved in their proof, since not only are T and V in the premises
not proper subterms of T and V in the result, but, moreover, there is no relation, a priori,
between the size of U and that of T and V.

The fact that “transitivity elimination” does not hold has at least three important
consequences:

• Implementation of type checking: the standard type-checking algorithm for F≤, which
is complete for that system, is no longer complete when applied to the recursion-free
fragment of mF≤. In other words, extending that algorithm to the recursive case does
not mean just adding code to deal with recursive types, but means altering its behavior
when dealing with non recursive types too. At present it is not clear how this can be
accomplished, thought our results might give some suggestions.

• Language design: the only known proof of the existence of a minimum type for F≤,
which is based on transitivity elimination, is no longer valid for mF≤. The existence of
a minimum type is essential for the usability of the system as a basis for a programming
language and is important for writing efficient type-checkers. We conjecture that mF≤
still enjoys that property, but we do not know how to prove it.

• Semantics: an interpretation of derivable F≤ judgements which is defined by induction
on their derivation proof, is coherent when it depends only on the judgement and not on
the proof. Coherence is a crucial property of interpretations. In [CuGhe] a set of
“coherence equations” was defined, which allow us to reduce the problem of checking
the coherence of any coercion-based model of F≤ to the validity of those equations in
that model. With non-conservativity, satisfaction of these equations could be not
sufficient to ensure even the coherence of the interpretation of mF≤ judgements not
involving recursive types.

F≤ subtyping is known to be undecidable [Pie]. When an undecidable proof system is
conservatively extended, its undecidability is inherited by the extended system, since
otherwise the decision procedure for the “bigger” system could be used to decide
provability in the “smaller” one. Hence, our result implies that undecidability of F≤ is not
immediately inherited by mF≤, but has to be proved independently. Moreover in this
paper we show that Pierce’s proof of undecidability cannot be trivially rephrased in the
context of mF≤.

However, as a partial conservativity result, we show that the set of subtyping judgements
which can be expressed in F≤ but proved only in mF≤ is contained in a very peculiar class
of judgements, the “diverging” judgements, i.e. those which make the standard subtype
checking algorithm diverge. This result is important since it shows that a strict relation
exists between the undecidability of F≤ and our non-conservativity result, and suggests a
way to prove that recursive types are conservative over the decidable variants of F≤, like
Kernel Fun (see [Ghe] and [GhePie]) and F≤ without Top (see [Ka]). Furthermore, it has
been argued that the behavior of a type checking algorithm on diverging judgements is of
no practical interest, since there is, in practice, no possibility that a real program contains
such a judgement. This point of view is supported by the results in [Ghe] which describe
the structure of the diverging judgements, which seems far more complex than what is
actually used in practice. Adopting this point of view, our partial conservativity result
means that, restricting the attention to “practically relevant” judgements, mF≤ is

conservative over F≤.

The paper is structured as follows. In Section 2 we give the preliminary definitions about
F≤ and mF≤. In Section 3 we prove non conservativity of mF≤ over F≤. In Section 4 we
characterize the set of provable or diverging judgements as the maximal relation enjoying
some closure properties. This result is used in Section 5 to prove the partial conservativity
result. All the sketched proofs are fully developed in the full paper.

2 Definitions

2.1 F≤

The syntax of F≤ subtyping judgements is defined as follows (F≤ terms and typing
judgements have no relevance in this paper):

Types T ::= t | Top | TÛT | ît≤T. T

Environments G ::= () | G, t≤T

Judgements J := G º T ≤ T

F≤ types are either variables, Top, function types (TÛT) or universally quantified types,
used to give a type to polymorphic functions, where the type variable can be bounded. F≤
subtype rules are listed in Appendix A. We will often ignore function types in the
following since, from the point of view of subtyping, they behave exactly like î types
where the quantified variable does not appear in the codomain. Variables are actually just
names for their De Bruijn indexes, so that judgements and types are always considered
modulo a conversion and all substitutions must be performed in a capture free way.

Due to transitivity, F≤ subtype rules are not a good tool for reasoning about non-
derivability of judgements. This problem was solved in [CuGhe], by proving that any
derivable judgement admits a normal form proof, i.e. a proof where transitivity is used
only to prove judgements like G º t ≤ U as a consequence of G º t ≤ G(t) and G º G(t) ≤
U where G(t) is the bound of t in G (i.e., if G = (G', t≤T, G ") then G(t)=def T). The
existence of such a normal form proof for any subtyping judgement is what we called
transitivity elimination in the introduction.

It is easy to show that an algorithm exists which, given any derivable subtyping
judgement, rebuilds a normal form proof tree for that judgement. That algorithm can be
described by the set of rewrite rules below. These rules transform a derivable judgement
into the premises of the last subtyping rule applied in the normal form proof of that
judgement.

(top) G º T ≤ Top Å true
(varId) G º u ≤ u Å true
(varTrans) T≠u, T≠Top ã G º u ≤ T Å G º G(u)2 ≤ T
(îdom) G º ît≤T.U' ≤ ît≤T'.U Å G º T' ≤ T
(îcod) G º ît≤T.U' ≤ ît≤T'.U Å G, t≤T' º U' ≤ U3

The algorithm tries to build a normal-form proof tree starting from the conclusion and
building (backward) all the branches by following all the possible rewriting chains
generated by the conclusion. If some chain generates an irreducible judgement, different
from true, then the algorithm fails. When all chains terminate with true, the set of these

2 Variables in G(u) must be renamed to avoid capture; e.g., we could rename all variables in
Gºu≤T so that no variable name is used twice.
3 We could write G º ît≤T.U' ≤ ît'≤T'.U Å G, t'≤T' º [t'/t]U' ≤ U to emphasize that t and t'
can be different.

chains represents a proof tree for the original judgement4, as depicted in Figure 1, and
the algorithm terminates with success.

t≤Top, u≤tÛt º u ≤ tÛTop
 Å(varTrans)

t≤Top, u≤tÛt º tÛt ≤ tÛTop
Å(Ûdom) Å(Ûcod)

t≤Top, u≤tÛt º t ≤ t t≤Top, u≤tÛt º t ≤ Top
Å(varId) Å(top)
true true

 (Id) (Top)

(Var) t≤Top, u≤tÛt º t ≤ t t≤Top, u≤tÛt º t ≤ Top
(Û)ÐÐ

(Trans)
t≤Top, u≤tÛt º u ≤ tÛt t≤Top, u≤tÛt º tÛt ≤ tÛTop
ÐÐÐ

t≤Top, u≤tÛt º u ≤ tÛTop

Fig. 1: Correspondence between the chains generated by a judgement and its proof.

Proposition 2.1: The algorithm described by the five rules above is correct and complete
with respect to F≤ subtyping, i.e. it terminates with success on all and only the
derivable judgements, while it may either fail or loop forever with non derivable
judgements [CuGhe,Ghe]. The looping behavior cannot be avoided, since F≤ subtyping
is undecidable [Pie].

2.2 mmmmF≤

mF≤ extends F≤ by adding recursive types:

Types T ::= t | X | Top | TÛT | ît≤T. T | mX.TÛT | mX.ît≤T. T

For clarity, we use two different families t and X for, respectively, bounded and
recursive type variables. î and m bind the corresponding variables. We forbid recursive
types whose body is either t, X , T o p or m X.T. This is a minor restriction which
simplifies some proofs without restricting the expressive power of the system. In fact a
recursive type denotes the regular tree which constitutes its infinite unfolding. So,
mX.Top, mX.t and mX.Y (X≠Y) can be forbidden, since they would denote just Top, t and
Y. mX.X is forbidden, since it does not mean anything, and this is the only essential
restriction. Finally, mX.mY.T can be forbidden since its unfolding is the same as
mX.[X/Y]T [AmCa].

Different notions of type equality and subtyping can be defined for recursive types
(see [AmCa] for an excellent discussion). The essential requirement is that a recursive
type must be equal, or at least isomorphic, to any of its unfoldings. This requirement can
be expressed by the following rule5 (note the use of ºm for mF≤ judgements):

4 Actually the rebuilt tree is slightly different from the normal form proof, since a) the (exp) rule
does not transform Gºt≤T into the axiom Gºt≤G(t) plus GºG(t)≤T, but takes for granted the proof
of the axiom and generates only GºG(t)≤T; b) the rewrite rules prove GºT≤T by analyzing step by
step the structure of T, applying identity only on atoms; these are just algorithmic optimizations
which do not affect the correspondence between the two approaches.
5 A less practical kind of recursive types can be obtained by not requiring that mX.T=[mX.T/X]T,
but simply that for each recursive type there exist two functions, fold(mX.T):[mX.T/X]TÛmX.T and
unfold(mX.T):mX.TÛ[mX.T/X]T, such that fold(unfold(a))Åa and unfold(fold(a))Åa; this approach
is adopted, for example, in Cardelli’s Fsub system [Ca]. Our result does not apply to this approach.

(unfold) G ºm mX.T type
ÑÑÑÑÑÑÑÐÐÐÐÑ

G ºm mX.T = [mX.T/X]T

Since we are only interested in subtyping, and not in type equality, we will use the
following two rules instead:

(unfold-l) G ºm [mX.T/X]T ≤ U (unfold-r) G ºm U ≤ [mX.T/X]T
ÑÑÑÑÑÑÑÐÐÐ ÑÑÑÑÑÑÑÐÐÐ

G ºm mX.T ≤ U G ºm U ≤ mX.T

These are weak rules, which do not allow us to deduce all the subtyping judgements
which could be proved using the Amadio-Cardelli system; for example you cannot prove
that mX.tÛtÛX is a subtype of mX.tÛX, even if the two types have the same infinite
unfolding (see [AmCa]). However we will show that these rules are already powerful
enough to extend F≤ subtyping in a non-conservative way, i.e. to prove subtyping
judgements which can be expressed but not proved in plain F≤.

Using the backward notation, these two rules are written as follows:

G ºm mX.T ≤ U Å G ºm [mX.T/X]T ≤ U (unfold-l)
G ºm U ≤ mX.T Å G ºm U ≤ [mX.T/X]T (unfold-r)

Proposition 2.2: Adding the two rules above to the five rules for F≤ subtyping we obtain
a rule system for mF≤ judgements which is sound but not complete.

The fact that the seven-rule system is sound can be easily verified, by showing that they
actually build, in a backward fashion, a valid mF≤ proof. The fact that they are not
complete, even with respect to the weak recursive subtyping rules adopted, can be
verified by observing that the judgement, provable in mF≤ but not in F≤, which we will
exhibit in the next section is not proved by the seven-rule system. Non completeness of
this set of rules is what we call “loss of transitivity elimination”, since the only difference
between the backward rules and the complete system is that the backward rules only use
the limited form of transitivity formalized by the (varTrans) rule.

Soundness and completeness of the five rules means that we can use them to prove
both derivability and non-derivability in F≤, while the seven-rule set can be used only as
an alternative way to prove derivability in mF≤.

3 The Counterexample
In this section we will present a counterexample to the conservativity conjecture, i.e. an
F≤ judgement which cannot be derived in F≤ but can be derived in mF≤ .

Notation: To improve readability, we will exploit the following conventions:

ît.T stands for ît≤Top.T
-T stands for TÛTop

And we will exploit the following derived rules:

(îd) G º ît.T' ≤ îu≤U.T Å G,u≤U º [u/t]T' ≤ T
(-) G º -T ≤ -U Å G º U ≤ T
(var) G º t ≤ Rename(G(t)) Å true

(in the last rule Rename(G(t)) stands for any a-variant of the bound of t in G).

Let B=îu.-îv≤u.-u. Then the following judgement cannot be derived in F≤:

t0≤B º t0 ≤ ît1≤t0.-t0

This can be proved by showing that the complete F≤ subtyping algorithm described in the
previous section diverges as follows:

let B=îu.-îv≤u.-u:
t0≤B º t0 ≤ ît1≤t0.-t0 Å(varTrans)
t0≤B º ît1.-ît2≤t1.-t1 ≤ ît1≤t0.-t0 Å(î)
t0≤B,t1≤t0 º -ît2≤t1.-t1 ≤ -t0 Å(-)
t0≤B,t1≤t0 º t0 ≤ ît2≤t1.-t1

The judgement above is a special case (i=1) of the family below:

Ji = t0≤B,…,ti+1≤ti º t0 ≤ îti+2≤ti+1.-ti+1

For any i that judgement is transformed in the judgement Ji+1:

t0≤B,…,ti+1≤ti º t0 ≤ îti+2≤ti+1.-ti+1 Å(varTrans)
t0≤B,…,ti+1≤ti º îti+2.-îti+3≤ti+2.-ti+2 ≤ îti+2≤ti+1.-ti+1 Å(î)
t0≤B,…,ti+1≤ti,ti+2≤ti+1 º -îti+3≤ti+2.-ti+2 ≤ -t i+1 Å(-)
t0≤B,…,ti+1≤ti,ti+2≤ti+1 º ti+1 ≤ îti+3≤ti+2.-ti+2 Å(varTrans)
t0≤B,…,ti+1≤ti,ti+2≤ti+1 º ti ≤ îti+3≤ti+2.-ti+2 Å(varTrans)
… Å(varTrans)
t0≤B,…,ti+1≤ti,ti+2≤ti+1 º t0 ≤ îti+3≤ti+2.-ti+2

This implies that the algorithm never terminates on the original judgement, hence, by
completeness, that judgement cannot be proved in F≤6.

We show now that in mF≤ there exists a (recursive) type T, such that:

(a) t0≤B º t0 ≤ T
(b) t0≤B º T ≤ ît1≤t0.-t0

So that, by transitivity, the judgement above is derivable in mF≤; T is the following type:

T = mX.ît≤X.-X.

We give the backward representation of a proof of the two judgements (a) and (b) above.
When a î judgement can be rewritten in two different ways we indicate with (1) the
beginning of the rewriting chain of the first premise and with (2) the beginning of the
rewriting chain of the second premise. Note that, while to prove non-derivability of the
judgement above in F≤ we needed the backward representation, in this case, where we
are only interested in the derivability of the judgement, we could write its proof in the
usual tree form. We still resort to the backward representation to make it easier for the
reader to compare the behavior of these two judgements with the behavior of the
judgement above; the tree form of a proof of the judgement can be easily recovered.

(a) t0≤B º t0 ≤ T Å(varTrans)
t0≤B º ît1.-ît2≤t1.-t1 ≤ T Å(unfold-r) (T=mX.ît≤X.-X)
t0≤B º ît1.-ît2≤t1.-t1 ≤ ît1≤T.-T Å(î)
t0≤B, t1≤T º -ît2≤t1.-t1 ≤ -T Å(-)
t0≤B, t1≤T º T ≤ ît2≤t1.-t1 Å(unfold-l)
t0≤B, t1≤T º ît2≤T.-T ≤ ît2≤t1.-t1 Å(îdom):1; Å(îcod):2
1 t0≤B, t1≤T º t1 ≤ T Å(var) true

6 This underivable judgement was introduced in [Ghe]; before its discovery, it was widely
believed that the algorithm described in the previous section was terminating, and so that F≤
subtyping was decidable. A variant of this judgement has then been used by Pierce to encode two-
counter Turing machines as F≤ subtyping judgements, proving undecidability of F≤ subtyping [Pie].

2 t0≤B, t1≤T, t2≤t1 º -T ≤ -t1 Å(-)
t0≤B, t1≤T, t2≤t1 º t1 ≤ T Å(var) true

(b) t0≤B º T ≤ ît1≤t0.-t0 Å(unfold-l)
t0≤B º ît1≤T.-T ≤ ît1≤t0.-t0 Å(îdom):1; Å(îcod):2
1 t0≤B º t0 ≤ T Å* true (see (a))
2 t0≤B,t1≤t0 º -T ≤ -t0 Å(-)

t0≤B,t1≤t0 º t0 ≤ T Å* true (see (a), t1 plays no role)

As already stated, the non conservativity of mF≤ w.r.t. F≤ implies that the undecidability
of the second system does not necessarily extend to the first one. Moreover the judgement
that we have shown to become derivable in mF≤ is exactly that judgement whose non
derivability has been used by Pierce to show undecidability of F≤ subtyping. This means
that it is seems rather difficult to adapt Pierce’s proof to show mF≤ undecidability.

It could even be conceivable that adding recursive types to F≤ types makes its type-
checking problem easier, in the same way as admitting rational infinite terms as solutions
for the unification problem makes its solution simpler, allowing us to avoid the occur
check. However, this optimistic hypothesis is not convincing, since we do not see, in
practice, how a complete algorithm for mF≤ subtyping could be designed.

Our counterexample hints at a possible direction to explore in order to complete the
algorithm. Since the structure of the recursive type T “reflects” the structure of the
looping behavior of the judgement with respect to the standard type-checking algorithm
(an alternation of î and - steps), we could look for an algorithm which tries to build an
intermediate, possibly recursive, type whose structure is derived from the behavior of the
standard algorithm.

4 The Compatibility Relation Defined by Diverging Judgements
We want to prove that the effects of our non-conservativity result are limited to the
“pathological” set of the diverging F≤ judgements, i.e. to those judgements which make
the F≤ subtype checking algorithm diverge.

To prove this partial conservativity result we first need some results about the nature
of diverging judgements. To this aim, in this section we study the point of view that,
when the subtype-checking algorithm is not able to prove in a finite time that T is not a
subtype of U, this means that T is somehow “compatible” with U, even if it is not exactly
a subtype of U, and we will study the properties of this compatibility relation.

Compatibility will be defined by negation, as the complement of the notion of being
“provably not a subtype”. We first model the failing runs of the subtyping algorithm
using the proof system below.

(t/TopÂ) G º Top Â t (Top/îÂ) G º Top Â ît≤T.U

(î/tÂ) G º ît≤T.U Â t (VarTransÂ) G º G(t) Â T T≠t, T≠Top
ÑÑÐÐÐÐÐÐÐÑÑÐÐÐÐÐÐ

G º t Â T

(îrÂ) G, t≤T º U Â U' (îlÂ) G º T Â T'
ÑÑÑÑÐÐÐÐÐÐÐÐÐÐÑ ÑÑÑÑÐÐÐÐÐÐÐÑÑ

G º ît≤T'.U Â ît≤T.U' G º ît≤T'.U Â ît≤T.U'

Proposition 4.1: G º T Â U if and only if the standard type-checking algorithm fails (in a
finite time) on the judgement G º T ≤ U.

Proof hint : By induction, on the number of steps executed by the algorithm in one

direction, and on the size of the proof of G º T Â U in the other one.

In this section we will always consider all the relations written as G º T R U as ranging
on the universe J of well-formed judgements:

J = { G, T, U | G º T type, G º U type}

Hereafter, G º T Â U denotes the intersection of the relation defined by the rules above
with J; note that it would be very easy to modify the proof system of Â so that it only
produces such judgements.

For the sake of compactness of notation, we define a function S(T) (“shape of T”) from
F≤ types to the three element linearly ordered set {t < î < Top} as follows:

for any type variable u: S(u) = t
for any t,T,U: S(ît≤T.U) = î

S(Top) = Top

Then we collect the three axioms of Â into one:

(ShapeÂ) S(T) > S(U) ã G º T Â U

The compatibility relation can be now formally defined.

Notation: For any relation denoted as G º T R U:

G ¼ T R U àdef <G,T,U> ì J and not G º T R U.

(Note that ¼ is just a classical negation, so that (not(G ¼ T R U)) à G º T R U).

Definition: G º T ² U (read: T is compatible with U w.r.t. G) àdef G ¼ T Â U

By proposition 4.1, G º T ² U means that trying to prove G º T ≤ U results either in
success or looping. We call the ² relation “compatibility”, since G º T ² V means that V
is so near to being a supertype of T that the standard algorithm is not able to prove the
opposite.

To study the compatibility relation, we first need a “positive” connotation for it. To
this aim, we first observe that compatibility shares with subtyping a set of “compatibility
properties”.

Definition: A relation R on J is compatible with subtyping (compatible, for short) if:

(îR) G º ît≤T'.U R ît≤T.U' à G º T R T' and G, t≤T º U R U'
(VarTransR)U≠Top, U≠t ã G º t R U à G º G(t) R U

(TopR) G º T R Top
(IdR) G º t R t

(ShapeR) G º T R U ã S(T) ≤ S(U)

The compatibility properties give us a different way of characterizing ≤ and ²: we will
prove that they are respectively the minimum and the maximum compatible relations.

First, we show that any compatible relation has no intersection with the relation Â.

Proposition 4.2: If R is compatible and G º T Â U, then G ¼ T R U.

Proof hint : By induction on the proof of G º T Â U, and by cases on the last rule
applied. Essentially, any proof of G º T Â U corresponds to a chain of applications of
(îR) and (VarTransR) which transform G º T Â U into a contradiction to (ShapeR).

Now the “positive characterization” of the compatibility relation can be given; the

following proposition is all that is needed in the next section to prove partial
conservativity.

Proposition 4.3: ² is the maximum compatible relation on J.

Proof hint : First we prove that ² is compatible. Since ² is defined as the complement of
Â, we first negate both sides of all the properties, to express them in terms of Â:

(î²) G º ît≤T'.U Â ît≤T.U' à G º T Â T' or G, t≤T º U Â U'
(VarTrans²) U≠Top, U≠t ã G º t Â U à G º G(t) Â U

(Top²) G ¼ T Â Top
(Id²) G ¼ t Â t

(Shape²) G º T Â U á S(T) > S(U)

Maximality of ² is a corollary of proposition 4.2: since, for any compatible R ,

G º T Â U ã G ¼ T R U, then G º T R U ã G ¼ T Â U, i.e. G º T ² U.

Proposition 4.4: ≤ is the minimum compatible relation on J.

Proof hint : Compatibility and minimality of ≤ are consequences of completeness and
soundness of the subtype-checking algorithm presented in Section 2.

The fact that there are at least two different compatible relations could be surprising,
since the compatibility conditions are rather restrictive. They contain both positive
conditions, (Top) and (Id), which impose that something is in the relation, negative
conditions (Shape) imposing that something is not in the relation, and bidirectional
closure conditions, (î) and (VarTrans), which allow us to deduce both the presence and
the absence of something from the presence and the absence of something else. Moreover
any judgement matches at least one of the five conditions, so that it seems that you can
use those conditions to decide whether any judgement belongs to R . Obviously, this is
not the case, and the problem is that trying to use consistency conditions to decide
whether a pair of types is in R can result in an infinite loop. On the other hand, in the
decidable variants of F≤, the repeated application of the compatibility conditions always
produces a negative or a positive axiom, so that in those systems subtyping is really the
only compatible relation. So, the existence of a full range of different compatible
relations is a feature of F≤ which is strictly related to its undecidability.

Before going back to the main stream of the paper let us pause to show that the
compatible relation is similar to ≤ also by enjoying the properties of transitivity,
narrowing and irreflexivity (corollary 4.9).

We first prove that any compatible relation is irreflexive.

Definition: If t is defined in a context G, the definition level of t in G, written L(t,G), is
the number of variable definitions in G which strictly precede the definition of t:

L(t, (t≤A, G)) = 0
L(t, (u≤A, G)) = L(t, G)+1 (t≠u)

The definition level of a type T well formed in G, written L(T,G), is the maximum
definition level of the variables which are free in T, and is 0 if no variable is free in T.

Fact 4.5: In any well-formed context, L(G(t),G)<L(t,G), since all the free variables in G(t)
have to be defined before t.

Lemma 4.6: Let R be a compatible relation. Then G ¼ G(t) R t.

Proof hint : By (ShapeR), G º G(t) R t would imply G(t)=u for a certain u; by Fact 4.5,

this implies L(u,G)≤L(t,G); so we find a contradiction by proving, by induction on
L(u,G), that: (G º u R t and u≠t) ã (L(u,G) > L(t,G)).

Proposition 4.7: Any compatible R is irreflexive: G º T R U and G º U R T ã T=U.

Proof : By induction on the size of T and U. By (ShapeR), G º T R U and G º U R T
implies that S(T)=S(U). Case S(T)=t is managed by 4.6, the others are routine.

Now the transitivity of ² can be proved. Since we cannot reason by induction on the ²
relation, we will reason by maximality, by proving that the transitive closure of ² is a
compatible relation which contains ².

Notation: If R is a relation on J, its lifting R G to well formed environments is defined
inductively as follows:

() R G ()
G, t≤T R G D, t≤U àdef G R G D and G º T R U

Now we define the transitive closure ²+ of the ² relation; condition (Narrow+) is strictly
needed, since narrowing is essentially another aspect of transitivity, as shown in the proof
of Proposition 4.8. Conditions (î+) and (VarTrans+) are added to the definition of ²+ to
simplify the same proof.

Definition: G º T ²+ V is the relation defined by the following five deduction rules:

(²) G º T ² V ã G º T ²+ V
(Trans+) G º T ²+ U and G º U ²+ V ã G º T ²+ V
(Narrow+) G º T ²+ U and D ²+ G ã D º T ²+ U
(î+) G º T ²+ T' and G, t≤T º U ²+ U' ã G º ît≤T'.U ²+ ît≤T.U'
(VarTrans+) U≠Top, U≠t, G º G(t) ²+ U ã G º t ²+ U

Proposition 4.8: ²+ is equal to ².

Proof : ²+ è ² is immediate by condition (²) above. We show that ²+ is compatible; the
thesis follows by maximality of ² among compatible relations. We show the typical
case, (î²+): G º ît≤T'.U ²+ ît≤T.U' à G º T ²+ T' and G, t≤T º U ²+ U'

á: by (î+)

ã: By induction on the size of the proof that G º ît≤T'.U ²+ ît≤T.U' and by cases
on the last rule applied. (²): by (î²). (î+): immediate. (VarTrans+): impossible.

(Narrow+): exists D: G²+D and D º ît≤T'.U ²+ ît≤T.U'
ã(Ind.) D º T ²+ T' and D, t≤T º U ²+ U'
ã(Narrow+)G º T ²+ T' and G, t≤T º U ²+ U'.

(Trans+): by (Shape²+) the intermediate type has the shape ît≤V.W:
G º ît≤T'.U ²+ ît≤V.W, G º ît≤V.W ²+ ît≤T.U'
ã(Ind.) G º V ²+ T' and G, t≤V º U ²+ W,

G º T ²+ V and G, t≤T º W ²+ U'
ã(Narrow+)G º V ²+ T' and G, t≤T º U ²+ W,

G º T ²+ V and G, t≤T º W ²+ U'
ã(Trans+) G º T ²+ T' and G, t≤T º U ²+ U'.

Corollary 4.9: ² enjoys both transitivity and narrowing, i.e.:

G º T ² U and G º U ² V ã G º T ² V
G º T ² U and D²G ã D º T ² U

This study of compatible relations leaves two interesting problems open:

• Does compatibility imply transitivity?

• Is there some other compatible relation apart from ≤ and ²? Is there some other
interesting compatible relation apart from ≤ and ²?

We have no answer for the first question, while the second will be answered in the next
section.

5 Conservativity of mmmmF≤ Over Terminating Judgements
In Section 3 we showed that mF≤ is not conservative over F≤, by exhibiting a non
provable F≤ judgement which is provable in mF≤. That judgement is “divergent”, which
means that it makes the standard F≤ type-checking algorithm diverge. In this section we
generalize that observation, by showing that every “finitely failing” judgement, i.e. which
makes the standard F≤ type-checking algorithm fail, is not provable in mF≤, so that non
conservativity is restricted to the “pathological” set of the diverging judgements.

We show this by proving that mF≤ subtyping is still a compatible relation, so that it
cannot relate more types than the maximum compatible relation “²”.

Definition: mJ is the set of triples which form well-formed mF≤ judgements:

mJ = { G, T, U | G ºm T type, G ºm U type}

Definition: A relation R on mJ is m-compatible when:

(îR) G º ît≤T'.U R ît≤T.U'à G º T R T' and G, t≤T º U R U'
(VarTransR) U≠Top, U≠tãG º t R U à G º G(t) R U

(TopR) G º T R Top
(IdR) G º t R t

(ShapeR) G º T R U ã S(T) ≤ S(U)
(mR l) G º mX.T R U à G º [mX.T/X]T R U
(mR r) G º T R mX.U à G º T R [mX.U/X]U

Where, in condition (ShapeR), S(mX.T)=def S(T)

Proposition 5.1: The relation G ºm T ≤ U is m-compatible.

Proof : See Appendix B.

Lemma 5.2: Any m-compatible relation is compatible when restricted to J.

Proof : Easy (see the full paper).

The main theorem now follows immediately.

Theorem 5.3: If G ºm T ≤ U and G, T and U do not contain m, then G º T ² U

Proof : By proposition 5.1, the ≤m relation is m-compatible; by lemma 5.2, its restriction
to F≤ is compatible. The thesis follows from the maximality of ² among the compatible
relations (proposition 4.3).

We have proved that the restriction of ≤m to J is strictly bigger than F≤ subtyping but is
contained in ². We can now prove that ≤m restricted to J is strictly contained in ².

Lemma 5.4: The ² relation is co-R.E. but is not R.E.

Proof : See Appendix B.

Proposition 5.5: mF≤ subtyping restricted to J is R.E.

Proof : All the rules of mF≤ subtyping are effective, so that they can be used to enumerate

all the provable mF≤ subtyping judgements; J is a decidable subset of mJ.

Corollary: ≤m restricted to J is strictly contained in ².

Hence, ≤m restricted to J defines a third compatible relation, intermediate between F≤
subtyping and ², and different from both of them.

This fact implies that there exists a looping judgement which is not provable in mF≤.
So, if we knew such a judgement, we could try to use it to rephrase Pierce’s proof of
undecidability for mF≤. The problem is recognizing that a looping judgement is not
provable in mF≤. In fact, the only technique we know to prove that a judgement is not
provable in mF≤ is to apply backward the deduction rules to it to reduce it to a judgement
violating the (Shape≤) condition. However we have proved that this process never ends
when is applied to a looping judgement (see proposition 4.3).

Note that compatibility of ≤m implies that, for every proof of G ºm T ≤ U, where the last
rule used is transitivity, a proof exists for G ºm T ≤ U where the last rule used is either
(VarTrans) or a rule which is not transitivity; the key property, to prove this fact, is
(î≤m). This sounds like a form of transitivity elimination. Actually, this fact only implies
that, for any n, we can find a proof of G ºm T ≤ U where full transitivity is not used in
any of the last n steps, but does not imply that we can find a proof where full transitivity
is never used. The point is that, intuitively, it is possible that whenever we remove a
transitivity instance from the bottom of the proof, we add some new transitivity instance
to the higher levels, so that the process of transitivity elimination never ends.

6 Conclusion and future work
We have proved that recursive types are not a conservative extension for the F≤ system.
Moreover we have shown that in the extended system mF≤ transitivity elimination does
not hold, i.e. it is not possible to substitute the general transitivity rule with the restricted
(VarTrans) version. This implies that a rich set of proofs of properties of F≤, which is
based on transitivity elimination, is not valid for mF≤ (see, e.g., [CuGhe], [GheTh],
[CaMaMiSce], [CuGhe2], [BrLo]). We have shown that the basic diverging judgement of
F≤ is provable in mF≤, thus showing that Pierce’s proof of undecidability of F≤ subtyping
is not valid for mF≤ ([Pie]).

Non conservativity has serious practical consequences: it means that the standard
type checking algorithm for F≤ is no more complete with respect to mF≤ judgements,
even for judgements not containing recursive types.

As a positive counterpart to this set of negative results, we have shown that the difference
between F≤ and mF≤ is restricted to the set of the diverging judgements. This means that
the standard F≤ type-checking algorithm is at least sound, even if not complete, when
used to check mF≤ subtyping on F≤ judgements, since it does not give any answer on
those judgements whose provability is different in the two systems. Furthermore, the
standard type-checking algorithm for F≤ “goes wrong”, when applied to m-free mF≤
judgements, exactly in the same cases when it goes wrong with respect to F≤, i.e. on the
diverging judgements. The only difference is that, in the case of F≤, the algorithm “goes
wrong” by looping in some cases when it should fail, while, with mF≤, it loops on a set of
judgements containing both provable and not provable ones. But the essential point is that
those judgements have no serious possibility of appearing in a real program, so that a
looping behavior of the algorithm in those cases may be tolerated. However, the actual
impact of our result on the use of F≤ as a basis for language design should be more

seriously taken into consideration.
Finally, conservativity over terminating judgements shows that non-conservativity of

recursion is connected to the problem of undecidability of subtyping, and gives a
technique to prove that recursion is conservative over the decidable variants of F≤.

We chose a very weak form of recursive types for this study. This implies that the non
conservativity result has a wide applicability, since it holds for any notion of recursive
types which is stronger than the one adopted. On the other hand, for the same reason, our
partial conservativity result has a more limited applicability, since it immediately holds
only for notions of recursive types which are weaker than the one adopted. So our next
step should be the definition of a strong notion of recursive types, generalizing the
[AmCa] approach to F≤, to verify whether the partial conservativity result can be
extended to that system.

Acknowledgements

The counterexample was obtained by slightly modifying a judgement produced by
Roberto Bergamini whose suggestion sparked off this work.

This work was carried out in the framework of the Galileo project, aimed at the
design of a strongly typed object-oriented database language, and lead by Prof. A. Albano
at the University of Pisa.

References
[AmCa] R. Amadio, L. Cardelli, Subtyping Recursive Types, DEC SRC Research Report
62, short version in Proc. of the 18th ACM Symposium on Principles of Programming
Languages, 104-118, 1991.

[BrLo] K. Bruce, G. Longo, A Modest Model of Records, Inheritance and Bounded
Quantification, Information and Computation 87 (1/2), 196-240, 1990.

[Ca] L. Cardelli, Fsub: the System, note, 1991.

[CaLo] L. Cardelli, G. Longo, A Semantic Basis for Quest, DEC SRC Research Report
55, short version in Proc. Conf. on Lisp and Functional Programming, Nice, 1990.

[CaMaMiSce] L. Cardelli, S. Martini, J. Mitchell, A. Scedrov, An Extension of System F
with Subtyping, Proc. Conference on Theoretical Aspects of Computer Software, Sendai,
Japan, Springer-Verlag, Berlin, LNCS 526, 1991.

[CaWe] L. Cardelli, P. Wegner, On Understanding Types, Data Abstraction and
Polymorphism, ACM Computing Surveys 17 (4), 471-522, 1985.

[CuGhe] P.-L. Curien, G. Ghelli, Coherence of Subsumption in F≤, Minimum Typing and
Type Checking, Mathematical Structures in Computer Science 2(1), 55-91, 1992.

[CuGhe2] P.-L. Curien, G. Ghelli, Subtyping + Extensionality: Confluence of bhtop≤ in
F≤, extended abstract, Proc. Conference on Theoretical Aspects of Computer Software,
Sendai, Japan, Springer-Verlag, Berlin, LNCS 526, 731-749, 1991.

[Ghe] G. Ghelli, Divergence of F≤ Type-checking, note, 1991.

[GhePie] G. Ghelli, B. Pierce, Bounded Existentials and Minimal Typing, note, 1992.

[GheTh] G. Ghelli, Proof-theoretic Studies about a Minimal Type System Integrating
Inclusion and Parametric Polymorphism, PhD Thesis, TD-6/90, Univ. of Pisa, 1990.

[Ka] D. Katiyar, S. Sankar, Completely bounded quantification is decidable, Proc. of the
ACM SIGPLAN Workshop on ML and its Applications, 1992.

[Pie] B. Pierce, Bounded Quantification is Undecidable, Proc. of the 19th ACM
Symposium on Principles of Programming Languages, 305-315, 1992.

Appendix A: mmmmF≤.

Environments (sequences whose individual components have the form x:T or t≤T)

(ôenv) () env

(≤env) G env G º T type tíG7 (: env) G env G º T type xíG
ÐÐÐÐÐÐÐÐÐÐÐÑÑÐÐÐÐÐÐÐ ÑÑÑÑÑÑÐÑÐÐÐÐÑ

G, t≤T env G, x:T env

Types

(VarForm) G, t≤T, G' env (TopForm) G env
ÑÑÑÑÑÑÑÑ ÑÑÑÑÑÑÑ

G, t≤T, G' º t type G º Top type

(Û Form) G º T type G º U type (î Form) G, t≤T º U type
ÑÑÑÑÑÑÑÐÑÑÑ ÐÐÑÑÑÑÑÑÑ

G º TÛU type G º ît≤T. U type

(mForm) G º [Top/X]U type
ÑÑÑÐÑÑÐÐÐÐÐ

G º mX.U type

Subtypes

(Var≤) G, t≤T, G' env (Top≤) G º T type
ÑÑÑÑÑÑÑ ÑÑÐÐÑÑ

G, t≤T, G' º t≤T G º T≤Top

(Û≤) G º T≤T' G º U≤U' (î≤) G º T≤T' G, t≤T º U≤U'
ÑÑÑÑÑÐÑÑÑ ÑÑÑÑÐÐÐÐÐÐÐÐÐÐÐÐÑ

G º T'ÛU ≤ TÛU' G º ît≤T'.U ≤ ît≤T.U'

(Id≤) G º T type (Trans≤) G º T≤U G º U≤V
ÑÑÑÑÐ ÑÑÐÐÐÐÐÐÐÐÐÐÐÑÐÐ

G º T≤T G º T≤V

Recursive types

(unfold-l) G º [mX.T/X]T ≤ U (unfold-r) G º U ≤ [mX.T/X]T
ÑÑÑÑÑÑÑÐÐ ÑÑÑÑÑÑÑÐÐÐ

G º mX.T ≤ U G º U ≤ mX.T

Algorithmic subtype rules: drop (Trans≤) and add:

(VarTrans≤) G, t≤T, G' º T≤U U≠Top, U≠t
ÑÑÑÑÑÑÑÐÐÐÐÐÐÐÐÐÐÐÐÐ

G, t≤T, G' º t≤U

Appendix B: Proofs of propositions 5.1 and 5.4.

Proposition 5.1: The relation G ºm T ≤ U is m-compatible.

Proof : We have to prove that:

(î≤) G º ît≤T'.U ≤ ît≤T.U' à G º T ≤ T' and G, t≤T º U ≤ U'
(VarTrans≤) U≠Top, U≠tãG º t ≤ U à G º G(t) ≤ U

(Top≤) G º T ≤ Top
(Id≤) G º t ≤ t

(Shape≤) G º T ≤ U ã S(T) ≤ S(U)
(m≤l) G º mX.T ≤ U à G º [mX.T/X]T ≤ U
(m≤r) G º T ≤ mX.U à G º T ≤ [mX.U/X]U

7 We write tìG if t ≤ T is a component of G, for a certain T; similarly for xìG.

(Top≤) and (Id≤) are immediate. The condition (Shape≤) is enforced by all the rules and
is transmitted inductively by the (m) rules. (VarTrans≤), in the á direction, is a
consequence of the (Var≤) and (Trans≤) subtyping rules; the other á implications,
including (Top≤) and (Id≤), are equivalent to the corresponding subtyping rules. Now we
prove the ã implications for (î≤), (m≤l/r) and (VarTrans≤).

(îîîî≤) This is the crucial case. To prove it we strengthen the condition to the
conjunction of the following four conditions (where L=mX.ît≤T'.U and
R=mY.ît≤T.U'):

(î1) G º ît≤T'.U ≤ ît≤T.U' ã G º T ≤ T' and G, t≤T º U ≤ U'

(î2) G º mX.ît≤T'.U ≤ ît≤T.U'ã G º T ≤ [L/X]T' and G, t≤T º [L/X]U ≤ U'

(î3) G º ît≤T'.U ≤ mY.ît≤T.U'ã G º [R/Y]T ≤ T' and G, t≤[R/Y]T º U ≤ [R/Y]U'

(î4) G º mX.ît≤T'.U ≤ mY.ît≤T.U'
 ã G º [R/Y]T ≤ [L/X]T' and G, t≤[R/Y]T º [L/X]U ≤ [R/Y]U'

We denote the four conditions at once as follows, where (mX.)… means “optional
recursion” and []U means “substitute the recursive variable in U, if needed” (this is just
an informal notation to avoid repeating four times some proofs):

(î*) G º (mX.)ît≤T'.U ≤ (mY.)ît≤T.U' ã G º []T ≤ []T' and G, t≤[]T º []U ≤ []U'

We prove the four conditions by induction on the minimum depth of a proof proving

(*) G ºm (mX.)ît≤T'.U ≤ (mY.)ît≤T.U'.

(*) can be proved by transitivity, by (î) or by (unfold-l/r) (the (Shape≤) condition
leaves no other possibility).

(Trans): (the shape of the intermediate type is determined by (Shape≤)):

G ºm (mX.)ît≤T'.U ≤ (mZ.)ît≤R.S G ºm (mZ.)ît≤R.S ≤ (mY.)ît≤T.U'

ã(by induction) G º []R ≤ []T' G º []T ≤ []R
G, t≤[]R ºm []U ≤ []S G, t≤T ºm []S ≤ []U'

ã(by narrowing8) G, t≤[]T ºm []U ≤ []S
ã(by transitivity) G º []T ≤ []T', G, t≤[]T ºm []U ≤ []U'

(î): The thesis is immediate

(unfold-r): G ºm ît≤[]T'.[]U ≤ (mY.)ît≤T.U'
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ

G ºm mX.ît≤T'.U ≤ (mY.)ît≤T.U'

By induction: G º []T ≤ []T', (G, t≤[]T) ºm []U ≤ []U'; (unfold-r) is identical.

(mmmm≤l/r) G º mX.V ≤ U ã G º [mX.V/X]V ≤ U

Let G º mX.V ≤ U. Either it has been proved by (unfold-l), and the thesis follows
immediately, or it has been proved by transitivity from:

G º mX.V ≤ T G º T ≤ U
ã(induction) G º [mX.V/X]V ≤ T G º T ≤ U
ã(Trans) G º [mX.V/X]V ≤ U

8 Narrowing: DºT≤U and G≤GD ã G º T≤U; proof hint: substitute any use of an axiom
D,D'ºt≤D(t) in the proof of DºT≤U with the transitivity composition of an axiom G,D'ºt≤G(t) and a
proof of G,D'ºG(t)≤D(t).

or it has been proved by (unfold-r) (U=mY.T), from:

G º mX.V ≤ [mY.T/Y]T
ã(induction) G º [mX.V/X]V ≤ [mY.T/Y]T
ã(unfold-r) G º [mX.V/X]V ≤ mY.T(=U)

(VarTrans≤) U≠Top, U≠t, G º t ≤ U ã G º G(t) ≤ U

Let G º t ≤ U. Either G º t ≤ U is proved by VarTrans (trivial) or by transitivity:
G º t ≤ V G º V ≤ U;

If V=t, the thesis is immediate; otherwise, by (Shape), V≠Top:
ã(induction) G º G(t) ≤ V G º V ≤ U
ã(Trans) G º G(t) ≤ U

or G º t ≤ U is proved by (unfold-r) (U=mY.T), from:

G º t ≤ [mY.T/Y]T
ã(induction) G º G(t) ≤ [mY.T/Y]T
ã(unfold-r) G º G(t) ≤ mY.T(=U)

P.

Lemma 5.4: The ² relation is co-R.E. but is not R.E.

Proof hint : The ² relation is co-R.E. since its complement Â is semidecidable, because it
is semidecided by the finite failure of the standard type-checking algorithm. Since ² is
co-R.E, we prove that it is not R.E. by proving that it is not decidable. This can be
proved using, essentially, the same proof used in [Pie] to show the undecidability of ≤.
We cannot rephrase here the whole Pierce’s proof, but we will just give an outline.

Pierce defines a state machine, called the “rowing machine”, whose halting problem
is undecidable, since it is equivalent to the halting problem of two-counter Turing
machines. Then he considers the following subset JF of J (F stands for “Flattened”)9:

T+ = Top | îx1≤T-
1…îxn≤T-

n.-T-

T- = x | îx1…îxn.-T+

JF = º T- ≤ T+

he shows that the following two-rule reduction system is correct and complete for F≤
subtyping restricted to JF triples:

(FTop) º T- ≤ Top Å true

(Fî-) º îx1…îxn.-T+ ≤ îx1≤T-
1…îxn≤T-

n.-T- Å
º [T-

1/x1…T-
n/xn]T- ≤ [T-

1/x1…T-
n/xn]T+

finally he shows that every rowing machine can be encoded as a JF triple which
terminates if and only if the rowing machine does, which implies that termination of the
two-rule system on JF triples is undecidable, hence that the provability of JF judgements
is undecidable, and that subtyping on the whole F≤ is undecidable.

Note that every JF triple is either a provable or a diverging judgement; to prove
undecidability of finite failure we just substitute JF with a different subset JG of J which
contains only finitely failing or diverging triples, by susbstituting Top with a fresh
variable y:

9 The actual definition of JF is slightly more complex: first, in every type îx1≤T1…xn≤Tn.-T,
no xi can be free in any Ti+j; furthermore, all the quantifier prefixes îx1≤T1…xn≤Tn appearing in
a unique judgement must have the same length.

T+ = y | îx1≤T-
1…îxn≤T-

n.-T-

T- = x (with x≠y) | îx1…îxn.-T+

JG = y≤Top º T- ≤ T+

Now we can rephrase Pierce’s proof by using the following reduction system, correct
and complete on JG with respect to finite failure:

(Gy) y≤Top º T- Â y Å true

(Gî-) y≤Top º îx1…îxn.-T+ Â îx1≤T-
1…îxn≤T-

n.-T- Å
y≤Top º [T-

1/x1…T-
n/xn]T- Â [T-

1/x1…T-
n/xn]T+

Now, by encoding rowing machines over JG triples, we prove that finite failure of
subtyping is undecidable on JG, and hence is undecidable on the whole J.

