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Abstract.In the paper, the set-convexity and mapping-convexity properties of the extended
images of generalized systems are considered. By using these image properties and the tools of
topological linear spaces, separation schemes ensuring the impossibility of generalized systems
are developed; then, special problem classes are investigated.
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1 Introduction

One of the main ideas behind the image approach is to transform the analysis of general
equilibrium problems and the given space into separation problems in the image space. If the
image space is finite-dimensional, then one of the basic tools is the weak separation theorem of
nonempty disjoint convex sets in the n-dimensional Euclidean space (Minkowski, 1911). This
approach allows to give some geometric interpretations of certain properties of equilibrium
systems and to provide new ideas. The aim of the paper is twofold:to develop the study of the
set convexity properties of the image of a vector function and to show that the image analysis
leads to generalize the classical results stated in the original space in which the problem is
defined.

By using these properties of images and the tools of topological linear spaces, separation
schemes ensuring the impossibility of generalized systems are developed, then special problem
classes are investigated.

In Section 2, generalized systems and their images are defined, then the impossibility of
such systems is reduced to an empty intersection of a convex set, and certain conic extensions
of images with respect to sets different from the closure of the given convex set. In Sections
3 and 4, the set-convexity and mapping-convexity properties of the extended images of gen-
eralized systems are considered, respectively. Separation schemes ensuring the impossibility
of generalized systems are developed in Section 5. Special problem classes are investigated in
Section 6.

1This research was supported in part by the Hungarian National Research Foundation,

Grant OTKA-T016413 and Italian National Research Council (CNR).
2Researcher, Dipartimento di Matematica, Universitá di Pisa, Pisa, Italy.
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2 Generalized Systems

Generalized systems seem to be a useful tool in practice to describe equilibrium systems and
a general framework to analyse constrained and vector extremum problems, complementarity
systems, variational and quasi-variational inequalities (see, e.g., Ref. 1). In order to get further
information on the mathematical structure of a real-life equilibrium model, the first step can
be a transformation in the given space or in the image space providing a more convenient
form. In the given space, several such transformations are known (e.g., transformation of
an optimization problem into a convex one if it is possible). In the image spaces, extensive
research has recently started in this direction. First, some notations are introduced, then the
generalized systems and their image and image transformations are defined.

Let V be a topological linear space on the real numbers R, and Rn
+ := {x ∈ Rn : x ≥ 0}.

A set H ⊆ V is said to be a cone iff λH ⊆ H, with λ ∈ R+ \ 0 , and a convex cone iff, in
addition, H +H ⊆ H, where H +H = {h1 + h2 ∈ V : h1 ∈ H, h2 ∈ H}. cone H = {y ∈ V :
y = λx, λ ≥ 0, x ∈ H.} A closed and convex cone C is called pointed iff C ∩−C = {0}. In
a topological space, the closure, the interior,the relative interior, the boundary and the convex
hull of a set H is denoted, respectively, by cl H, int H, ri H, bd H, and conv H. Let S ∈ Rn,
S∗ = {y ∈ Rn : 〈x, y〉 ≥ 0, ∀x ∈ S} is the positive polar of the set S, where 〈·, ·〉 is the inner
product in Rn.

Definition 2.1 Let V be a topological linear space over the real numbers R, H ⊆ V a convex
set, X a Banach space, K ⊆ X a nonempty set, Y a parameter set, and F : K × Y → V a
mapping.

F (x; y) ∈ H ⊆ V, x ∈ K ⊆ X, y ∈ Y, (1)

is a parametric generalized system in the variable x.

The definition of a generalized system is more general than usual, because a convex set H
is considered instead of a cone, although in practice, there are examples with convex cones. A
major question related to generalized systems consists in finding values of y such that (1) be
impossible, and in finding methods which show the impossibility of such systems. Separation
schemes seem to be one of the most important tools for studying the impossibility of the
parametric system (1); to this end, the concept of the image of a set is used.

Example 2.1 Let X ∈ Rn. Given the vector extremum problem

minCf(x), s.t. x ∈ K, (P)

where, f : X → R
m, cl C is a pointed convex cone in Rm, K ⊆ X, putting F (x; y) :=

f(y)− f(x), H = C, Y = K, we have that y is a solution of (P) iff the parametric system (1)
is impossible. We observe that K can be a continuous or a descrete set, so that continuous as
integer programming problems can be considered in the image space analysis.
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Example 2.2 Consider the variational inequality

find y ∈ K s.t. 〈A(y), x− y〉 ≥ 0, ∀x ∈ K, (VI)

where A : Rn → R
n. Putting F (x; y) := 〈A(y), y − x〉, Y := K, then y is a solution of (VI)

iff (1) is impossible.

Definition 2.2 Let V be a topological linear space over the real numbers R, X a Banach
space, K ⊆ X a nonempty set, Y a parameter set and F : K × Y → V a mapping; then, Ky

=F (K; y), y ∈ Y, is the image of the set K through the map F at a given value of parameter
y.

The impossibility of a generalized system means that the intersection of the image Ky and
the given set H is empty, namely, Ky ∩H = ∅. To prove directly whether Ky ∩H = ∅ or not, is
generally too difficult; therefore, in order to show such a disjunction, it will be proved that the
two sets, or the set H and an extension of the image depending on H, lie in two disjoint level
sets of a functional; when the functional can be found linear Ky and H will be said “linearly
separable”. The image of a generalized system is not convex, in general, and it may not be
connected. In the case of a convex cone H, a regularization of the image set, its conic extension
with respect to the cone cl H, denoted by Ey, has been introduced in the form of

Ey = F (K; y)− cl H, y ∈ Y. (2)

A consequence of (2) is that Ky ⊆ Ey. The importance of the conic extension for the image of
generalized systems is enforced by the following statement (see Ref. 2): If

H+ cl H = H, (3)

then the parametric system (1) is impossible iff

Ey ∩H = ∅. (4)

Hence, proving impossibility is equivalent to showing disjunction between H and Ey. In cer-
tain cases, it is easier to prove (4) because the conic extension may have some advantageous
properties that Ky has not. In the case of convex optimization, the conic extension is a convex
set so that the weak separation theorem of nonempty disjoint convex sets in the n-dimensional
Euclidean space can be used.

However, assumption (3) is not fulfilled in every generalized system, e.g., in some cases of
vector variational inequalities under inequality constraints. The next example shows such a
cone.

Example 2.3 Consider the problem (P) defined in the Example 2.1 and suppose that C is
defined by

C := intR4
+ ∪ {(x, y, z, w) ∈ R4

+ : y = 0; z = 0} \ {0}.

Recalling that H = C, then, (1, 0, 0, 1) ∈ H,(0, 1, 0, 0) /∈ H, (0, 1, 0, 0) ∈ cl H, but

(1, 0, 0, 1) + (0, 1, 0, 0) = (1, 1, 0, 1) /∈ H.
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It follows from Example 2.3 that a modification of Theorem 2.1 is necessary to cover these
situations related to generalized systems still preserving the advantages of the extended image.

Theorem 2.1 Let V be a linear topological vector space on the real numbers R; K,A,H ⊆ V

be arbitrary sets, and E(A) = K +A. If

H−A = H, (5)

then
K ∩H = ∅ iff E(A) ∩H = ∅. (6)

Proof. (6) is a direct consequence of the relation

(K +A) ∩H = K ∩ (H−A).

2

Corollary 2.1 Let us consider the parametric system (1), an arbitrary set A ⊆ V and let
Ey(A) = Ky + A. If

H−A = H,

then the parametric system (1) is impossible iff

Ey(A) ∩H = ∅. (7)

In image space approaches, two important cases can be distinguished: that where the set H
equals a cone with nonempty interior embracing, e.g., scalar and vector optimization problems
under inequality constraints, and that where H is a cone with empty interior corresponding
to, e.g., scalar and vector optimization problems under equality and inequality constraints.

Corollary 2.2 Let us consider the parametric system (1) and a convex cone H1 ⊆ V with
nonempty interior and a convex cone H2 ⊆ V with empty interior. If A1 = − int H1 ∪ {0}
and A2 = −H2 ∪ {0}, then the generalized systems related to H1 and H2 are impossible iff

Ey(Ai) ∩Hi = ∅, i = 1, 2, (8)

respectively.

Proof.Since H1 − A1 = H1 + ( int H1 ∪ {0}) = H1 ∪ (H1 + int H1) = H1 ∪ (( cl H1 ∪
int H1) + int H1) =
H1 ∪ ( cl H1 + int H1) ∪ ( int H1 + int H1) = H1 ∪ int H1 ∪ int H1 = H1, thus, we obtain

H1 −A1 = H1,

from which the first statement follows.
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Similarly,
H2 −A2 = H2 + (H2 ∪ {0}) = H2 ∪ (H2 +H2),

and because H2 is a convex cone,
H2 +A2 = H2,

so the second statement is proved. 2

Definition 2.3 A generalized system (1) is said to be image convex iff ∀y ∈ Y such that (1)
is impossible, the sets Ky and H are linearly separable.

In the next parts, the set-convexity and mapping-convexity properties of extended images
Ey(A) as well as separation schemes based on these results will be studied.

3 Set-Convexities of Extended Images

Some concepts of set-convexity based on recent results (see Refs. 1–5) are considered here in
order to develop the study of the extended images. When there will be no fear of confusion
and y will be fixed, then Ky and Ey will be indicated merely by K and E , respectively. First,
the definitions which seem to be useful in the image space approach are recalled.

Definition 3.1 If V is a topological linear space on R and A ⊆ V is a convex subset, then
(i) K is said to be a convex set with respect to A (in short, A-convex) iff

(1− α)(K +A) + α(K +A) ⊆ (K +A), ∀α ∈]0, 1[; (9)

(ii) K is said to be a nearly convex set with respect to A (in short, A-convex) iff there exists
an α ∈ (0, 1) such that

(1− α)(K +A) + α(K +A) ⊆ (K +A); (10)

if α = 1/2, then the set is said to be midpoint A-convex;
(iii) K is said to be a closely convex set with respect to A iff the closure of the set K +A is a
convex set;
(iv) K is said to be a locally convex or a locally nearly convex set with respect to A iff K+A
is convex or nearly convex in a neighbourhood of every point belonging to K +A;
(v) K is said to be a coercive set at k0 ∈ K iff there exists a nonempty, ( cl A)-compact and
strictly convex set A1 ⊆ V such that K ⊆ A1 and k0 ∈ bd A1.

Definition 3.1 can be extended for the image of a mapping defined on an arbitrary set. If
A = {0}, then the convexity, nearly and closely convexity of sets are obtained from (i),(ii) and
(iii) in linear topological spaces, respectively. Under the assumption that A is a convex cone,
the A-convex sets were introduced in Ref. 6. Recently, Aleman (Ref. 7) as well as Gwinner
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and Jeyakumar (Ref. 8) introduced the notion of nearly convex sets. Some properties of nearly
convex sets can be found in Refs. 3,7,8. Recently, nearly convexity was used for generalizing
quasiconvex functions in the n-dimensional Euclidean space (Ref. 9). The class of nearly
convex sets is wider than the convex sets; e.g., the set of all rational numbers in R is nearly
convex, but not convex. The most recent definition is the one of closely convex set (Blaga and
Kolumbán, Ref. 10). An example is given by the set of all irrational numbers in R. The notion
of coercivity was studied in the image space by Pellegrini (Ref. 11).

Two important properties are that both the interior and the closure of a convex set are
convex sets in a topological linear space (see e.g., Ref. 12). The next lemma, which is a direct
consequence of the definitions and the above statements, shows the relations among the various
types of A-convex sets (Refs. 3–5).

Lemma 3.1 If A ⊆ V is a convex subset and A1 ⊆ V a subset, then the implications indicated
by the arrows in the next diagram are true:

E(A1) convex ⇒ E(A1) nearly convex ⇒ E(A1) closely convex

⇓ ⇓ ⇓

E(A1 +A) convex ⇒ E(A1 +A) nearly convex ⇒ E(A1 +A) closely convex.

Remark 3.1 By reversing the arrows in Lemma 3.1,implications are obtained that, in general,
are not true (Ref. 3).

Theorem 3.1 Let us consider the parametric system (1) and a convex cone H1 ⊆ V with
nonempty interior and a convex cone H2 ⊆ V with empty interior. If A1 = − int H1 ∪ {0}
and A2 = −H2 ∪ {0}, then the following implications are true:

E(Ai) convex ⇒ E(− cl Hi) convex, i = 1, 2,

E(Ai) nearly convex ⇒ E(− cl Hi) nearly convex, i = 1, 2,

E(Ai) closely convex ⇒ E(− cl Hi) closely convex, i = 1, 2.

Proof. If A ⊆ V is a subset containing the zero-element and H ⊆ V a convex cone such
that A ⊆ H, then by Lemma 3.1, the following implications are true:

E(A) convex ⇒ E(H) convex,

E(A) nearly convex ⇒ E(H) nearly convex,

E(A) closely convex ⇒ E(H) closely convex.

If the sets A and H are chosen Ai and − cl Hi, i = 1, 2, respectively, then the theorem is
proved. 2
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Remark 3.2 Theorem 3.1 relates the set-convexity properties of the extended images to those
of the classical conical extension, which are usually made with respect to the set − cl H; thus
the set-convexity results related to the latter one can be considered for the former ones as well.

Theorem 3.2 Let us consider the parametric system (1) and a convex cone A ⊆ V with
int A 6= 0. Then, the implications indicated by the arrows in the next diagram are true:

cl E(A) convex ⇒ E( int A) convex

⇑ ⇓

cl E( int A) convex ⇐ E( int A) nearly convex.

Proof. By Lemma 3.1,

cl E(A) convex ⇒ int E(A) convex

⇑ ⇓

cl ( int E(A)) convex ⇐ int E(A) nearly convex.

By Ref. 13, if A ⊆ V is a convex cone with nonempty interior and K ⊆ V a subset, then

int E(A) = E(int A),

thus the theorem is proved. 2

By Theorem 3.2, if an extended image is open, then its convexity is equivalent to its nearly
convexity which property can be exploited using separation arguments. Aleman (Ref. 7) and
Paeck (Ref. 5) proved that, if A ⊆ V is open, then A is convex iff A is nearly convex. A
corollary (Ref. 8) is that if A ⊆ V is closed, then A is convex iff A is nearly convex.

Corollary 3.1 Let us consider the parametric system (1) and a convex cone H ⊆ V with
nonempty interior. If A = − intH ∪ {0}, then cl E(A) is convex or int E(A) is nearly convex
iff int E (−int H) is convex.

It is recalled that a convex set is strictly convex if its boundary does not contain any line
segment.

Corollary 3.2 Let us consider the parametric system (1) and a convex cone H ⊆ V with
nonempty interior. If A = - int H ∪ {0}, and the set K ∩ bd E(A) is convex or the set
(K ∩ bd E(A))∪ int E(A) is strictly convex, then E(A) is convex iff int E(− int H) is convex.

Proof. The statements follow directly from the following relations:

E(A) = K + (−intH ∪ {0}) = K ∪ (K − int H) = (K ∩ bd E(A)) ∪ int E(A),

2
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4 Convexlikeness of the Image Mappings

Since the beginning of the 80’s, convexlike and generalized convexlike conditions have been
of interest for deriving generalized alternative theorems of Gordan, Motzkin, Farkas type and
Lagrange multiplier results for constrained optimization problems. A real-valued mapping with
convexlike property was first considered by Fan (Ref. 13) for generalizing the von Neumann
minimax theorem.

The image mappings inherite certain structural features of the given problem, so that the
analysis of the relationships between the image and given spaces can provide some possibilities
in the image spaces for convexifying classes of originally nonconvex problems. The purpose
of this part is to study the different convexlikeness concepts of the image mappings and to
characterize them by the corresponding set-convexity properties.

Definition 4.1 If V is a topological linear space on R, A ⊆ V a convex subset, X a nonempty
set and F : X → V a mapping, then
(i) F is said to be a convexlike mapping with respect to A (in short, A-convexlike) iff

(1− α)F (X) + αF (X) ⊆ F (X) +A, ∀α ∈ (0, 1);

(ii) F is said to be a nearly convexlike mapping with respect toA (in short, nearlyA-convexlike)
iff there exists an α ∈ (0, 1) such that

(1− α)F (X) + αF (X) ⊆ F (X) +A;

if α = 1/2, then the mapping is said to be König convex;
(iii) F is said to be a subconvexlike mapping with respect to A (in short, A-subconvexlike) iff
there exists an a0 ∈ A such that for all ε > 0 (or equivalently, iff for all a ∈ A)

(1− α)F (X) + αF (X) + εa0 ⊆ F (X) +A, ∀α ∈ (0, 1);

(iv) F is said to be a nearly subconvexlike mapping with respect toA (in short, A-subconvexlike)
iff there exists an a0 ∈ A and α ∈ (0, 1) such that for all ε > 0

(1− α)F (X) + αF (X) + εa0 ⊆ F (X) +A;

(v) F is said to be a closely convexlike mapping with respect to A (in short, closely A-
convexlike) iff the set F (X) +A is closely convex.

If A = {0}, then convexlike, nearly convexlike and closely convexlike mappings are ob-
tained from (i),(ii) and (iii) in linear topological spaces, respectively. In the definition of the
subconvexlikeness, the equivalence of the two characterizations is proved in (Ref. 14). The
nearly A-subconvexlike mappings were introduced by Craven and Jeyakumar (Ref. 15), the
A-subconvexlike ones by Jeyakumar (Ref. 16). Nearly A-convexlikeness is due to König (Ref.
17). The following statements are simple consequences of Definitions 3.1 and 4.1.
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Theorem 4.1 If A ∈ V is a convex cone containing the zero-element and F : X → V a
mapping, then
(i) F is an A-convexlike mapping iff the set E(A) is convex;
(ii) F is a nearly A-convexlike mapping iff the set E(A) is nearly convex.

Proof. The statements follow from the relation

α(F (X) +A) + (1− α)(F (X) +A) = αF (X) + (1− α)F (X) + αA+ (1− α)A.

2

The first part of Theorem 4.1 can be found in Ref. 18 and the second one in Refs. 5,7,8.
By Definitions 3.1 and 4.1 as well as Lemma 3.1 and Theorem 4.1, there is a one-to-one corre-
spondence between the A-convexlike, nearly A-convexlike and closely A-convexlike mappings
and the A-convex, nearly A-convex and closely H-convex sets, respectively, thus the diagram
of Lemma 3.1 is true for mappings as well. Refs. 3–5 and 19 deal with these correspondences.

Some subclasses and generalizations of the convexlike mappings can be introduced.

Definition 4.2 Let γ : X ×X × [0, 1] → X be a mapping such that γ(X ×X × [0, 1]) ⊆ X

and Ψ : V × V × [0, 1] → V . Then, a mapping F : X → V is a (Ψ, γ,A)-convexlike mapping if

Ψ(F (X)× F (X)× [0, 1]) ⊆ F (γ(X ×X × [0, 1])) +A.

It is well-known that if X ⊆ Rn is a convex set, F = (f1, . . . , fm) : X → R
m and the functions

fi, i = 1, . . . ,m, are concave, then the mapping F is (αF (X)+(1−α)F (X), αX+(1−α)X,Rm
+ )-

convexlike mapping, where α ∈ [0, 1].
If X = M is a complete Riemannian manifold or a geodesic convex set with the geodesics

γ(M×M× [0, 1]) between every two points of M, the mapping F = (f1, . . . , fm) : M→ R
m

consists of geodesic concave functions (Ref. 20) and Ψ(F (X)×F (X)× [0, 1]) = αF (X) + (1−
α)F (X), α ∈ [0, 1], then F is a (Ψ, γ, Rm

+ )-convexlike mapping.

Theorem 4.2 Let us consider the parametric system (1) and a convex cone H1 ⊆ V with
nonempty interior and a convex cone H2 ⊆ V with empty interior. If A1 = − int H1 ∪ {0}
and A2 = −H2 ∪ {0}, then the following implications are true:

F is an Ai-convexlike mapping ⇒ E(− cl Hi) convex, i = 1, 2,

F is a nearly Ai-convexlike mapping ⇒ E(− cl Hi) nearly convex, i = 1, 2,

F is a closely Ai-convexlike mapping ⇒ E(− cl Hi) closely convex, i = 1, 2.

Theorem 4.3 Let us consider the parametric system (1) and a convex cone A ⊆ V with
int A 6= 0. Then,

9



(i) F is an A-subconvexlike mapping iff F is nearly A-subconvexlike and iff the set E( int A)
is nearly convex;
(ii) the classes of nearly A-convexlike, A-subconvexlike and closely A-convexlike mappings
coincide.

The second part of Theorem 4.3 is a direct consequence of Theorem 3.2. These statements can
be found in Ref. 19 and Ref. 5. Corollary 4.1 follows from Corollaries 3.1 and 3.2.

Corollary 4.1 Let us consider the parametric system (1) and a convex cone H ⊆ V with
nonempty interior.
(i) IfA = − int H∪{0}, then F is closelyA-convexlike or nearlyA-convexlike iff F is (− int H)-
convexlike.
(ii) If A = − int H ∪{0}, and the set K∩bd E(A) is convex or the set (K∩bd E(A))∪ int E(A)
is strictly convex, then F is A-convexlike iff F is (− int H)-convexlike.

Remark 4.1 The graph (X, F (X)) of any generalized A-convexlike mapping can be consid-
ered a generalized (0×A)-convexlike mapping.

By the Aleman and Paeck theorem, if E is open or closed in the image problem, then the
image mapping F is nearly H-convexlike iff F is H-convexlike. If K ⊆ X is a compact set, and
the mapping F is continuous, then the image K is compact. In this case, the extended images
formed by closed sets are closed as well (Ref. 21). But in general, the image K is not open
and not closed (e.g., a continuous image mapping can map closed sets onto neither closed nor
open sets, Ref. 1 ). So, it seems to be an interesting question to characterize the convex image
problems falling into various A-convexity classes.

Theorems 3.2, 4.2 and Corollaries 3.1, 3.2 and 4.1 state connections between A-convexlike
and generalized A-convexlike mappings if the convex cone A has nonempty interior. It seems
to be an open question how to characterize these classes of mappings in the case of a cone or
a convex cone with empty interior. The importance of the condition is shown by the fact that
such image problems can be raised in the case of equality constraints.

5 Separation Schemes for Generalized Systems

It is observed that the impossibility of the parametric system (1) is equivalent to the condition

Ky ∩H = ∅. (11)

Following the scheme introduced in Ref. 22, relation (11) can be proven by showing that the
sets Ky and H lie in two disjoint level sets of a suitable functional.

It is recalled that a system (1) is said to be image convex in case the sets Ky and H, if
disjoint, admit a separating hyperplane. By means of the analysis developed in the previous
sections, sufficient conditions, that ensure the image convexity of the system (1), are stated.
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Theorem 5.1 Let V be a linear topological space, Ky +A = Ey(A) where A is a convex set
in V such that H−A = H.
(i) If V is a finite dimensional space and the mapping F is A-convexlike, then system (1) is
image convex.
(ii) If V is an infinite dimensional space, int A 6= ∅ and any of the following conditions holds:
a) the mapping F is A-convexlike;
b) the mapping F is closely A-convexlike;
c) the mapping F is A-subconvexlike and A is a convex cone;
d) the mapping F is nearly A-convexlike and A is a convex cone;

then system (1) is image convex.

Proof. By Theorem 2.2, the hypothesis H−A = H guarantees that Ky ∩H = ∅ iff

Ey(A) ∩H = ∅. (12)

Consequently, we have to prove that if relation (12) holds, then there exists a hyperplane that
separates the sets Ey(A) and H.
(i) If F is A-convexlike, then the set Ey(A) is convex, and therefore, the thesis holds, since
Ey(A) and H are two convex disjoint sets.
(ii) If a) holds, then the set Ey(A) is convex; moreover, since int A 6= ∅, then the set
int Ey(A) 6= ∅, and therefore, it is possible to apply the infinite dimensional Hahn-Banach

theorem to achieve the thesis.
Suppose that b ) holds. Since int A 6= ∅ and H − A = H, then int H 6= ∅. Thus, (12)

implies that
Ey(A) ∩ int H = ∅. (13)

It is known that
cl Ey(A) ∩ int H ⊆ cl (Ey(A) ∩ int H),

therefore, (13) implies that
cl Ey(A) ∩ int H = ∅.

Since cl Ey(A) and int H are convex sets and int H 6= ∅, we obtain that Ey(A) and H are
linearly separable. To complete the proof we observe that if A is a convex cone with nonempty
interior, then, from Theorem 4.3 (ii), it follows that (b), (c) and (d) are equivalent. 2

It is remarked that the existence of a separating hyperplane for the sets Ky and H does
not guarantee their disjunction which is obtained by introducing further assumptions, usually
called regularity conditions for the separation. In Ref. 2, this topic is studied assuming that
the system (1) is defined in the form

f(x) > 0, g(x) ∈ C, x ∈ Rn,

where
f : Rn −→ R, g : Rn −→ R

m,
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and C ⊆ Rm is a nonempty convex cone. It will be shown that the results obtained in Ref.2
can be extended to the parametric system (1) when V is a finite dimensional space.

Some preliminary results are needed.

Lemma 5.1 (Ref. 23) Let C be a closed and convex cone in Rm, then C is pointed iff
int C∗ 6= ∅.

Lemma 5.2 If S is a nonempty set in Rn, then

S∗∗ = cl cone conv S.

Proof. It is known (see Ref. 24) that

S∗ = ( cl S)∗ = (cone S)∗ = (conv S)∗, (14)

and if S is a convex cone, then
cl S = S∗∗.

Therefore,
(cone conv S)∗ = (conv S)∗

and
cl (cone conv S) = (cone conv S)∗∗ = (conv S)∗∗ = S∗∗.

2

The following result characterizes the regular separation in terms of polarity.

Theorem 5.2 If cl H is a pointed and convex cone, then

cl cone conv Ey(A) ∩ cl H = 0 ⇔ Ey(A)∗ ∩ int (−H)∗ 6= ∅.

Proof. (⇒) Ab absurdo, suppose that

Ey(A)∗ ∩ int (−H)∗ = ∅.

From Lemma 5.1, it follows that ∅ 6= int ( cl H)∗ = int (H)∗ = − int (−H)∗. Therefore, the
sets Ey(A)∗ and int (−H)∗ are linearly separable, i.e.,

(Ey(A)∗)∗ ∩ −[ int (−H)∗]∗ 6= (∅ ∪ {0}).

From Lemma 5.2, it is obtained that

Ey(A)∗∗ = cl cone conv Ey(A),

and by (14),

−[ int (−H)∗]∗ = −[ cl ( int (−H)∗)]∗ = −[ cl (−H)∗]∗ = H∗∗ = cl H,

12



and the absurdity is achieved.
(⇐) Let λ ∈ Ey(A)∗ ∩ int (−H)∗. Due to the fact that cl H is a pointed closed convex

cone,
int (−H)∗ = int (− cl H)∗ = {y ∈ H∗ : 〈x, y〉 < 0, 0 6= x ∈ cl H},

(see, e.g., Ref. 24). Thus,

〈λ, u〉 ≥ 0, ∀u ∈ Ey(A), and 〈λ, u〉 < 0, ∀u ∈ cl H\{0},

and the statement is proved. 2

Corollary 5.1 Let cl H be a pointed and convex cone with 0 6∈ H. If

cl cone conv Ey(A) ∩ cl H = 0,

then Ey(A) and H lie in two disjoint level sets of a linear functional.

Now, important results of convex analysis are recalled which ensure the convexity of system
(1).

Corollary 5.2 Let V be a linear topological space. If one of the following conditions holds
then the parametric system (1) is convex.
(i) The space V is finite dimensional and

ri conv(Ky) ∩ ri(H) = ∅.

(ii) The space V is infinite dimensional,

int conv(Ky) 6= ∅, and int conv(Ky) ∩H = ∅.

(iii) The space V is infinite dimensional,

int (H) 6= ∅, and conv(Ky) ∩ int (H) = ∅.

Remark 5.1 If, furthermore, it is required that the sets Ky and H be properly linearly sepa-
rated, then the conditions stated in the previous corollary are necessary, too.

6 Classes of Convex Problems

In this part, some classes of problems are given in the original space so that they generate
convex image problems. It is emphasized that a systematization of the convex image prob-
lems should allow a deeper view on the nature and the degree of difficulties of nonconvex
optimization problems classified only from the point of view of global optimization.

The first remark is that, to our knowledge, the class of optimization problems with convex
image is not very wide. Here, the famous Toeplitz-Hausdorff theorem (Ref. 25) is cited which
was recently extended by Barvinok (Ref. 26).
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Theorem 6.1 (Toeplitz-Hausdorff) The image F (B) of the unit ball B ⊂ Rn under a quadratic
map F : Rn → R

2 is convex.

Theorem 6.2 (Barvinok) If F = (F1, . . . , Fk) is a vectorial quadratic form on Rn×d, then the
image F (B) of the unit ball B ⊂ Rn×d under a quadratic vector map F : Rn×d → R

k is convex
provided

d > (
√

8k + 1− 1)/2, or equivalently, (d + 1)(d + 2)/2 > k.

By varying the values of d and k in the theorem, convexity results, similar to the Toeplitz-
Hausdorff theorem, can be obtained.

While the convexity of K obviously implies the A-convexity by its definition, Theorem
4.1 leads us to find some examples in which E(A) is convex while K is not. Thus, a class
of originally nonconvex optimization problems can be included in the H-convex or A-convex
classes providing a linear separation in the image space between H and E or A and E(A). A
consequence of the linear separation is that, considering anH-convexlike nonlinear optimization
problem with inequality constraints, the duality theorem with zero duality gap can be proved.

In the case of convex optimization, the conic extension is a convex set by Theorem 4.1.
This H-convex problem class was considered with convex image character for the first time.
Hayashi and Komiya considered convexlike optimization problems and established a theorem
of the alternative involving H-convexlike functions and studied Lagrangean duality (Ref. 27).
Elster and Nehse obtained a saddlepoint optimality condition in the H-convexlike cases (Ref.
28).

Zero duality gap results are presented in infinite-dimensional infinitely constrained opti-
mization problems where the image mapping is nearly H-convex (König convex) (Ref. 29).
Gwinner and Jeyakumar used characterizations in order to derive a solvability theorem for
nearly-H-convexlike inequality systems (Ref. 8). Weir and Jeyakumar introduced the notion
of H-preinvex mapping for obtaining optimality conditions and duality theorems (Ref. 14).
Examples for coercivity in the image space can be found in Ref. 11.

To conclude this section a particular case of a real vector valued function F : X →
R

m, F (x) = (f1(x), . . . , fm(x)) is considered. The aim is to analyse conditions under which
the set F (x) = {u ∈ Rm : u = F (x), x ∈ X} admits a supporting hyperplane at a point
F (x∗), i.e., there exists λ ∈ Rm

+ , λ 6= 0, such that

〈λ, u− F (x∗)〉 ≥ 0, ∀u ∈ F (X). (15)

This particular choice of λ ∈ Rm
+ , λ 6= 0, is useful in the analysis of optimization problems.

Example 6.1 Consider the problem (P), defined in the Example 2.1, and let C := int Rm
+ ,

F (x) := f(x). If (15) holds, then the system

f(x∗) − f(x) ∈ C,

is impossible, and x∗ is an optimal solution of (P ).
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Obviously, the existence of a supporting hyperplane will depend on some convexity prop-
erties of the mapping F . Now, the definition (Refs. 30–31) and some properties of invex
functions are recalled.

Definition 6.1 Let f : X → Rn be differentiable at x∗ ∈ X. Then, the function f is said to
be invex with respect to h : X ×X → Rn, at x∗, if

f(x)− f(x∗) ≥ 〈h(x, x∗),∇f(x∗)〉, ∀x ∈ X.

It is well-known that if fi,, i = 1, . . . ,m, are invex functions with respect to the same h,
then

m∑
i=1

λifi is invex for λi ≥ 0, i = 1, . . . ,m.

Theorem 6.3 Let X be an open set in Rn and λ ∈ Rm
+ \ {0}. Suppose that the functions

fi, i = 1, . . . ,m, are invex at x∗ with respect to the same function h. Then, F (X) admits a
supporting hyperplane of equation 〈λ, u − F (x∗)〉 = 0, u ∈ F (X), iff the function L(x, λ) =
〈λ, F (x)〉 has a stationary point at x∗, i.e., ∇L(λ, x∗) = 0.

Proof. If (15) holds, then x∗ is a global minimum point for L(λ, x) on X, and therefore,
∇L(λ, x∗) = 0. Vice-versa, it follows from the hypotheses that the function L(λ, ·) is invex
at x∗, ∀λ ∈ Rm

+ ; therefore we have that the equality ∇L(λ, x∗) = 0 implies the inequality
L(λ, x∗) ≤ L(λ, x), ∀x ∈ X, which is equal to condition (15). 2

To deepen the analysis, the existence of a supporting hyperplane to a suitable conical
extension of the image of the function F is investigated. We use some preliminary results. Let

conv F (X) = {u ∈ Rm : u =
p∑

i=1

µiF (xi), xi ∈ X,
p∑

i=1

µi = 1, µi ≥ 0, i = 1, . . . , p, p ∈ N},

be the convex hull of the set F (X).

Lemma 6.1 The following conditions are equivalent:

(i) 〈λ, u− F (x∗)〉 ≥ 0 , ∀u ∈ F (X); (16)

(ii) 〈λ, u− F (x∗)〉 ≥ 0 , ∀u ∈ conv F (X). (17)

Proof. (17) ⇒ (16) is immediate, since F (X) ⊆ conv F (X).
(16) ⇒ (17). Let xi ∈ X, i = 1, . . . , p. Since

〈λ, F (xi)− F (x∗)〉 ≥ 0 and µi ≥ 0, ∀i = 1, . . . , p,

we obtain that
〈λ, µi(F (xi)− F (x∗))〉 ≥ 0, ∀i = 1, . . . , p,

and therefore,

〈λ,
p∑

i=1

µiF (xi)− F (x∗)〉 ≥ 0.

2
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Lemma 6.2 Let C ⊆ Rm be a convex cone. Then,

conv [F (X) + C] = convF (X) + C.

Proof. ⊆) If xi ∈ X, ci ∈ C, i = 1, . . . , p, then

p∑
i=1

µi(F (xi) + ci) =
p∑

i=1

µiF (xi) +
p∑

i=1

µici ∈ conv F (X) + C.

⊇) If xi ∈ X, i = 1, . . . , p and c ∈ C, then

p∑
i=1

µiF (xi) + c =
p∑

i=1

µi(F (xi) + c),

and the inclusion is proven. 2

Theorem 6.4 Let the functions fi, i = 1, . . . ,m, be invex with respect to the same function h

at the point x∗. If there exists λ ∈ (Rm
+ ∩C∗) such that ∇L(λ, x∗) = 0, then 〈λ, u−F (x∗)〉 = 0

is the equation of a supporting hyperplane for the set conv [F (X) + C].

Proof. From Theorem 6.3, we have that 〈λ, u−F (x∗)〉 = 0 is the equation of a supporting
hyperplane for F (X) and, by Lemma 6.1, also for conv F (X).

Let u ∈ conv [F (X) + C]. From Lemma 6.2, there exist xi ∈ X, µi ≥ 0, i = 1, . . . , p, with
p∑

i=1
µi = 1, and c ∈ C such that u =

p∑
i=1

µiF (xi) + c.

Then, 〈λ, u− F (x∗)〉 = 〈λ,
p∑

i=1
µiF (xi)− F (x∗)〉+ 〈λ, c〉 ≥ 0.

The last inequality follows from Lemma 6.1 and the condition λ ∈ C∗. 2

7 Concluding Remarks

The characterizations of the weakened convexity properties for the image mapping provide a
technical tool for ensuring the convexity of image problems by the Hahn-Banach Separation
Theorem. It is an open question how to characterize the relationships among the different
convex image problems if the set H is convex or a convex cone, both with empty interior.
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