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Abstract. In Ref.1, extremum problems having in�nite-dimensional image have

been considered and some preliminary properties have been established. Here we

carry on the investigation of such problems and study an optimality condition for

the case of unilateral constraints, which partially extends the results of [2,3] to the

present type of problems. This is done by associating to the feasible set a special

multifunction. It turns out that the classic Lagrangian multitplier functions can

be factorized into a constant term and a variable one; the former is the gradient of

a separating hyperplane as introduced in [2,3]; the latter plays the role of selector

of the above multifunction. Finally, the need of enlarging the class of Lagrangian

multiplier functions is discussed.
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1. Introduction

Let the positive integers n,m,p, with p ≤ m, the interval T := [a, b] ⊂ IR with

−∞ < a < b < +∞ and the functions ψi : IR × IRn × IRn → IR, i = 0, ...,m, be

given. Let Y be the set of all continuous functions x(t) := (x1(t), ..., xn(t)), t ∈ T ,
with continuous derivatives x′(t) := (x′1(t), ..., x

′
n(t)), t ∈ T , except at most a

�nite number of points t at which there exist and are �nite lim
t↓t

x′(t) and lim
t↑t

x′(t).

Let us de�ne x′(t) = lim
t↓t

x′(t). The set Y forms a vector space on the set of real

numbers. The space Y will be equipped with the norm

||x||∞ := max
t∈T

||x(t)||, x ∈ Y,
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where || • || denotes the Euclidean norm of IRn. Set I := {1, ...,m}.
We take for granted the results of [1]. Here we continue the study of problem (2)

of [1] in the case of unilateral constraints only; hence now we consider a particular

problem belonging to the following class of problems:

min f(x), s.t. gi(x) ≥ 0, i ∈ I, x ∈ X, (1.1)

namely, the problem:

min f(x) :=

∫
T

ψ0(t, x(t), x
′(t)) dt, (1.2a)

subject to:

ψi(t, x(t), x
′(t)) ≥ 0, ∀t ∈ T, i ∈ I, (1.2b)

x ∈ X := {x ∈ Y : xi(a) = xi(b) = 0, i ∈ I}. (1.2c)

Consider the multifunction F : Y ⇒ IR1+m, de�ned by

F (x) := (f(x)− f(x), ψi(t, x(t), x
′(t)), i ∈ I)).

We will assume that the following condition holds.

Condition C: There exists a continuous function α : X → IR1+m such that:

α(x) ∈ F (x) and α(x) /∈ H, ∀x ∈ N(x), (1.3)

where N(x) is a neighbourhood of x ∈ Y and

H := {(u, v) ∈ IR× IRm : u > 0, v ≥ 0}.

If we de�ne

Kα(x) := {(u, v) ∈ F (X) : (u, v) = α(x), x ∈ N(x)},

then (1.3) is equivalent to

Kα(x) ∩H = ∅ (1.4)

We observe that the existence of a not necessarily continuous function α is necessary

and su�cient for x to be a minimum point. To suppose the continuity of α allows

us to have a further tool in order to develop the analysis. It is simple to prove the

following:

Proposition 1.1. (1.4) holds if and only if x is a local minimum point of the

problem:

max α0(x), s.t. αi(x) ≥ 0, i = 1, ...,m, x ∈ X. (1.5)
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Proof. x is a minimum point of (1.5) i� the system

α0(x)− α0(x) > 0, αi(x) ≥ 0, i = 1, ...,m, x ∈ N(x)

is impossible. Since α0(x) = 0, the impossibility of the previous system is equivalent

to (1.4). �

Remark 1.1. Since, given x ∈ X, the �rst component U of the vector (u, v) ∈
F (X) is uniquely de�ned, then necessarily it is

α0(x) = f(x)− f(x)

A direct consequence of Proposition 1.1 is the following result.

Proposition 1.2. Suppose that Condition C holds. Then, any necessary optimal-

ity condition for (1.5) is a necessary condition for x to be a local minimum point

of the given problem (1.2a-c).

A fundamental aspect of our analysis lies in the possibility of considering well-

behaved functions α which ful�l condition C. The function α is a local continuous

selection of F(x) in a neighbourhood of x. Later in the paper we will consider

suitable assumptions which ensure that Condition C be ful�lled.

Let Ω be a given set of parameters and consider a function Φ : X ×Ω → IR1+m,

de�ned, ∀x ∈ X, by:

Φ(x, ω) :=

∫
F (x)

ω dt =

(
f(x)− f(x),

∫
T

ωi(t)ψi(t, x, x
′) dt, i ∈ I

)
,

where the 1-st integral is a short writing to mean selection of an element of F(x) by

means of a weighted integration. According to [1], Φ is called a generalized selection

function, i�

F (x) ⊆ H ⇔ Φ(x, ω) ∈ H, ∀ω ∈ Ω;

ω is a selection multiplier (for short, SM).

Proposition 1.3. Let x be a minimum point of (1.2), and ψi : C1(T ) → C(T ),

i = 0, 1, be continuous in N(x). Then, the function

Φ(x) := {f(x)− f(x), min
t∈T

ψ1(t, x(t), x
′(t)), ...,min

t∈T
ψm(t, x(t), x′(t))}

is a generalized selection function, which is continuous in N(x).

Proof. We have to show that the functions:

f(x)− f(x) and min
t∈T

ψi(t, x(t), x
′(t)), i ∈ I,

are continuous in N(x). Let x̃ ∈ N(x), and ε > 0; we must prove the inequality:∣∣∣∣∫
T

[ψ0(t, x̃(t))− ψ0(t, x(t), x
′(t))]

∣∣∣∣ < ε, ∀x ∈ U(x̃),
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where U(x̃) is a neighbourhood of x̃. Since ψ0 is continuous at x̃, ∃δ > 0, such

that the inequality

sup
t∈T

|x̃(t)− x(t)| < δ (1.6)

implies

sup
t∈T

|ψ0(t, x̃(t), x̃(t))− ψ0(t, x(t), x
′(t))| < ε

b− a
.

Hence, for each x which ful�ls (1.6), we have:∣∣∣∣∫
T

[ψ0(t, x̃(t), x̃
′(t))− ψ0(t, x(t), x

′(t))] dt

∣∣∣∣ < ∫
T

ε

b− a
dt = ε.

Let i ∈ I. Consider the inequality:∣∣∣ min
t∈T

ψi(t, x̃(t), x̃
′(t))−min

t∈T
ψi(t, x(t), x

′(t))
∣∣∣ < ε. (1.7)

ψ0 being continuous at x̃, ∃δ > 0, such that the inequality

sup
t∈T

|x̃(t)− x(t)| < δ (1.8)

implies:

sup
t∈T

|ψi(t, x̃(t), x̃ ′(t))− ψi(t, x(t), x
′(t))| < ε.

Let

ψi(t, x̃(t), x̃
′(t)) = min

t∈T
ψi(t, x̃(t), x̃

′(t)),

ψi(t
0, x(t0), x′(t0)) = min

t∈T
ψi(t, x(t), x

′(t)).

We have, ∀t ∈ T, :

ψi(t, x̃(t), x̃
′(t))− ψi(t, x(t), x

′(t)) ≤ ψi(t, x̃(t), x̃
′(t)− ψi(t, x(t), x

′(t)) < ε,

so that:

ψi(t, x̃(t), x̃
′(t)) < ψi(t

0, x(t0), x′(t0)) + ε.

Similarly, ∀t ∈ T,

ψi(t
0, x(t0), x′(t0))− ψi(t, x̃(t), x̃

′(t)) ≤ ψi(t, x(t), x
′(t))− ψi(t, x̃(t), x̃

′(t)) < ε,

so that:

ψi(t, x̃(t), x̃
′(t)) > ψi(t

0, x(t0), x′(t0))− ε.

Hence, for each x which ful�ls (1.8), we have that (1.7) is satis�ed. �

2. Quasi-multipliers

Here we analyse the case where the selection α belongs to a particular class of

functions, namely:
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αi(x) =

∫
T

ωi(t, x)ψi(t, x, x
′) dt , i ∈ I, (2.1)

where ωi : T ×X → IR i ∈ I, and ω := (ω1, ..., ωm) ∈ Ω, Ω being a given class

of parameters.

A necessary optimality condition for (1.2) will be reached by extending the

approach of [2,3]. Consider the set:

K(ω) :=
⋃
x∈X

{Φ(F (x);ω)} =

= {(u, v1, ..., vm) ∈ IR1+m : u = f(x)− f(x), vi = gi(x;ωi), x ∈ X, i ∈ I},

where

gi(x;ωi) :=

∫
T

ωi(t, x)ψi(t, x, x
′) dt.

K(ω) will be called the selected image, and will play the same role as K in [2,3].

More precisely, F is now a multifunction and F(x) is a set, not necessarily a single-

ton. Thus the optimality cannot be expressed by a disjunction of H and K = F (X)

as in [2,3]. However, by selecting an element from F(x) or from its convex hull, say

conv F(x) (this means to select K(ω) from K), we may hope to reduce ourselves to

the scheme of [2,3]. Sect.4 of [1] shows a way of doing this. The in�nite dimension-

ality of the image is overcome by the selection: instead of considering the image

of (1.2), which would lead us to an in�nite-dimensional image space, we introduce

the multifunction F , so that we have a �nite-dimensional image space, where the

scheme of [2,3] can be adopted by replacing K with K(ω). The selected element

from F(x) is F (x;ω) := (f(x)− f(x), gi(x;ωi), i ∈ I); hence h := F (x;ω) is the

selected image of x and will play a role quite analogous to that played by h in [2,3]

where F(x) was a singleton.

As in [1,2] the analysis will be carried out within the class of C-di�erentiable

functions; in the sequel the C-derivative will be always assumed to be bounded

(with respect to the 2-nd argument). Here there is a further di�culty: the C-

di�erentiability must be enjoyed by f(x) and gi(x;ωi), i ∈ I, and should be un-

suitable to assume it; it is more appropriate that any assumption is made on the

given data ψi and on the selection multiplier ωi. To this end, we need the follow-

ing Proposition 2.1, where the general case of SM depending on the unknown x is

considered. In fact, next examples show the need of enlarging the class of SM from

ωi(t) to ωi(t;x); X is the set of continuous functions. The example shows that this

holds also when X is made by C1 functions.

Example 2.1 In (1.2) let us set T = [0, 3], m = 1; ψ0(t, x, x
′) = x; ψ1(t, x, x

′) =
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t2 − 3t + 2 + x(t); x(t) = 3t − t2 − 2, ∀t ∈ T ; X = C1(T ). Now consider the

functions:

x̂(t) =


0 , if 0 ≤ t ≤ 1

(t− 1)2 , if 1 < t ≤ 3
2

−7
9
t2 + 10

3
t− 3 , if 3

2
< t < 3

x̃(t) =


−7

9
t2 + 4

3
t , if 0 ≤ t ≤ 3

2

(t− 2)2 , if 3/2 < t ≤ 2

0 , if 2 < t ≤ 3.

Neither x̂ nor x̃ ful�l (1.2b), so that (ω ≡ ω1, ψ ≡ ψ1) :

F (x̂) * H = IR+\{O} × IR+; F (x̃) * H.

Hence, Φ(F (x̂);ω) /∈ H and Φ(F (x̃);ω) /∈ H must be true for some SM ω. Assume

that ω does not depend on x(t). Since f(x)− f(x̂) and f(x)− f(x̃) are obviously

positive, Φ(F (x̂);ω) /∈ H and Φ(F (x̃);ω) /∈ H are equivalent to (ψ(t, x, x′) ≡
ψ(t, x)) :∫

T

ω(t)ψ(t, x̂)dt =

∫ 1

0

ω(t)(t2 − 3t+ 2)dt+

∫ 3/2

1

ω(t)(2t2 − 5t+ 3)dt+

(2.3a)

+

∫ 3

3
2

ω(t)(
2

9
t2 +

1

3
t− 1)dt < 0

and ∫
T

ω(t)ψ(t, x̃)dt =

∫ 3/2

0

ω(t)(
2

9
t2 − 5

3
t+ 2)dt

(2.3b)

+

∫ 2

3
2

ω(t)(2t2 − 7t+ 6)dt+

∫ 3

2

ω(t)(t2 − 3t+ 2)dt < 0,

respectively. Let S1 ⊆ [1, 3
2
], S2 ⊆ [3

2
, 2] be such that ω(t) = 0 on [1, 3

2
]\S1

and on [3
2
, 2]\S2. Since ψ(t, x̂(t)) and ψ(t, x̃(t)) are continuous and are negative,

respectively, only on ]1, 3
2
[ and on ]3

2
, 2[, it follows that (2.3) hold only if:∫

S1

ω(t)(2t2 − 5t+ 3)dt+

∫
S2

ω(t)(
2

9
t2 +

1

3
t− 1)dt < 0, (2.4a)∫

S1

ω(t)(
2

9
t2 − 5

3
t+ 2)dt+

∫
S2

ω(t)(2t2 − 7t+ 6)dt < 0. (2.4b)

These inequalities, summing them up side by side, imply:

5

∫
S1∪S2

ω(t)(
2

3
t− 1)2dt < 0,

which is evidently false, being ω(t) ≥ 0, ∀t ∈ T. �
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Example 2.2. In (1.2), let us set m = 2, ψ0 = −x1(t), ψ2 ≡ 1, and

ψ1 =


x2(t) , ifx1 ∈ X−

1 :=
{
x1 :

∫
T
x1(t)dt ≤ 0

}
,

x2(t)− x1(t)
2 , ifx1 ∈ X+

1 :=
{
x1 :

∫
T
x1 dt > 0

}
, and

x2 ∈ X−
2 :=

{
x2 :

∫
T
x2dt ≤ 0

}
x2(t) + x1(t)

2 , ifx1 ∈ X+
1 , x2 ∈ X+

2 :=
{
x2 :

∫
T
x2dt > 0

}
with x1, x2 ∈ C0(T ). The selected problem, namely (1.2) where (1.2b) is replaced

by

gi(x;ωi) ≥ 0, i ∈ I, (2.5)

becomes now:

min

∫
T

−x1(t)dt , s.t. g2(x;ω2) =

∫
T

ω2(t)dt ≥ 0,

subject to:

g1(x;ω1) =


∫
T
ω1(t)x2(t) dt , x1 ∈ X−

1 ,∫
T
ω1(t)x2(t) dt−

∫
T
ω1(t)x1(t)

2 dt , x1 ∈ X+
1 , x2 ∈ X−

2 ,∫
T
ω1(t)x2(t) dt+

∫
T
ω1(t)x1(t)

2 dt , x1 ∈ X+
1 , x2 ∈ X+

2 .

Note that ψ1 ≡ 0 ⇔ x1 ∈ X−
1 and x2 ≡ 0. In fact:

x1 ∈ X+
1 and x2 − x2

1 ≡ 0 ⇒ x2 ∈ X+
2 ; x1 ∈ X+

1 and x2 + x2
1 ≡ 0 ⇒ x2 ∈ X−

2 .

It follows that (x1 ∈ X−
1 , x2 ≡ 0) are the only admissible pairs, and therefore

x = (x1 ≡ 0, x2 ≡ 0) is the unique minimum point of (1.2). �

Example 2.3. Let us identify (1.2) with:

min

∫
T

cosx(t) dt , x(t) = 0, ∀t ∈ T := [0, 1], x(t) ∈ C(T ).

Of course, x(t) ≡ 0 is the minimum point. The selected problem, namely (1.2)

where (1.2b) is replaced by (2.6), is

min

∫
T

cosx(t) dt ,

∫
T

ω(t)x(t) dt = 0, x ∈ C(T ),

where ω(t) ∈ C(T ) is arbitrary. We prove that x(t) ≡ 0 is not solution of the

selected problem. To this end, it is enough to show that the selected problem

admits a not identically zero feasible solution. Note that we have:∫
T

cosx(t) dt ≤ 1.

Therefore, we look for a solution of type

x(t) = at+ b, a 6= 0, b 6= 0,
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∫
T

ω(t)x(t) dt = W (t)x(t)

∣∣∣∣1
0

−
∫ 1

0

W (t)x′(t) dt,

where W(t) is an antiderivative of ω(t) (W(t) exists, since ω ∈ C(T )). Hence, we

must have:

0 =

∫
T

ω(t)x(t) dt = W (1)(a+ b)−W (0)b− a

∫
T

W (t) dt.

If a and b are chosen in such a way to have:

a

[
W (1)−

∫
T

W (t) dt

]
+ b[W (1)−W (0)] = 0, a, b 6= 0,

then we obtain that x(t) = at+ b /≡ 0. Now, let us evaluate the objective function

in the found point: ∫
T

cos(at+ b) dt =
2

a
sin

a

2
cos

a+ 2b

2
.

If the minimum were 1, then we should have:

sin
a

2
cos

a+ 2b

2
=
a

2
.

By choosing a
2
/∈ [−1, 1], the previous equality is false. �

Example 2.4. Let us identify (1.2) with:

min

∫
T

x(t) dt, x2(t) ≤ 0, ∀t ∈ T := [0, 1], x ∈ C(T ).

Of course, x(t) ≡ 0 is the unique feasible (and hence optimal) solution. The selected

problem, namely (1.2) where (1.2b) is replaced by (2.6), is

min

∫
T

x(t) dt,

∫
T

ω(t)x2(t) dt ≤ 0, x ∈ C(T ),

where ω(t) ∈ C(T ). If we choose ω(t) > 0, ∀t ∈ T , then necessarily x(t) ≡ 0

to have x(t) admissible for the selected problem; this, therefore, turns out to be

equivalent to the given problem.

The preceding examples shows that, in the general case, we cannot make true

the proposition:

F (x) * H ⇔ ∃ω ∈ Ω, s.t. Φ(F (x);ω) /∈ H,

if the elements of Ω are independent of x .

As a consequence of the above example, we have that the approach of [3] cannot

be extended, if the SM does not depend on x . Hence, we will introduce a SM

depending on x , which will be called selection quasi-multiplier (in short, SQM); in

this case we will obtain a necessary condition, like that of [3].
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Proposition 2.1. Let fi : X → IR, i = 1, 2 be C-di�erentiable at x = x and let

fi(x) = fi(x) + DCfi(x; z) + εi(x; z), i = 1, 2

be their expansions, where DCfi, i = 1, 2 are the C-derivatives. Set f := f1 ·f2 and

assume that:

DCf̃(x; z) := DCf1(x; z) · f2(x) + f1(x) ·DCf2(x; z) ∈ C. (2.6)

Then f̃ is C-di�erentiable at x in the direction z and its expansion is given by

f̃(x) = f̃(x) + DCf̃(x; z) + ε̃(x; z), (2.7)

where

ε̃(x; z) := ε1 · ε2 + ε1 · [f2(x) + DCf2] + ε2[f1(x) + DCf1] + DCf1 ·DCf2. (2.8)

Proof. The expansion of f̃ is trivially obtained from the product of the expansions

of f1 and f2. Because of assumption (2.6) DCf̃ is sublinear; hence we have to prove

only that limz→0 ε̃/ ||z|| = 0. As z → 0, obviously ε1 · ε2/ ||z|| → 0; the same

happens to the 2-nd and 3-rd terms in the RHS of (2.8), since the forms in square

brackets are bounded. The boundedness of DCf1/ ||z|| and lim
z→0

DCf2 = 0 imply

that DCf1 ·DCf2/ ||z|| → 0 as z → 0. This completes the proof. �

Assumption (2.6) is ful�lled, when f1 and f2 are di�erentiable, since DCfi, i = 1, 2

are linear (in this case DCf̃ = 〈f ′1(x)f2(x) + f1(x)f
′
2(x), z〉, which is the classic

formula), or when DC fi, i = 1, 2 are not linear and fi(x) ≥ 0, i = 1, 2. When

fi(x) < 0, then f̃ may not be C-di�erentiable; see for instance the case where

f1(x) = |x|, f2(x) = |x| − 1, x ∈ IR.

We will assume the C-di�erentiability of ψ0, −ψ1, i ∈ I with respect to the set

of 2-nd and 3-rd arguments, of ωi with respect to the 2-nd argument and that all

the hypothesis of Theorem 3.1 and 4.1 in [1] are satis�ed. As a consequence we

will have the following expansion (for the sake of simplicity, in the sequel x will be

replaced merely by x ):

f(x+ δx) = f(x) +

∫
T

DCψ0(t, x, x
′; δx, δx′) dt+

∫
T

εψ0
(t, x, x′; δx, δx′) dt, (2.9a)

gi(x+ δx;ωi) = gi(x;ωi) +

∫
T

DCπi(t, x, x
′; δx, δx′) dt+

+

∫
T

επi (t, x, x
′; δx, δx′) dt, i ∈ I, (2.9b)

where

πi := ωi · ψi; DCπi := DCωi(t, x; δx) · ψi(t, x, x′) + ωi(t, x) ·DCψi(t, x, x
′; δx, δx′);

επi := εωi
·εψi

+εωi
· [ψi(t, x, x′)+DCψi]+εψi

· [ωi(t, x)+DCωi(t, x, δx)]+DCωi ·DCψi;
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and where the pairs (DCωi, εωi
), (DCψi, εψi

) give the expansions of ωi, ψi, respec-

tively. Since DC is an operator which denotes C-derivative, the use of DCπi as a

symbol would be improper; this does not happen here since πi is C-di�erentiable

due to Proposition 2.1. When ωi and ψi are di�erentiable DCπi collapses to the

usual derivative of a product. If ωi is constant with respect to x , so that can be

denoted by ωi(t), then DCπi = ωi(t) ·DCψi and ε
π
i = εψi

· [ωi(t, x) + DCωi(t, x, δx)].

3. Homogeneization

For the sake of simplicity, in this section we will assume that condition C be

ful�lled by a selection function α, where

αi(x) =

∫
T

ωi(t)ψi(t, x, x
′) dt, i ∈ I (3.1)

for x ∈ N(x), a neighbourhood of x. We observe that (3.1) coincides with (2.1)

except for the fact that the parameters ωi do not depend on x , but only on t . Next

proposition is a consequence of the above assumptions and of the results stated in

Sect.1.

Proposition 3.1 Assume that condition C be ful�lled and that αi(x) be de�ned

by (3.1), i ∈ I. If the system

f(x)− f(x) > 0; ψi(t, x(t), x
′(t)) ≥ 0, i ∈ I, ∀t ∈ T, x ∈ X, (3.2a)

is impossible (for x ∈ X ∩N(x)), then the following system is also impossible:

f(x)− f(x) > 0, g(x, ω) ≥ 0, x ∈ X ∩N(x) (3.2b)

Proof. It follows from Proposition 1.1 taking into account (3.1). �

Lemma 3.1 (Homogeneization). Let ψ0 and −ψi, i ∈ I be C-di�erentiable with

respect to the set of the 2nd and 3rd arguments. If x is a minimum point of

(1.2), then there exist a non-negative SM ω(t) = (ωi(t), i ∈ I) ∈ C0(T )m and a

neighbourhood in the sense of closedness of order one, say N (1)(x), such that the

system (in the unknown δx = x− x; δx′ = x′ − x′):∫
T

DCψ0(t, x, x
′; δx, δx ′) dt < 0;

∫
T

ωi(t) ·D−Cψi(t, x, x
′; δx, δx ′) dt > 0, i ∈ I0,

(3.3)

gi(x;ωi) +

∫
T

ωi(t) ·D−Cψi(t, x, x
′; δx, δx ′) dt ≥ 0, i ∈ I\I0; x ∈ X ∩N (1)(x),

is impossible, where I0 := {i ∈ I : gi(x;ωi) = 0,
∫
T
ωi(t) · εi(t, x, x ′; δx, δx ′) dt \≡ 0}.

Proof. By applying Proposition 3.1 we get the existence of ω such that (3.2) is

impossible. Now, ab absurdo, suppose that, at the same ω = ω, (3.3) be possible,

and let x̂ 6= x be a solution. Then αx̂ is a solution of (3.3) ∀α ∈]0, 1], since
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gi(x;ωi) ≥ 0 and DCf, D−Cψi, i ∈ I are positively homogeneous (satisfy (12a) of

[2]). The assumption implies that the remainders:∫
T

εψ0 dt,

∫
T

ωiεi dt, i ∈ I

are in�nitesimal of order >1 with respect to ||(δx, δx ′)||, so that, setting ŷ = (x̂, x̂′),

y = (x, x′) and δy = (x̂− x, x̂′ − x′) = (δx, δx′), ∃α̂ ∈]0, 1] such that:

1

||α̂δy||

∫
T

εψ0(t, y; α̂δy) dt < − 1

||δy||

∫
T

DCf(t, y; δy) dt,

1

||α̂δy||

∫
T

ωi(t) · εi(t, y; α̂δy) dt > − 1

||δy||

∫
T

ωi(t) ·D−Cψi(t, y; δy) dt, i ∈ I0.

From these inequalities, by noting that gi(x;ωi) = 0, ∀i ∈ I0, we have:∫
T

[DCψ0(t, y; α̂δy) + εf (t, y; α̂δy)] dt < 0, (3.4a)

gi(x;ωi) +

∫
T

{ωi(t)[D−Cψi(t, y; α̂δy) + εi(t, yi; α̂δy)]} dt > 0, i ∈ I0. (3.4b)

∀i ∈ I\I0 either gi(x;ωi) = 0 and
∫
T
ωiεi dt ≡ 0 or gi(x;ωi) > 0. In the former

case, with α̂ = 1, we obviously have:

gi(x;ωi) +

∫
T

{ωi(t)[D−Cψi(t, y; α̂δy) + εi(t, y; α̂δy)]} dt ≥ 0. (3.4c)

In the latter case ∃α0 ∈]0, 1] such that:

gi(x;ωi) +

∫
T

ωi(t) ·D−Cψi(t, y;αδy) dt > 0, ∀α ∈]0, α0],

and thus ∃α̃ ∈]0, α0] such that:

1

||α̃δy||

∫
T

ωi(t) · εi(t, y; α̃δy) dt ≥

≥ − 1

α0||δy||

[
gi(x;ωi) + α0

∫
T

ωi(t) ·D−Cψi(t, y; δy) dt

]
≥

≥ − 1

α||δy||

[
gi(x;ωi) + α

∫
T

ωi(t) ·D−Cψi(t, y; δy) dt

]
, ∀α ∈]0, α0],

where the 1st inequality holds since
∫
T
ωiεi dt is in�nitesimal of order >1 with

respect to ||(δx, δx ′)|| and the 2nd side is �xed and negative, the 2nd inequality

holds since the 2nd side is obviously the maximum of the 3rd on ]0, α0]. With

α := α̃ it follows that:

gi(x;ωi) +

∫
T

{ωi(t)[D−Cψi(t, y; α̂δy) + εi(t, y; α̂δy)]} dt ≥ 0. (3.4d)
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Collecting all (3.4), recalling that gi(x;ωi) = 0, i ∈ I0, and using the de�nition of

the remainders εi, we obtain the possibility of system (3.2), and hence the contra-

diction. This completes the proof. �

The impossibility of system (3.3) can be expressed as disjunction of the two sets

of the image space associated to (1.2). To this end introduce the sets:

Hh := {(u, v) ∈ IR× IRm : u > 0; vi > 0, i ∈ I0; vi ≥ 0, i ∈ I\Io};

K(ω) := {(u, v) ∈ IR× IRm : u = −
∫
T

DCf dt; vi = gi(x;ωi)+

+

∫
T

ωiD−Cψi dt, i ∈ I; x ∈ X}.

It is easily seen that the impossibility of system (3.3) holds i�

Hh ∩K(ω) = ∅.

Note that system (3.3) is set up with the homogeneous parts of f and the selections

gi and hence Kh(ω) represents the homogenization of the selected image K(ω); Hh

simply follows the changes in the types of inequalities in going from (3.2a) to (3.3).

When ψ0, ψi, i ∈ I are di�erentiable (C is replaced with its subset L of linear

elements), then (3.3) becomes:∫
T

[〈∇xψ0, x− x〉+ 〈∇x′ψ0, x
′ − x ′〉] dt < 0;

∫
T

ωi[〈∇xψi, x− x〉+ 〈∇x′ψi, x
′ − x ′〉] dt > 0, i ∈ I0;

gi(x;ωi) +

∫
T

ωi[〈∇xψi, x− x〉+

+〈∇x′ψi, x
′ − x ′〉] dt ≥ 0, i ∈ I\I0; x ∈ X ∩N (1)(x),

and in this case Lemma 3.1 extends to problem (1.2) a well known Linearization

Lemma (see [4]). Note that Lemma 3.1 can be slightly sharpened by requiring

di�erentiability or C-di�erentiability only for those ψi such that gi(x;ωi) = 0 and

continuity for the remaining ones. Lemma 3.1 can be generalized to semidi�eren-

tiable functions.

4. Semistationarity

The generalization of the concept of stationary point, which is associated with

that of necessary conditions, has received much attention. The crucial point is the

kind of convergence that is required. The following de�nition seems to be quite

general, even if it is clear that it is not possible to handle every problem with a

single kind of convergence.

De�nition 4.1. x ∈ R ⊆ Y will be called a lower semistationary point of a
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problem of type min
x∈R

f(x), i� there exists a neighbourhood N(x) of x, such that:

lim inf
x→x

f(x)− f(x)

||x− x||
≥ 0, x ∈ N(x). (4.1)

The following proposition, whose proof is in Sect.3 of [3], is a motivation for

adopting the above de�nition.

Proposition 4.1 (i) If x is a minimum point of f on R, then (4.1) holds. (ii) If R

and f are convex, then a lower semistationary point of f on R is a global minimum

point, and (4.1) becomes:

f ′(x;x− x) ≥ 0, ∀x ∈ R,

where f ′(x; z) denotes directional derivative at x in the direction z . (iii) If f is

di�erentiable, then (4.1) becomes:

〈f ′(x), x− x〉 ≥ 0, ∀x ∈ R,

which if x ∈ intR, collapses to:

f ′(x) = 0.

Note that, in the case of problem (1.2), f ′ denotes the variation of the functional

f . Let us introduce the function:

L(x; θ, λ, ω) := θf(x)− 〈λ g(x;ω)〉, (θ, λ) ∈ IR× IRm, ω ∈ Ω.

Note that, if we set λi(t) := λi · ωi(t), L is the classic Lagrangian function asso-

ciated to (1.2); hence, here the Lagrangian multiplier is splitted into two parts: a

selection part, i.e. ωi(t) which in a wider context becomes ωi(t, x), and a separation

part, i.e. λi.

A star as apex of a cone will denote its positive polar. Let k(ω) := (0, g(x;ω)) :=

(u , v(ω)) a selection of the image of x. Unlike before, y := (x, x′), y := (x, x ),

δy := y − y.

Lemma 4.1 (Semistationarity). Let ψ0 be C-di�erentiable and ψi, i ∈ I be (-C)-

di�erentiable with respect to the set of 2nd and 3rd arguments at any value of

them.

(i) If ∃ω ∈ Ω such that:

−(θ, λ) ∈ [K(ω)− k(ω)]∗, (4.2)

then

lim inf
x→x

L(x; θ, λ, ω)− L(x; θ, λ, ω)

||x− x||
≥ 0. (4.3)

If lim
||δy||↓0

DCψ0(t, y;
δy
||δy||) and lim

||δy||↓0
D−Cψi(t, y;

δy
||δy||), i ∈ I exist, then the lower

limit of (4.1) collapses to the ordinary limit.
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(ii) If x ∈ intX and ψ0, ψi, i ∈ I are di�erentiable, then (i) becomes: if

−(θ, λ) ∈ [K(ω)− k(ω)]⊥,

then

L′x(x; θ, λ, ω) = 0.

Proof. (4.2) is equivalent to:

−(θ λ) ∈ {(u∗, v∗) ∈ IR×IRm : 〈(u∗, v∗), (u−u, v(ω)−v(ω))〉 ≥ 0, ∀(u, v(ω)) ∈ K(ω)},

or, by using Proposition 3.1 of [2],

DCL(x; δx; θ, λ, ω)−DCL(x; δx; θ, λ, ω) ≥ 0, ∀x ∈ X, (4.4)

where

DCL =

∫
T

[θDCψ0 −
∑
i∈I

λiD−Cψi] dt.

Divide both sides of (4.4) by ||δx|| and add to them:

1

||δx||
ε(x; δx; θ, λ, ω) :=

1

||δx||

∫
T

(
θεψ0 −

∑
i∈I

λiεi

)
dt;

then (4.4) becomes:

1

||δx||
[L(x; θ, λ, ω)− L(x; θ, λ, ω)] ≥ 1

||δx||
ε(x; δx; θ, λ, ω), ∀x ∈ X\{x}.

Now (4.3) follows, since ε/||δx|| → 0 as x→ x. The remaining part is obvious. (ii)

Since K(ω) is now a�ne, the polar becomes the orthogonal complement and hence

lim inf collapses to lim and this is zero since both ≥ and ≤ must hold. �
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