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Chapter 1IntroductionThis tool is a cache simulator especially developed in order to gain insight into unpredictable cache phe-nomena which cause a trementous performance slow down on high performance super- computers. Otherprevious simulators could only unveil bad performance by indicaters like performance, miss- and hit- ratio.This simulator can not only show global �gures about the performance of a program, but also visualize thebottle- neck and thus deal with the roots of this problem. The scien- tist is now able to deal with complexreference patterns which are hard to understand without visualization. With this tool, research can be doneto all kind of programs on all kind of cache hierarchies.The CVT supports two kind of software; traces and programs. Traces are made by the user; a suspiciouscode can be transla- ted into a trace-�le where program counter, base address and a read or a write arestored. Simulation gives an overall view of performance of this particular code. Bottle-necks are visualizedby the statistics, where program counters with a high miss-ratio indicate a bad performance. Often, whenyou look in the original program of this trace, this program counter is often used in nested DO-loops. Thesestructures are highly sensitive to interferences and therefor need a closer look. The user can translate asuspicious nested DO-loop from the orignal program to the CVT-program format. These programs compiledby the CVT contain only nested DO-loops. These loops can do a lot of iterations and some data might beused multip- le times. This opportunity of reuse must be exploited by the cache in order the improve theperformance. Though, instead of reuse the data, it can also be bumped out of cache before it is reused. Nowwe're forced to get the data from memory instead of cache, which is a high price we have to pay because wedon't exploit the cache which is developed to improve the performance. This miss-penalty is high becauseof the enormous development in cpu-speed and relatively slow memory. Misses caused by cross-, self- andcapacity-interferences must there- for be avoided!Numerical codes are typical examples where nested-loops and arrays are often used and thus can severelysu�er from cross- and self-intereferences. Because of these phenomena, the potential capacity of somesupercomputers lacks with the �nal performance, which is crucial for some programs. This tool can be usedto learn about the basic cache behaviour as well for scienti�c research to unpredictable cache phenomenain all kind of di�erent hard- and software environments. Next to the software support, the CVT supportsdi�erent hardware environments. New developments can be tested on this tool. The only drawback in thistool is that the visualization of only one level in a hierarchy is possible at a time. The user will need toslightly change the simulator and do the simulation for another level in this hierarchy. But in fact the usercan simulate any architecture.This CVT is a complete tool and can be used for developping new soft- and/or hardware solutions byvisualizing the cache behaviour cristal clear and makes the cache behaviour more predictable and understand-able. This is an improvement to previous simulators because only global �gures implied a worse performance,where there was no understanding about the cause of the performance slow-down. Now there is a possiblityto see the problems we'll deal with and solution can be thought of (which can also be tested, of course)The next section is a theoretical chapter about caches, where locality is discussed as well as the problemsarising in cache followed by cache policies and set-associativity caches. Chap- ter three is written as auser-manual. Every possibility in the CVT is thoroughly discussed and an additional picture will clearifythe text. Chapter four discusses the known software techniques to improve the performance and shows the4



user how to use the tool in order to detect cache phenomena. Chapter �ve will test a few known hardwareoptimazations and compare several hardware hierarchies. Finally chapter six will give our conclusions aboutthis subject.
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Chapter 2Cache TheoryThis chapter presents a general introduction to caches, it can be skipped by users already familiar withcaches and their problems. In the rest of the report, the here discussed terms will be expected to be knownto the readers.2.1 Introduction to cachesDOI=1,100DOJ=1,10A[J ] = B[I] � cENDDOENDDOFigure 2.1: Example program that exhibits temporal and spatial locality.Cache is the name that has been chosen to represent the level(s) of a memory hierarchy between the CPUand the main memory. It is faster (but more expensive and smaller) than the main memory and is used tospeed up the memory hierarchy, which is the main bottleneck in high performance computers.Caches were invented as a result of technology (which made that faster memory designs are more expen-sive, one of the reasons that caches are smaller than main memories) and of the principle of locality, whichknows two dimensions :� Temporal Locality If an item is referenced, it will tend to be referenced again soon, an example programis shown in �gure 2.1. In this example there is temporal locality through the ten times that the sameelement of array B is referenced continuous in time.� Spatial Locality If an item is referenced, nearby items tend to be referenced soon. In the in �gure 2.1shown program, it is obvious that the consecutive elements of array A are providing the loop spatiallocality. Note that if the cache is large enough to hold at least 11 elements there is also temporallocality for all the elements of array A.It is important to note that the cache lines form a subset of the data that is present in the main memory.For larger memory hierarchies (with more layers of caches) this also holds, every byte found on one level isalso present in all levels below (look at �gure 2.2).Success or failure of an access to the cache is designated as a hit or a miss : a hit means that somerequested datum is found in the cache, a miss means that some requested datum is not present in the cacheand needs to be transferred from main memory. The hit ratio is the fraction of memory accesses found inthe cache (there is also the miss ratio, which is 1 - hit ratio).6
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Figure 2.2: A memory hierarchy : every byte found on one level is present in all levels below.There are four important issues associated with caches, cache line placement (discussed in section 2.2),cache line identi�cation (discussed in section 2.3), cache line replacement (discussed in section 2.4) and thewrite policies (discussed in section 2.5). Though caches are an improvement of the memory structure, thereare some problems concerned with caches, which are discussed in section 2.6.2.2 Set AssociativityIf a cache line can be placed in a restricted set of places in cache, the cache is set to be set associative,where the set is a group of places in cache. A cache line is �rst mapped onto a set and then it can beplaced anywhere within the set. If there are n cache lines in a set, the cache placement is called n-way setassociative. When a cache line can appear in only one place in the cache (it is 1-way set associative), thecache is called to be direct mapped. Another special case is when a cache line can be placed anywhere in thecache (it is m-way set associative, where m is the number of entries the cache has), in this case, the cache iscalled fully associative.2.3 Cache line identi�cationThe address of a datum is used to probe the cache for the desired cache line. An address is built from a Tag,Index and block o�set, where the Index provides the set in which the requested data must be and the blocko�set the o�set within the cache line to �nd the requested datum. The procedure is to �rst check all thetags of the elements of a set (that is provided by the index part of an address) with the tag that is providedby the address, which is done in parallel. If one of the elements produced a hit, the data with the o�set,which is provided by the address, is send to the CPU.In �gure 2.3 an example is provided. The cache as drawn in the �gure is a cache of 64 elements, a cacheline size of 4 elements and a set associativity of 4 (4-way set associative). The address of the to be referenceddata is 333 (in bit notation 0000000101001101) and it is divided in a Tag, which are the �rst 12 bits and hasa value of 44 (bit notation 000000010100), an Index which are the 2 bits after the Tag and has a value of 3(bit notation 11) and a Block O�set which are the last two bits and has a value of 1 (bit notation 1). Theset in which the to be found data has to be (if it is present) is the third, as is indicated by the Index value(Check : Block Address MOD # Sets = 83 MOD 4 = 3, where the Block Address is the original addressmodulo the number of elements in a cache line (333 MOD 4 = 83). The four blocks in the third set are nowchecked in parallel for the tag 44, in the fourth cache line of the set, the tag equation holds and in this cacheline the second element is taken because the block o�set (from the original address) is 2. This element issend to the CPU, it was a hit in cache. 7
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Set 0 Set 1 Set 2 Set 3Figure 2.3: Cache line identi�cation.2.4 Replacement policiesThe large number of entries of the main memory and the smaller number in cache, make that some entriesin main memory map to the same cache line in cache. This implies that on a miss, there has to be a victimcache line selected that is swapped out. For direct mapped caches this is no problem, the cache line on whichthe entry is mapped is the only one the new entries can come. So, write the old cache line back to mainmemory (if necessary) and get the new cache line from main memory into cache. When set associativitycomes into play however, the number of places a cache line can come is larger than one and, if all of the cachelines are �lled, there has to be found a victim cache line which contents are swapped out. This choosing ofa victim cache, asks for a replacement policy.There are three primary placement policies (which are also implemented in the CVT) :� FIFO The �rst-in-�rst-out strategy will replace the cache line that was swapped in the longest timeago.� LRU The Least Recently Used strategy will bump out the cache line that has been used the longestperiod ago, this means it has not been used for the longest time.� Random The Random strategy picks, what's in a name, a cache line from the set at random.2.5 Write PoliciesThough reads dominate cache accesses, writes can not be neglected in optimizing cache performance. Theeasy case for reads, where the block can be read and the tag is read and compared at the same time, doesnot hold for writes. Since the processor speci�es the size of a write, only that portion of a cache line can bechanged, which indicates a read/modify/write sequence. Another problem is that the modifying of a block8



can not begin until the tag is checked to see if it is a hit. Because this tag checking can not occur in parallel,writes usually take up more time than reads.There are two basic policies when writing to cache, which are also implemented in the CVT :� Write through The information is written to both the cache and the main memory.� Write back The information is written only to the cache. The modi�ed cache line is written to mainmemory only when it is replaced. The cache line can either be clean, this means there were nomodi�cations made, or dirty, which states that the cache line has been modi�ed. When write back isimplemented, usually there is a dirty bit associated with each cache line. When a cache line is replacedthe cache line is written in main memory only when the cache line is dirty.There are both advantages to write back and to write through. Write through has the advantages thatread misses don't result in writes to main memory, it is easier to implement and the main memory has themost current copy of the data. Write back on the other hand has the advantages that writes occur at thespeed of the cache, multiple writes within one block require only one write to main memory and most writesdon't need memory tra�c, which indicates a less memory band-with.The just mentioned policies work on the cache line that already contains the correct data, but there hasalso to be a policy when the data is not available, a write miss. There are two policies on a write miss, theyare also implemented in the CVT :� Allocate on write The cache line is loaded into the cache, followed by a 'normal' write-hit action asmentioned in the write policies above.� No allocate on write The cache line is modi�ed in the main memory and not loaded into cache.While both the allocate policies could be used with either of the write policies, generally the write backcaches use allocate on write (hoping that subsequent writes will be captured by the cache) and write throughcaches often use no allocate on write (subsequent writes to the cache line will still have to go to the mainmemory).2.6 Problems with cachesThough caches are a big improvement over older memory hierarchies with no caches, caches induce certainphenomena, problems that are quite hard to understand and one of the reasons this report (and indeed eventhe CVT) exists. The source of trouble is the cache miss, there are three kinds of cache misses :� Compulsory Misses The �rst access to a certain cache line is not in cache. They are also called coldstart misses, the cache has to warm up (i.e. �ll up) �rst, before cache lines can be present in the cache.� Capacity Misses If the cache can not contain all the blocks needed during execution of a program,capacity misses will occur due to cache lines being discarded and later on retrieved.� Conict Misses A cache line is discarded and later on retrieved if too many cache lines map to thesame set. Conict misses are produced by either self-interference, which means that an array interfereswith itself, or cross-interference which means that an array interferes with another array.The compulsory misses can be reduced by larger cache lines, but this can increase the number of conictmisses. The capacity misses can be reduced by larger memory chips. The conict misses can be avoidedby getting a fully associative cache, but this is very expensive. Another option is to understand why theseconict misses occur, what arrays are conicting and why they are conicting the way they do. From normalcode this is very hard to understand, but the CVT can be of help here by visualizing the phenomena incache. 9



Chapter 3CVT DescriptionThis chapter will describe the CVT by �rst going through the global structure of the Cache VisualizationTool, then all the options the CVT provides are discussed by going through the menu-options and the real-time possibilities. The last part of this chapter describes how to make programs or traces and how to furthertune the CVT for the users needs (e.g. plugging in her own simulator).3.1 The global structureThe Cache Visualization Tool (CVT) is built from several source �les for modularity. The ".c" �les containthe actual c-codes, the ".h" �les contain the functions from the corresponding ".c" �le that can be calledfrom other ".c" �les. The �le "typedef.h" contains all the global variables and data structures used in theCVT. The "Make�le" associated with the CVT, will set out the route for the make program that compilesthe CVT. The following �les are associated with the CVT :� ALLStat.c This �le contains functions that a�ect all statistics. It is 18362 bytes large.� ARStat.c This �le contains the functions related to the array- reference statistics. It is a �le of 27854bytes.� ARcolor.c In this �le the functions are implemented which are related to coloring by Array Reference(Showing them on screen/changing them). It is 18461 bytes large.� BRPcallback.c This �le contains all the functions concerning breakpoints (entering them, showing themon screen, enabling/deleting). This �le is 50639 bytes large.� CAStat.c (not yet completely done) This �le will contains all the functions related to the cache statistics,24411 bytes large.� Info.c In this �le the function related to the extra info that is situated at the right hand side of thescreen, are implemented. The �le is 20608 bytes large.� PCStat.c It contains the �les related to the program counter/trace statistics. It is 25025 bytes.� PCcolors.cThis �les contains the function related to the coloring and showing of the Program Counters,as used with traces, the �le is 14978 bytes large.� addColor.c This �le contains the functions to add an additional color, it is 11791 bytes large.� addLoopBRP.c To add a loop value breakpoint to the CVT. Size is 9879 bytes.� arraref.c This �le contains the functions to keep up with new array references. It is only 5446 byteslarge. 10



� cache.c The main �le of the CVT, it sets up the global variables and installs all the other routines, itis only 9641 bytes large.� callback.c In Motif all mouse clicks are handled with call-backs, this �le contains the functions that arecalled (though there are call-back functions in other �les, if that seemed more appropriate). The �leis 86742 bytes large.� checkColor.c In this �le the colors of program counters are checked for some reason. Size is 5329 bytes.� checkLoopBRP.c Every state of the DO-loops must be checked whether a loop value breakpoint is true.This �le is 5341 bytes big.� checker.c This �le is used to check all boundaries used in the simulation, like DO-loop boundaries.This �le is 14403 bytes large.� cleanup.c This CVT-�le is used to clean up all the used structures when we just have aborted thesimulation. Size is 16049 bytes.� colors.cThis �le contains all the routines related to array coloring (showing the colors, adding additionalcolors, changing/selecting/deleting colors). This �le is 48398 bytes large.� common.c All functions related to the environment and for common use are stated in this �le of 23182bytes.� cpu.c The cpu will generate memory references from a CVT program every time it is called. This �leis only 14862 bytes large.� graphics.c The graphics is based on Motif1.2 and all graphical stu� is described in this �le of 1876bytes.� initializer.c All data-structures concerning a program are initialized in this �le. Size is 18514 bytes.� interpreter.c The interpreter reads a program and checks for syntax errors. The �le is 44488 byteslarge.� looptrac.c This �le contains the functions to run a loop trace (either one-step/ fast-forward/normalrun), it also loads a trace. Size is 22215 bytes.� param.c This �le contains the functions for saving and loading the static parameters of the CVTenvironment. Plus it contains the functions to allow rewinding of programs, traces and loop traces.This �le is 70794 bytes large.� program.c This �le contains the functions to run a program (either one-step/ fast-forward/normal run).Size is 32663 bytes large.� sim.c This �le can be replaced by the guest-simulator, where this �le simulates the cache. Size is 9305bytes.� statistics.c The statistics not rewritten are located in this �le (At the time writing, these are all thearray statistics, and the miss/reference and reuse cache statistics). It is now 97381 bytes.� trace.c This �le contains the functions to run a trace (either one-step/ fast-forward/normal run), italso loads a trace. Size is 33003 bytes large.� update.c When a hit or miss occurs, the statistics must be updated and visualized. This �le is 17008bytes large.� widget.c This are common used widgets, which can be reused for other programs based on Motif. Itmanages the windows used in the CVT. This �le is 15175 bytes large.� windowsetup.c This �le of 28627 bytes builds for us the user- friendly environment.11



In total the CVT source code is 905337 bytes or 25294 lines large. The CVT executable (cache) is 561440bytes.The graphical interface in which the CVT is programmed is Motif, it is a shell over X-windows and isavailable for most Work Stations. Motif is an event-based windowing system, which induced some problems,but more on that subject in later sections. For the copy-rights of Motif, look in the bibliography under [19].3.2 The Screen

Figure 3.1: The cache visualization part at start up.
Figure 3.2: The statistics at start up.When the CVT is started, two main windows are popped up. One in which the cache is actually visualized,as can be seen in �gure 3.1, this window also provides room for the control buttons and status bar of the12



CVT. In the other window the statistics are displayed, together with buttons for easy switching between theseveral statistics. The statistics window is shown in �gure 3.2.3.2.1 The Cache AreaThe cache is formally visualized by a large array with consecutive cache-lines. Large bars are hard to visualizeon one screen and therefor the array is split into rows. This makes the cache is visualized by a rectangularblock divided into consecutive rows. Vertically the numbers of the �rst cache-line of a speci�c row are stated.Horizontally the index of the row is indicated. The cache-line number can be calculated by adding both the�rst cache-line number in that row and the index.Extra large cache (more than 8192 cache-lines) need to be split into two or more pages, where only onepage can be visualized. Note that the �rst row is consecutive to the �rst row on the second page and the the�rst row of the last page to the second row on the �rst page. Page swapping is done by clicking on the barjust below the cache. This swap-bar shows a red rectangular block, reecting the page you currently watchin cache. If the cache can be visualized on one page, the swap-bar shows only one big rectangle because noswapping is relevant. Otherwise the empty rectangles in the swap-bar can be clicked and will change yourcache-view to another page.3.2.2 The Statistics Area
Figure 3.3: The statistics in overview mode.
Figure 3.4: The statistics in global mode.Window descriptionIn the statistics window, a drawing area is situated, with next to it the buttons to switch between theseveral (below listed) statistics, press the button corresponding to the statistics you want to see and thedrawing area will be changed accordingly. Additionally, the possible mouse-button actions, number of13



Figure 3.5: The statistics in zoomed in mode.misses/references/reuses and the global miss ratio (of for array statistics, the miss ratio for that array) areshown on the right hand of the drawing area. There are two general modes, the statistics can be in, thisis 'Percentage' and 'Amount'. The percentage mode, will show you the number of misses/references/reusesfor a particular entry (e.g. array reference, program counter or cache line) divided by the total number ofmisses/references/reuses. On the Y-scale, the percentages from 0% to 100% are drawn. In the 'Amount'mode, the actual number of misses/references/reuses are shown for a particular entry. On the Y-scale, thecorresponding number are shown, starting with a scale from 0 to 50 and automatically scaled when a numbergrows larger. To change from one mode to another, there are two buttons provided on the bottom of thewindow.Cache StatisticsThese statistics can be used with either programs, source-traces or normal traces. They show the activityin cache. There are three modes, most of the cache statistics can be in: overview, global and zoom. In theoverview mode, all the cache lines are shown on the 512 possible pixels in the drawing area. This indicatesthat when larger caches are used, several cache lines are mapped to the same position. When changing tothe global mode, exactly 512 cache lines are mapped to the 512 possible positions and a bar in the top of thedrawing area makes easy swapping between the several 'pages' possible. Look at �gure 3.3 for the overviewof miss statistics for a cache of 4096 cache lines. Figure 3.4 shows page number 4, of the possible 8 pages.Figure 3.5 shows the zoomed in mode, where there are 16 cache lines clearly shown, the color of the barscorresponds to the contents of the cache line (Now only for top-16). To change from one mode to theother, you have to click with the left mouse button to go more 'detailed' and the right button to go more'overview'. Changing from one page to another in the global mode is done by clicking on the bar on thepage you want to change to. In zoom mode, there is also a possibility to center the line (move through thecache) with left mouse button. There are �ve di�erent cache statistics :� Miss Statistics The number of misses (in 'Amount' mode) or the miss ratio (in 'Percentage' mode) percache line are shown.� Reuse Statistics Not yet implemented� Cum Reuse Statistics The number of cumulative reuses (in 'Amount' mode) or the hit ratio (in 'Per-centage' mode) per cache line are shown.� Reference Statistics The number of references (in 'Amount' mode) or the ratio of number of referencesto this cache line divided by the total number of references are shown.� Top-16 Statistics The sixteen cache lines with the most number of misses (in 'Amount mode) or thehighest miss ratio (in 'Percentage mode) are shown.Please note that the percentage modes for cache statistics are, except from the top-16 statistics,not yet implemented. 14



ArrayRef StatisticsThese statistics can be used with either programs or source-traces. The statistics show the number ofmisses/references/reuses per (unique) combination of (Statement ID, Array Reference ID). Since the bu�erof array reference identi�ers is de�ned as 512 large, there are only tow modes possible (and needed) : theglobal and zoomed mode. When the statistics are set to array reference, the user automatically starts inzoom in mode, unless the information will not �t in the drawing area, and the user starts with the globalmode. The mouse buttons provide a way to change from one mode to another. Clicking with the left buttonin the global mode will change to zoomed mode, with the clicked on place as the center. In zoomed mode, allthree mouse buttons can be uses : the left to center the (move through the bu�er), the middle to change toglobal mode and the right to pop up the array name associated with the (Statement ID, Array Reference ID)combination. When the mouse button is released, the information automatically disappears. In the zoomedmode, the color of the bars corresponds to the color of the (Statement ID, Array Reference ID) combination.There are �ve possible array reference statistics :� Miss Statistics The number of misses (in 'Amount' mode) or the miss ratio (in 'Percentage' mode) per(Statement ID, Array Reference ID) combination are shown.� Reuse Statistics The number of reuses since last miss (in 'Amount' mode) or the hit ratio since lastmiss (in 'Percentage' mode) per (Statement ID, Array Reference ID) combination are shown.� Cum Reuse Statistics The number of cumulative reuses (in 'Amount' mode) or the hit ratio (in 'Per-centage' mode) per (Statement ID, Array Reference ID) combination are shown.� Reference Statistics The number of references (in 'Amount' mode) or the ratio of number of referencesto this (Statement ID, Array Reference ID) combination divided by the total number of references areshown.� Top-16 Statistics The sixteen (Statement ID, Array Reference ID) combinations with the most numberof misses (in 'Amount mode) or the highest miss ratio (in 'Percentage mode) are shown.Array StatisticsThis statistics can only be used when running a program or a source-trace. Before we can do any arraystatistics, we'll need to specify the arrays we'd like to see. This is not done automatically because of thepossibility that programs can use a lot of large arrays, which are not interesting at all to do research on,but do use a lot of memory-space when we'd update all these structures. The arrays can be selected bythe button 'Spec.' in the Array button list (see �gure3.6. This must be done before you start a simulation.Otherwise the selected array structure will only be updated from the moment it is created and is unawareof the previous history. Name of the array, and the �rst and last element of the array you'd like to see. The�rst logical number of any array is zero, and the last logical number is "size-1" (see �gure 3.7).It is possible to specify more than one array structure and therefor the menu options array miss-, arrayreuse- and array reference statistics will pop up a pick-list (see �gure 3.8), where the user can select one ofthe speci�ed structures to display in the statistics window. Be aware that the horizontal axe in the statisticswindow does not indicate cache-line numbers, but index-numbers of an array!Array statistics are designed in the same manner as the cache statistics, i.e. there is a overview, globaland zoomed in mode, the mouse button actions are the same and the same kind of statistics are provided :� Miss Statistics The number of misses (in 'Amount' mode) or the miss ratio (in 'Percentage' mode) perarray entry are shown.� Reuse Statistics Not yet implemented� Cum Reuse Statistics The number of cumulative reuses (in 'Amount' mode) or the hit ratio (in 'Per-centage' mode) per array entry are shown.� Reference Statistics The number of references (in 'Amount' mode) or the ratio of number of referencesto this array entry divided by the total number of references are shown.15



Figure 3.6: Input array speci�cation� Top-16 Statistics The sixteen array entries with the most number of misses (in 'Amount mode) or thehighest miss ratio (in 'Percentage mode) are shown.Please note that the percentage modes for array statistics are not yet implemented.Trace statisticsThese statistics can only be used with traces. The statistics show the number of misses/references/reusesper program counter. Since the CVT is designed to cope with 512 di�erent program counters, there are onlytow modes possible (and needed) : the global and zoomed mode. The statistics are designed in the samemanner as the array reference statistics, i.e. the amount of information and mode are dynamically adjusted.Note that the color of the zoomed mode now corresponds to the color the program counter has been assignedduring execution. The manner of changing modes is the same, and there are also the same �ve di�erentstatistics :� Miss Statistics The number of misses (in 'Amount' mode) or the miss ratio (in 'Percentage' mode) perProgram Counter are shown.� Reuse Statistics The number of reuses since last miss (in 'Amount' mode) or the hit ratio since lastmiss (in 'Percentage' mode) per Program Counter are shown.� Cum Reuse Statistics The number of cumulative reuses (in 'Amount' mode) or the hit ratio (in 'Per-centage' mode) per Program Counter are shown.� Reference Statistics The number of references (in 'Amount' mode) or the ratio of number of referencesto this Program Counter divided by the total number of references are shown.� Top-16 Statistics The sixteen Program Counters with the most number of misses (in 'Amount mode)or the highest miss ratio (in 'Percentage mode) are shown.3.3 Controlling the CVTThere are two rows of buttons to control the CVT. The top row is to control the CVT in terms letting theCVT simulate a certain kind of cache in the way the user wants, like listening to a CD the way a user wants16



) A[1:10,1:10]A[1,1] has logical number 0A[1,2] has logical number 1::A[2,1] has logical number 10A[2,2] has logical number 11::A[10,10] has logical number 99When we only want to see statisticof the �rst row of this matrix,we specify:Array-Name : AFirst Element: 0Last Element : 9When we only want to see statisticsof the �rst column of this matrix,we'll need to specify the whole matrix,because the matrix is row-order structured.Array-Name : AFirst Element: 0Last Element : 99 Figure 3.7: Example array speci�cation(e.g. pausing for a moment, fast forwarding or skipping a song). Actually the control of the CVT is prettymuch organized as that of a CD-player. The bottom row of buttons provides the user with function that areused often and are therefor not placed in the menu. Another important feature of the CVT is that the speedof the actual simulation and visualization on screen can be adjusted to the users needs, this is discussed inthe last subsection of this section.3.3.1 Button "> j" One StepThis function simulates one reference to cache, by either executing one statement from a program or oneline from a trace.The mentioned executing consists out of checking the cache line, calculated from the arrayindices or the address �eld of a trace line, for the requested data. This is done by calling the simulator,either the built-in one or the one that is brought in by the user (look at section 3.11.1 for more informationon tuning the simulator to the users needs). If the requested data is available, the appropriate data �elds areupdated (number of hits etc.) and a cross is drawn in this cache line. If the requested data is not available,again the data �elds are updated (number of misses etc.), but also the color of the cache line is changedaccording to the color associated to the data (look at section 3.6.1 for more on coloring arrays and section3.6.3 for more on colors with traces). Last but certainly not least all the other statistics are updated in theinternal data structures and in the statistics area if appropriate.After this execution of one reference, the CVT is halted no matter what. The one-step button can be17



Figure 3.8: Input array speci�cationFigure 3.9: The buttons that control the tool. Top row (from left to right) : One Step, Run, Fast Forward,Rewind, Pause and Abort. Bottom row : Flush the cache, (coloring by) Array Ref ID or Array ID, Save Asstatus �le, Save status �le, Load status �le and Toggle Extra Infopressed at any time, also during the execution of a program (after pressing the Run button), then it willgenerate one reference after the moment of pressing and halt the CVT.The 'running' of a program (as described in 3.3.2) is valuable to get a good overlook of what kind offeatures the program or architecture evaluates and at what points in time. For more detailed research theone step button is of great importance since research on the statistics can be done after the execution of onestatement, as soon as with normal running a cache phenomena has been discovered. Another advantage isthat when the CVT is halted, di�erent statistics at the same moment in time can be analyzed, by switchingbetween them as described in section 3.2.2.3.3.2 Button ">" RunOnce this button is pressed, the tool will start or resume simulating the currently present program or traceat the speed set by the user (for more information on the speed look at 3.3.13). This execution continuesuntil the end of the program or trace, or a breakpoint is reached. The �rst idea is that running the programis simply having an endless for-loop that in its body generates one reference (in the way described in theprevious section), only jumping out of the loop when the program or traces ends or when a breakpoint isreached. This is also the most simple solution, there was a big problem, though.Since Motif can not handle mouse calls=interrupts when a user function is constantly running, the CVTis uncontrollable during the simulation (neither the buttons can be pressed, nor any of the menu optionscan be chosen). There had to be found another way to simulate the continuous running of a program ortrace. The solution was found in letting the routine execute several statements (the amount is speci�ed bythe speed) and then let the routine call itself after giving the system a small amount of time to handle themouse interrupts. The execution of a statement or trace line is done with the algorithm described in theprevious section. 18



3.3.3 Button ">>" Fast ForwardSince the drawing on screen takes up quite a lot of time, the CVT is in full speed still too slow to go fast to acertain position in the program or trace, far (in number of references) from the current position. And sinceit is certain not unimaginable that a researcher knows that after, let's say, 250,000 references the interestingphenomena occur (because the cache has to �ll up �rst), there was need for a Fast Forward button.This routine executes the number of references de�ned by the user with the option Set Fast Forward(section 3.4.2) in a loop, only checking for the end of a program or trace, and breakpoints. While executingin Fast Forward the CVT runs in silent mode, this means that no actual visualization is done on the screen.By running in silent mode, the CVT is speeded up by a factor of roughly 8, compared to running at full speed.Note that the CVT is uncontrollable for the amount of time it takes to execute the amount of references, forreasons mentioned in 3.3.2. When the function stops the actual situation is drawn on screen, as well in thecache area as in the statistics area.3.3.4 Button "<<" RewindGenericUnique Identi�er, identi�es thecurrent state of the CVT.The memory reference at this moment.The complete contents of the cache.The timer at the moment of the save.The general statistics.Program speci�cThe values of the loop indices.The values of the array statistics.Trace speci�cThe bu�er with in it the to be executedtrace lines.The number of the to be executed traceline.Source-Trace speci�cThe bu�er with in it the to be executedloop trace lines.The values of the array statistics.Figure 3.10: What is saved on a status saveWhen testing out a new kind of cache, a new software optimization or trying to �nd bottlenecks in codes,a user wants to quickly look through the simulation by running at full speed or going fast forward. Atthese times it is obvious that when phenomena take place, the user will be too late with reacting to thisphenomena, by pressing the pause button. The solution was found in saving the complete status of theCVT every, by default, 2000 references (but this number can be changed though, look at section 3.4.3), andproviding a rewind-button.When the rewind button is pressed, the status of the tool is restored from the �le saved before the lastsaved �le (In �gure 3.10 is shown which data structures are saved on a status save. By keeping two save �lesall the time and restoring the one before the last saved one, rewinding over a too small amount of referencesis prevented. To clarify the just made remark, an example is provided. Let's say we have one status �le andsuppose one sees an interesting phenomena developing in cache while the CVT is running at full speed. Bythe time the button is pressed, the phenomena is already developed too far or is �nished and the user wants19



to rewind to look at the beginning of it in more detail. Suppose the interesting phenomenon occurred 350references ago. By pressing the rewind button now, it could happen that the status was just saved beforethe user pressed the button and only 10 or 20 steps are rewinded, so the status of the CVT is not from thetime the user wants it to be, namely the time that the phenomena started. As mentioned before by keepingtwo save �les, this annoyance is prevented, as is applied in the CVT.Note that this option will not work correct with a user's own simulator, the status of the CVT's owninternal cache will jump back to it's status of the time saved, but the user's own cache will not, unless somemodi�cations are made to the CVT (look at section 3.11.1 for more on this subject).3.3.5 Button "jj" PauseThe function related to this button just pauses the CVT, this can be either to go on a co�ee break or (thereal reason) to do some more detailed research in the cache and statistics area, because the CVT in fullspeed is too fast for this kind of research. The pause button is also important when the user wants to lookat several di�erent statistics at the same time, by switching between the statistics as described in section3.2.2.3.3.6 Button "#" AbortThis is the most resolute button of them all, it provides the user a way to start the simulation of the sameprogram or trace all over again. This means it clears all the important data structures and afterwardsinitializes them to their original begin values. Note that this means that all information gathered till now isgone and cannot be recalled.3.3.7 Button "Flush"When the user wants to ush the cache contents and the statistics contents at any given time, this buttonprovides a way to do it. When it is pressed, the cache and the statistics are ushed.3.3.8 Button "Arr/Ref"This button is used to switch between coloring the cache lines according to Array Name or to Array ReferenceIdenti�er. For more details on these two kinds of coloring, take a look at section 3.6.3.3.9 Button "Save As"
Figure 3.11: The window to ask the user for a �lename for a status save �le.20



This button provides the user a way to save the state of the CVT at any given moment. All the neededstructures are saved to let the user start from that point on at any given time (look at section 3.3.11 forloading a certain status).When the user presses this button, a window is popped up in which the user is asked to enter the �lenamefor this status save (look at �gure 3.11. The standard extension of user status save-�les is ".sta" and is addedautomatically. When the user presses the "Ok" button, the status is saved at that moment to the entered�lename. This �lename is recorded (and shown in the status area on the bottom of the cache window), forlater saves to the same �le with the "Save" button (as described in section 3.3.10). The "Cancel" buttonwill close this window, without saving anything.3.3.10 Button "Save"This button has the same workings as the "Save As" button, but will not ask for a �lename. It will take the�lename from the last "Save As" action.3.3.11 Button "Load"
Figure 3.12: Override Window, popped up when unique identi�ers do not match, when a status is loaded.When this button is pressed, a �le-browser (like the one in �gure 3.19, with only that di�erence that thestandard �lter is set to ".sta", the standard extension for status save �les). The exact workings of a �lebrowser are explained in section 3.5.1. When the user has chosen a certain �lename, the with this namecorresponding status will be loaded in. First the Unique Identi�er is read from the �le, this identi�er iscompared to the current identi�er of the CVT. If the two do not match, a window is popped up in whichthe user is asked if he wants to override the warning (see �gure 3.12). Please note, that if the status �le issaved when the CVT was loaded with a di�erent program,trace or loop trace, than at this moment, carryingon with the loading of the state can cause severe errors (e.g. the number of loops of the program currentlyavailable and the number of loops in the status �le could not match, which could imply "Bus Errors" or"Segmentation Faults", when storing in memory that was not properly allocated).When either the unique identi�ers match or the user chooses to override the warning, the status of thetime of the save of the status �le, is restored and the user is able to carry on from that point on.3.3.12 Button "ToggleEI"This button is provided to pop up and delete the extra info window easily. The extra info is discussed inmore detail in section 3.9.53.3.13 Speed 21



Figure 3.13: The speed scale and status barOn the bottom of the screen in the right hand corner, a speed bar is situated for control of the speed of thesimulation done by the CVT. The speed bar can be controlled by the user at any point in time (except whengoing fast forward) and can be set to any value between 1 and 100 (the speed zero does not exist, the pausebutton is there for this purpose).Already mentioned in section 3.3.2 is that Motif has a problem with (in�nitely) long for-loops. Therefora trick had to be found to still give some control over the CVT when running at full speed. In the next twoparagraphs, the found solution is described.The speed scale is linear in such a way that with a speed of 50, one reference is generated and then theroutine calls itself after 1 ms. When the user picks a speed of over 50, there are more references generatedin one routine call (to the run-function as described in section 3.3.2). The number of references is calculatedby the following function (Speed - 50) * SpeedRunfactor, where the SpeedRunfactor is 1 by default (itcould be changed in the �le "typedef.h", look at section 3.11.2 for more information on this subject). Thecontinuously execution of, e.g. with a speed of 100, 50 statements also brings with it that the CVT is lesscontrollable than with speeds of 50 or below. This means that the CVT will respond much slower to mousecalls, e.g. pressing the pause button. This is important to note, it means that the moment the user pressesthe mouse button, over 50 statements could be executed before the CVT actually halts. It could be morethan 50, because Motif needs more than the given 1 ms. at full speed to fully handle a mouse call. Thismeans that multiple times 50 references are generated after pressing the pause button. The function, thatcalculates the number of references, has been chosen in such a way though that, no matter what the cpuutilization of the system the user is working on is, the response time of the CVT on mouse calls is at most5 seconds.For speeds below 50, there is a delay built in after one reference is generated by letting the routinecall itself after a certain amount of ms, calculated by the function (50 - Speed) * Delayfactor, where theDelayfactor is 5 by default (again look at section 3.11.2 for more information on changing machine dependentparameters). This means that Motif gets more time to handle mouse calls and the CVT will halt, directlyafter pressing the pause button.3.4 Menu-Option Tool
Figure 3.14: The menu option Tool, with sub option Static Parameters.The menu option Tool contains general options concerning the CVT, like information on the Authors,parameters concerning both programs and traces and the quit-option. The option Tool is shown in �gure22



3.14.3.4.1 Sub-Option About ToolThis option shows information on the authors of the tool in a window in the middle of the screen. It is inhere to let the users be able to contact the authors or the advisors for speci�c questions on the CVT and tosend them remarks that could enhance the CVT for their speci�c or for global needs.3.4.2 Sub-Option Set Fast Forward
Figure 3.15: The Set Fast Forward Window.When chosen for this option the user is asked to enter a long integer, representing the number of cachereferences to be carried out in one Fast Forward cycle (c.f. a cd-player where one could enter the number ofsongs to be fast forwarded once the fast forward button is pressed, in normal cd-players it is one of course).In �gure 3.15 the window that is popped up is shown. When the user presses the OK button at thismoment, the next time the Fast Forward button is pressed (section 3.3.3), the CVT will simulate 2000references to cache (either reads or writes) internally, which means without showing on screen. When this is�nished, the results of the things stored/bumped out in cache and the changes in the statistics are visualizedon screen. Pressing the Cancel button will close the window, without making any changes.3.4.3 Sub-Option Set Rewind

Figure 3.16: The Set Rewind Window.This option involves setting the number of references after which the complete status of the tool is saved forrewind purposes (look at section 3.3.4 for more on rewinding). After choosing this option the user is askedto enter a long integer, that represents the number of references after which the status is saved, in a window,as shown in �gure 3.16. 23



This option has been added to the tool (�rst it was just the number of 2000 by default) because thesaving of the complete status (as shown in �gure 3.10) takes up quite a lot of time (i.e. in the way highperformance computing looks at it. It is actually about 0.4 seconds, the user will only notice a short hold-upwhen running at full speed and nothing when going slower than a speed of 50, the maximum driving speedin the the cities in the Netherlands by the way).3.4.4 Sub-Option Static ParametersGenericThe number of references with fast forward.The number of references with rewind.The boolean that states if Extra Infois enabled.The boolean that states if Messages OnScreen are enabled.The boolean that states if the Grid isenabled.The speed at the moment of saving.The timer breakpoint (if enabled).The cache breakpoints. The cache andcache-line size, setassociativity, replacement policy,write policy and allocation policy.Program speci�cThe loop value breakpoints.The statement breakpoints.The array speci�cation(s).Trace speci�cThe trace breakpoints.Figure 3.17: The parameters saved with the Save Static Parameters option.The CVT will forget all the parameters the user can set (like the parameters concerning the cache, see also3.8, or the breakpoints de�ned, look at 3.7 ) when it is stopped, i.e. the option Quit has been 'answered'with Yes. This means the researcher has to tune the tool to her speci�c needs every time she wants to lookat (the same) memory hierarchy. To prevent this hazard, the option Static Parameters is implemented inthe CVT.After the user has entered speci�c parameters concerning the cache (e.g. write policy) or the research sheis going to perform (e.g. the de�nition of array lists), this is the option to Save these parameters for laterresearch. The parameters are saved in a speci�c format (for information look in the �le "param.c") with thename the user enters when asked for. In �gure 3.17 all the parameters that are saved are shown. Once theCVT is started up again sometime later, the user is able to Load a certain set of parameters. What set ofparameters must be loaded, is chosen by using a �le browser as shown in �gure 3.19 with the di�erence thatthe �lter is initially set to *.par, because that is the extension the CVT gives to parameter �les. The loadingwill change the parameters of the CVT to the parameters de�ned in that of the chosen set, breakpoints andarray list de�nitions are added to the list already present in the CVT. This option will also clear the cachefrom its contents (this must be done since the cache size or line size could be changed and then the simulationup till now is not valid any more) and set the program counter to the �rst statement. Note that parametersspeci�c for arrays are not installed when a program is present and vice versa, the generic parameters areinstalled at all times, look at �gure 3.17 to �nd out what the generic, program and trace speci�c parameters24



are.3.4.5 Sub-Option QuitWell, there is a time to come and a time to go, an old Dutch saying goes. When this option is chosen,the time to go for the CVT has come. This is �nal unless the user answers 'No' to the question 'Reallyquit', then the CVT is allowed to stay somewhat longer, 'Yes' makes the program quit. Note that all theparameters and the state of the cache/statistics are cleared when the program is stopped. For saving speci�cparameters look at 3.4.4.3.5 Menu-Option FileThis section describes the sub menu-options of the option File, which are shown in �gure 3.18. Theseoptions concern loading a program ('Load Program'), showing the content of the program ('Show CVTcode'), showing the content of the associated source program ('Show Original'), load a trace ('Load Trace')and the loading of a loop trace ('Load Source Trace');
Figure 3.18: The menu option File.3.5.1 Sub-Option Load ProgramAfter choosing this option the CVT will provide the user with a �le-browser, which is a window in which sheis able to choose the program the user wants to load in by clicking with the mouse on the to the programcorresponding �le-name.In �gure 3.19 the �le-browser is shown in which the to be loaded program can be chosen. At this momentall the contents of the directory "/home/evddeijl/CVT" are shown, �ltered by the "*.prg" to make moreclear which �les contain programs and which �les do not (The CVT assumes that a name of a �le containinga program ends at ".prg", but this is not obliged). The CVT will always choose the directory where theCVT is started from as the directory where to look for programs, but the user is able to change to anotherdirectory by clicking on the name of that directory in the "Directories"-area. There is also a possibilityto enter another �lter, e.g. "..../*.ownprog" if the user has ended all the �les containing programs with".ownprog". By pressing the �lter button, the �les corresponding to this �lter are shown in the "Files"-area.Clicking double on a �le name, or once (it is highlighted after the click, in the �gure, the �le "FLO52.prg"has been clicked on) and then pressing the OK-button, will make the CVT read in the �le and check itagainst the structure it expects (see section 3.10.1 for more on the speci�c structure). When the CVT hasrecognized a correct program, it will initialize the internal data structures with this new program, makingthe CVT ready to simulate the program. If the program does not �t the speci�c structure, the CVT willgive detailed information on where things went wrong.25



Figure 3.19: The �le browser to load a program.3.5.2 Sub-Option Show CVT codeThis function pops up a window and shows the CVT code in it. This function is automatically called whena new program is loaded. The close button will just make the window disappear. In the this window, ascrollable text window is created that is �lled with the program that is loaded in the CVT (how to load ina program is discussed in section 3.5.1), if the program is larger than can be �tted into the window, thescroll-bars can be used to scroll through the program. There are several di�erences between the originalASCII-text and the shown text, e.g. indentation is added, for a more clear view on the program structure.In �gure 3.20 the program window is shown. The text-area is �lled with a program that is able to performmatrix-matrix multiply. Don't pay too much attention to the special program-layout for now, it is not thatimportant at this moment (in section 3.10.1 the structure of a program is discussed).A small bar in the cache area (next to the buttons) states the status of the program/trace/source tracepart of the CVT, it is in either of the following �ve states : 1) NO FILE PRESENT, 2) PROGRAM 'xxxx'PRESENT, 3) PART y OF TRACE 'xxxx' PRESENT 4) SECTION OF TRACE 'xxxx' PRESENT or5)INCORRECT PROGRAM/TRACE (where 'xxxx' is the name of the �le or trace loaded in and y the partof the trace that is loaded in, traces are loaded in parts for reasons mentioned in section 3.10.2). The placeis shown as part of the status-bar in �gure 3.13. At this moment, the program 'Conicting.prg' is loaded.3.5.3 Sub-Option Show OriginalWhen this option is chosen a window similar to the CVT code window is popped up, only this time it is �lledwith the associated source code (same �lename, with the extension ".src" instead of ".prg"), an ASCII-textwith no actual meaning (i.e. it will not be interpreted in any way, the plain text is just shown in the window).If the associated �le ("�lename.src") is not available, an error message will be popped up.26



Figure 3.20: The program area �lled with a program that performs blocked matrix-matrix multiply.3.5.4 Sub-Option Load TraceDue to the restrictions set for the kind of programs the CVT is able to interpret (for more information seesection 3.10.1), the CVT is not able to visualize the cache behavior of all the programs researchers may wantto look into. Although the CVT is able to interpret the most interesting kind of programs in the area ofcache phenomena (the loop nests with references to arrays), there was a need to also look into and visualizebehavior of many other programs and especially large (mixes of) runs of programs are important to researchhardware architectures.The solution was found in traces, since memory traces of all kind of di�erent programs (no matter whatthe programming language they are written in) are easily obtained by several tools, e.g. the Spa package (asdescribed in [17]). After the user has made a trace in the format the CVT expects, she is able to load in atrace by choosing the sub-option 'Load'. This function will pop up a �le browser as in �gure 3.19, with thedi�erence that the original �lter is set to '*.trc'. Furthermore, the same handling of the �le browser is usedas described in section 3.5.1. After pressing OK, the CVT will load in (a part of) a trace into a bu�er. Sincetraces can be very large, the trace is split up in parts of 1000 trace lines (a trace line is made up of 3 to 6entries containing the information needed to simulate the trace) which are loaded one at a time (the numberof trace lines can be changed to the users needs, please look at 3.11.2 for more on this subject). When onepart of the trace has come to an end, the next part is loaded in automatically.The format of a trace.The format of a trace that is loaded in the CVT needs to be in a speci�c format, but it is possible toautomatically convert any given trace to this format. The actual format is a �le that consists out ofconsecutively placed long integers. The CVT reads them in, in a special way though. The very �rst longinteger of the �le states the number of extra entries used by this trace (from 0 to 3). Furthermore, theCVT will load in long integers in lines of 3 + (Number Of Extra Entries) long integers. The �rst three longintegers are always expected and they stand for (in this order) : the Program Counter, the Address of thedata referenced and a long integer stating if the reference was a read or a write (1 for a write and 0 for aread). The other long integers (if any are speci�ed in the �rst long integers representing the Number OfExtra Entries) are read in and send to the cache simulator on a reference for the needs of the users simulator(look at 3.11.1 for more on the cache simulator).The extra long integers that can be speci�ed in the trace-�le, can be used for e.g. the cache identi�er formultiprocessor traces, a time stamp, the priority given to data like used in the Priority Data Cache (see [8]27



for more information on the PDC) and numerous other uses of the extra entries can be thought of.3.5.5 Sub-Option Load Source-TraceTo bene�t from both the advantages of Programs and those of Traces, a third kind of input was thought of.This third kind of input is called a source-trace, which is a memory trace, with prede�ned extra information.These extra entries are chosen to accommodate to the bene�ts of programs.When this option is chosen, a �le browser is popped up (like the one in �gure 3.19, with this change thatthe �lter is automatically set to "*.str", the usual extension for loop traces), and the user is asked to chosea certain �lename, the exact workings of the �le browsers used in the CVT are discussed in section 3.5.1.When the "Ok" button is pressed, the CVT will load (a part of) a source-trace into an internal bu�er. Aswith (memory) traces, the source-traces can be quite large, so they are split up in several parts of 1000 linesand every time one part has been completed, the next (if applicable) is loaded in automatically).The format of a source-trace.Source-traces are �les that consist of a number of lines that are in the following format : "integer integerlong integer integer string" (source-traces can be made by executing the c command fprintf(..,"The �rstinteger stands for the statement identi�er, the next for the array reference identi�er. The long integer isthe address of the referenced data, then an integer indicates a read or a write (1 for a write, 0 for a read),another one for the Base Address of the array. The string indicates the Name of the array (but this couldalso be a number, the CVT will not mind). All these values are separated by spaces and every line is endedby a newline command.3.6 Menu-Option Colors
Figure 3.21: The menu option Colors.This section describes the sub-option of the menu-option Colors, which are all, in same way, related to colorsor coloring within the CVT. In �gure 3.21. The �rst three options concern the way cache lines are colored inthe cache window. Then there is an option to change to either the Black and White or the Grey-scale/Colorversion of the CVT. The last option is there to change the color palette the CVT is using. Before we startto exactly describe the �rst two options ("Show/Change Array Colors" and "Show/Change RefID Colors"),we like to make some common remarks on the coloring of cache lines during either program or source-traceexecution. During execution of these two kinds of input, a cache line can be either colored by arrayname(this means every array has a distinct color, unless changed di�erently by the user) or by array reference ID(this means, every unique combination of (Statement ID, Array Reference ID) has a di�erent color, unlesschanged by the user). Switching between these two coloring methods is done by using the button "Arr/Ref",as described in section 3.3.8. 28



3.6.1 Sub-Option Show/Change Array ColorsOne of the most powerful options of the CVT is the coloring aspect. As described in section 3.2.1, the cachelines are visualized by colored boxes. By de�ning separate colors for (a part of) an array, the behavior ofthat (part of the) array in cache is highlighted. When a program is �rst loaded in, all the arrays are assigneddi�erent colors, these colors are called the base colors of the arrays. The colors de�ned to highlight a certainpart of an array are called the additional colors. There are 9 colors available (it gets hard to distinguishmore colors when the boxes in the cache area get smaller), if the number of arrays exceeds this number, thena number is inserted in the colored boxes corresponding to cache lines in the cache area.The overview window

Figure 3.22: The array color overview window.To see what colors have been assigned to the di�erent arrays, the option Colors pops up a window that givesan overview of the base-colors of the di�erent arrays and the additional colors de�ned for an array. Thiswindow also gives the user the possibility to change, delete and (un)select the colors. The window that ispopped up is shown in �gure 3.22.In this �gure the base color (the most upper line) and the three additional colors de�ned for array Zare shown. The 'Prev' and 'Next' button are used to go to the previous, respectively next array, or, if thenumber of additional colors exceeds 5, to go to the next page of additional colors for this array (In principleit is allowed to have an in�nite number of additional colors per array). Just below the 'Prev' and 'Next'buttons, the status bar for the overview window is situated, it shows the name of the array of which thecolors are shown and (if appropriate) what page of colors for this array.The main part of the window is the area in which the colors are shown, the top line is the line where thebase color is shown (or the message 'More additional colors' if an additional page is shown), the next �velines are reserved for additional colors for this array, the color de�nition is shown (at most 40 characters ofthis de�nition) and the color this de�nition has been assigned. When clicked in this area on the base coloror an additional color, the mouse-button that is clicked with, determines the function that is performed onthis color (This is also shown in the �gure in the bottom right hand corner) :29



� Left Button The left mouse button is used to (un)select colors. This is only applicable to additionalcolors, with this function an additional color can be unselected when not needed at a certain moment,but will be used a while later (this is to prevent deleting and later on again de�ning the same additionalcolor). When the user clicks on a selected color (the additional color is shown normally in the overviewwindow), the color is unselected (which is shown as the color with a cross through it), and vice versa.In �gure 3.22, the additional colors "$1 = 1" and "$2 = 20" are selected and the additional color "$1 =1 j $1 = 300" is unselected. When clicked with the left button on the base color nothing will happen,the base color can not be (un)selected. If the user doesn't want to let the CVT visualize anything ofthe current array, she has to change the base color to black.� Middle Button The middle mouse button is used to change a color, either the base color or anadditional color. When pressed on a certain color, a window will pop up in which the 9 colors areshown and the user is able to pick a new color.� Right Button The right mouse button will delete the additional color clicked on from the list asso-ciated with the array shown in the overview window. This button can not be used on base colors.On the bottom of the window there are two other buttons situated, the �rst is the 'Add Color' buttonthat will pop up another window in which the user can add an additional color to this array. Note thatadditional colors are added to the array that is currently shown in the overview window, this means thatin �gure 3.22 the pressing of the Add Color button, will make the CVT add an additional color to array Z.To add a color to another array �rst go to that array with the 'Prev' and 'Next' button. The second is the'Close' button which will simply make the overview window disappear.Add an additional color
Figure 3.23: The add additional colors window.As explained in the previous section, by pressing the button 'Add Color' in the overview window, the user isable to add a color to the array shown in that window. This 'additional color' is used to highlight (by givingthe boxes �lled by this part the special color assigned) a certain part of an array, e.g. the �rst column orrow of an array, or the diagonal.When the user has chosen to add a color to an array, a window as shown in �gure 3.23 is popped up. Inthis window there is an input line in which the 'color de�nition' can be entered and an area in which the tencolors the user is able to chose the color, associated with this de�nition.The color de�nition is a boolean function, in which '(', ')', '=', '>', '<', '&' for AND, 'j' for OR and$Number as variables, may be used, where Number stands for a dimension of the array. The de�nition inBNF is shown in �gure 3.24. After the user has entered a color de�nition, the color associated with this30



de�nition is chosen by pressing on the color the user wants. The chosen color is shown by drawing a whitesquare around the color (in the �gure, the third color on the bottom line is activated at this moment). Thepressing of the OK button will make the CVT check the color de�nition, if it is correct, it is added to thelist of additional colors for this array, if it is incorrect, detailed information on where it went wrong is given.The cancel button will make the window disappear with nothing changed.What happens when the CVT is ran with several additional colors is the following : let's say the followingreference to the two-dimensional array A is made, A[23,100], so the value of the �rst dimension is 23 and thevalue of the second dimension is 100. The CVT will now �rst go through all the additional colors of array Ato see of one of their boolean color de�nitions becomes true when for $1, 23 and for $2, 100 is substituted.The color of the box in the cache area is the color of the �rst color de�nition that becomes true, and if noneof the color de�nitions becomes true, the base color is taken as the color of the box.Some examples of color de�nitions for two-dimensional arrays are '$1 = 1' to highlight the �rst row, or'$2 = 1' for the �rst column (assuming the array indices start at 1 and not at 0, then of course the de�nitionswould become '$1 = 0' and '$2 = 0' respectively). To highlight the upper right hand square of a 100x100array the color de�nition '$1>51 & $2<51' can be used, the bottom left hand square would be '$1<50 &$2>51'. Color De�nition = Factor ("j" Factor)*Factor = Term ("&" Term)*Term = ComparatorTerm jj"(" Color De�nition ")"ComparatorTerm = $DimensionNumberComparator IntegerComparator = "<" jj "=" jj ">"Figure 3.24: The color de�nition in BNF.Changing base and additional colors
Figure 3.25: The change base color window.After pressing the middle button on a base color in the overview window, a window as shown in �gure 3.25is popped up in which the user is able to chose a new color. The status bar is situated on the top line and31



shows, for which array the new base color can be chosen. Under this status bar an area is situated in whichthe ten colors are shown. In this area the user can click on the new color she wants to assign to the arrayas a base color. The chosen color is shown with a white square drawn around it (in the �gure it is the lastcolor on the bottom line). The procedure is analogous for an additional color, the only di�erence is that thestatus bar will show the additional color de�nition instead of the name of the array.When the user presses OK when she has chosen a new color, not only the new color is assigned to thearray or additional color, but the boxes in the cache area are also changed according to this new color. Thisof-course only happens when necessary, i.e. if the changed color is an additional color and the data in cachesatis�es the color de�nition, or no color de�nitions satisfy the data in cache and the base color was changed.3.6.2 Sub-Option Show/Change RefID ColorsAs described in the previous section, coloring is one of the most important virtues of the CVT. Thats why,apart from coloring by array, we found it useful to also color on (Statement ID, Array Reference ID) combina-tions). Every new combination is assigned a new, unique color. When the number of di�erent combinationsexceeds 9 (since there are 9 colors available), a number is inserted in the colored boxes corresponding tocache lines in the cache area.

Figure 3.26: The array reference color overview window.To see what colors have been assigned to the di�erent combinations of (Statement ID, Array ReferenceID), this option pops up an overview window like in �gure 3.26. In this window, �ve combinations arewritten with after that a square �lled with the color that has been assigned to this combination. Note thatCVT was in the Black and White mode when the picture was taken, this means the squares are not �lledwith di�erent colors, but with di�erent patterns (for more information look at section 3.6.4).Since the di�erent number of combinations easily exceeds the number that are shown in the window atone time (�ve to be more precise), the combinations are divided into several pages. The actual page, withafter that the total number of pages between brackets, is shown in the top bar of the window. This bar isplaced right in between the Prev button (push this button to go to the previous page) and the Next button(push this button to go to the next page). 32



To change a certain color of a combination of (Statement ID, Array Reference ID), press the middlemouse button on that combination and the same window as described in section 3.6.1 will pop up and givesthe opportunity to change the color to any of the ten colors provided.To update the contents of the window (because di�erent (Statement ID, Array Reference ID) combinationswere brought in by executing more of a source-trace), press the "Refresh" button. To make the windowdisappear, press the "Close" button.3.6.3 Sub-Option Show PC Colors

Figure 3.27: The trace color overview window.Like with arrays, coloring is very important to unveil the sources of cache phenomena. Since there is noinformation (at least not in the three always present data sources in a trace, providing extra information onwhat array the reference was made to, is another use for the extra entries �elds a trace line can contain) onwhat arrays are speci�ed, another source for the color of the data-box in the cache area had to be found.This source was found in the Program Counters, which are both di�erent from each other and give usefulinformation on the source of the bottleneck (if there exists any). With this program counter, the loop orreference in the original program is easily found.All program counters are given di�erent colors, i.e. if the number of Program Counters exceeds 9, thereare numbers inserted in the colored boxes in the cache area, with a maximum number of di�erent programcounters of 512 (note that the maximum number could be changed, for more information look at section3.11.2). What color a Program Counter is assigned can be looked up by choosing the sub-option Colors. Itpops up a window like shown in �gure 3.27, in which all the program counters are shown with their colors,sorted on the value of the program counter.In the window, there is a status bar that indicates the page of colors (if the number of program countersexceeds 30, the colors are distributed on several pages) that is shown at this moment and (between paren-33



thesis) the total number of pages. There is a 'Prev' and 'Next' button provided that jumps to the previousand next page of colors respectively. In the area under the status bar, the actual program counters areshown as 'PC xxxx', where xxxx is the value of the program counter, with behind it a rectangle �lled withthe color this Program Counter is assigned. On the bottom of the window, there are a 'Close' button, thatsimply makes the window disappear and a 'Refresh' button provided. The 'Refresh' button refreshes thispage of program counters, it could be that there are other program counters added to this page (since theprogram counters are sorted, it could be that a new program counter �ts between two program counters onthis page), or that program counters are deleted from this page (the number of program counters exceedsthe maximum number allowed).3.6.4 Sub-Option Color ModeTo be able to bene�t from the strong coloring facility of the CVT on Black and White terminals, a solutionhad to be found on how to color the cache lines distinguished. The solution was found in coloring by di�erentpatterns. All the text and lines get the color white and all the backgrounds get the color black. The cachelines are 'colored' by �lling them with ten di�erent patterns, as shown in �gure.Figure 3.28: The ten patterns used when running the black and white version of the CVT.To change from one coloring mode to the other, chose this option and then the sub-option 'Black andWhite' to go to the black and white version of the CVT and 'Grey-shade/Color' to got to the color mode ofthe CVT. The CVT always start in the Black and White mode. When the user chooses to enter the Grey-shade/Color mode, the number of colormap entries is checked, whether the terminal is really grey-shade orcolor. If so, the terminal is asked for the ten colors (black, white, red, green, blue, yellow, orange, pink,LightGrey and magenta), and the CVT is set to the color mode.3.7 Menu-Option Breakpoints
Figure 3.29: The menu option Breakpoints.Since the running at full speed can be too fast to accurately pause at the moment the user wants (for reasonsmentioned in section 3.3.13), there was a need to let the CVT stop by itself at a moment the user hasprede�ned. For this reason �ve kinds of breakpoints were implemented, two generic kind of breakpoints,34



the cache and timer breakpoint, two program speci�c kind of breakpoints, the loop value and statementbreakpoint and the last kind is trace speci�c, the Program Counter breakpoint.3.7.1 Sub-Option Add Cache Breakpoint
Figure 3.30: The Add Cache Breakpoint window.The �rst kind of breakpoints is implemented in the CVT to let the user halt the CVT when there is activityin some area in cache, this can be helpful when she expects trouble in certain parts of the cache. It is ageneric breakpoint and can be either used with programs or traces. When the user chooses to add a cachebreakpoint, a window, like is shown in �gure 3.30, is put on the screen. In this window the user is able toenter the cache area to be break-pointed.In the �rst input area, the �rst cache line of the to be break-pointed area must be entered and in thesecond input area, the last cache line. When the user has entered the two values and presses OK, the CVTchecks the values (are they integers and if so, does the area �t in the cache de�ned) and if they are correct,the breakpoint is added to the list of cache breakpoints. The Cancel button will make the window disappear,without any changes made to the list of cache breakpoints.When the CVT is simulating a program, it will check after each reference simulated, if the referenceddata falls into one of the areas de�ned in the list of cache breakpoints, if this is the case, the CVT is haltedand a message is send to indicate which breakpoint caused the halt (if the messages are enabled, look atsection 3.9.4).3.7.2 Sub-Option Timer BreakpointThe timer breakpoint is a breakpoint that can be used with both programs and traces to halt the tool ona certain time. The time in the CVT is de�ned as the number of references simulated, so setting a timerbreakpoint at 4000, will make the CVT stop when there are 4000 references simulated. The window in �gure3.31 is popped up when the user wants to set a timer breakpoint. In the window the user enters a longinteger, which, after the OK button is pressed, is put into an internal data structure. The Cancel button will,as it usually does, make the window disappear without changing anything to the timer breakpoint. Notethat in the case of timer breakpoints there is no need to have a list of timer breakpoints, if the user wantsto break at point 4000 and point 8000, �rst setting the timer breakpoint at 4000 and when this point isreached set it to 8000 will do the trick, the timer breakpoint 4000 becomes useless anyway when the internaltimer has a value that is higher than 4000. This means there is place for only one timer breakpoint, whichcan either be set, by choosing the option 'Set Timer Breakpoint' and can be deleted by choosing the option'Delete Timer Breakpoint'. 35



Figure 3.31: The Set Timer Breakpoint window.When the CVT is running it will check the internal timer against the timer breakpoint (if it is set), ifthe two match, the CVT will be halted and a message will be sent to the user to indicate that the timerbreakpoint has halted the CVT.3.7.3 Sub-Option Add Loop value BreakpointThe �rst kind of breakpoints discussed here is the program speci�c loop value breakpoint. The loop valuebreakpoint is, what's in a name, a breakpoint that is built around the values of the loop indices. Actuallythe breakpoint is a boolean function of loop indices. Analogous to the color de�nitions (see section 3.6.1),the boolean function is built from '(', ')', '=', '>', '<', '&' for AND, 'j' for OR and the Loop Index Name(e.g. I or kk) as variables. The de�nition in BNF is shown in �gure 3.32.Breakpoint = Factor ("j" Factor)*Factor = Term ("&" Term)*Term =ComparatorTerm jj"(" Breakpoint ")"ComparatorTerm = Loop IndexComparator IntegerComparator = "<" jj "=" jj ">"Figure 3.32: The de�nition of a loop value breakpoint in BNF.When the user has chosen the option to add a loop value breakpoint, a window as is shown in �gure 3.33is put on screen. In this window the user is able to enter the boolean function on which to halt the CVT.Pressing the OK button will make the CVT check the entered function against the expected format, if it isa correct function, it is added to the list of loop value breakpoints (and added to the breakpoint overviewwindow, see 3.7.6), if it is not correct, detailed information is given, where the CVT discovered the error andwhat was expected. If the Cancel button is pressed, the window is closed and there are no changes made tothe list of loop value breakpoints.If the run or fast forward button is pressed to start simulating a program, the CVT will check the listof loop value breakpoints after each statement executed, to see if one of the boolean functions will becometrue when for the loop indices, the actual values at the time it is checked are substituted. If one becomestrue, the CVT is halted and the CVT sends a message which breakpoint caused the halt.3.7.4 Sub-Option Add Statement BreakpointThe statement breakpoint is a program speci�c one, so it cannot be used with traces. It is used to set abreakpoint on a (Statement ID, Array Reference ID) combination on or a Statement ID alone. When the36



Figure 3.33: The Add Loop-value Breakpoint window.
Figure 3.34: The Add Statement Breakpoint window.user wants to add a statement breakpoint, a window as shown in �gure 3.34 is put on screen, in which theuser can enter the statement ID of the to be break-pointed statement. The array reference ID can be eitherleft blank (consider this as '*', meaning, every array reference ID su�ces), or the breakpointed can be moretargeted to a certain statement when an array reference id is entered. After pressing the OK button, the thebreakpoint is added to the list of statement breakpoints.When the CVT is simulating a program, after each execution of a statement, the statement ID of thisstatement is checked against the list of break-pointed statements, if one matches, the array reference ID ischecked if it was speci�ed (otherwise the CVT holds right away), if these two match too, the CVT is causedto halt. If the two do not match, the other breakpoints are checked.3.7.5 Sub-Option Add PC BreakpointThe program counter breakpoint is a breakpoint that can only be used when simulating traces. It is used tobreakpoint on a certain program counter and can be compared with the statement breakpoint for programs.When the user wants to add a program counter breakpoint, a window as shown in �gure 3.35 is popped upin which the user can enter a long integer. After pressing OK, the breakpoint is added to the list (note thatno checking occurs, since the CVT does not know in advance which program counters will occur), the Cancelbutton will close the window without making any changes.When simulating a trace, the program counter causing a reference to cache is checked against the list ofde�ned program counter breakpoints. If the program counter matches one of the program counter break-points, the CVT is halted and a message is put on screen to show which breakpoint caused the halt.3.7.6 Sub-Option Show List of Breakpoints37



Figure 3.35: The Add Program Counter Breakpoint window.The last option concerning breakpoints is the one that shows the lists of breakpoints de�ned by the user onscreen. Since there are program speci�c and trace speci�c breakpoints, there are two di�erent windows thatare popped up.In �gure 3.36 the list of breakpoints is shown when a program is loaded in. In this window there are fourkinds of breakpoints shown, the top line is for the timer breakpoint, which is either set to a value or 'notset'. The area right under the timer breakpoint is reserved for the cache breakpoints, under that the loopvalue breakpoints and last but not least the statement breakpoints.In �gure 3.37 the list is shown when a trace is loaded. In this window there are three kinds of breakpointspossible, �rst the generic kinds of breakpoints are placed under each other (the timer and cache breakpoints)and under that the Program Counter breakpoints. In both windows, there is also the possibility to enable,disable and delete breakpoints, which is discussed in the following sections.Enabling/disabling breakpointsThe enabling and disabling of the breakpoints is done by clicking with the left mouse button on a breakpoint.Clicking on an enabled breakpoint (this is shown as a highlighted line in the area) will make it disabled (shownas just plane text), and vice versa. In both �gures, the cache breakpoint "448 - 511" is enabled. In �gure3.36 the loop value breakpoints "kk = 1 & (j < 20 j j > 80)" and "kk > 98", and the statement breakpointon statement ID 1 and array reference ID 3 are enabled. In �gure 3.37 the Program Counter breakpoint"PC 1994" is enabled. All the other breakpoints in both pictures are disabled.Deleting breakpointsBy clicking on a breakpoint it is also selected, this is shown as a dotted line around the breakpoint (In the�gure 3.37 the cache breakpoint '0-62' is last selected). When the delete button (situated on the bottom ofthe window) is pressed, the last selected breakpoint is deleted. Note that the timer breakpoint is deleted bychoosing the main menu option 'Breakpoints', then the sub-option 'Timer Breakpoint' and after that theoption 'Delete Timer Breakpoint'.3.8 Menu-Option ParametersIn this section the architecture is discussed. The menu-option parameters is divided into four sub-options;architecture, write policy, allocate policy and replacement policy (see also picture 3.8). These menu-itemsare discussed in the following paragraphs. The characteristics of the cache are visualized in the cache area;the size can be visually derived from the screen, where the red lines contain all cache-lines in one set. Thepolicies used for this simulation are stated in the status bar, on the right hand of the picture 3.13. Togetherwith these policies, in the status bar, also the name of the currently loaded �le, trace and source-trace areplaced, plus the name of the last �lename for the status save �le entered by the user.38



Figure 3.36: The List of Breakpoints when a program is loaded.3.8.1 ArchitectureInitially the architecture is set to a 2 KB cache-size, where each cache-line is four bytes large and the setassociativity is direct-mapped (see picture 3.39)In the popped up window three numbers can be changed; cache size, cache-line size and set associativity.These numbers de�ne the cache architecture that will be tested. When we'd like to change the value, wecan use the tab-button to select the right input widget and when the changes should be saved the ok-buttoncan be pressed. This will change appropriately the cache size, shown on the main screen. The formula forthe number of cache-lines, which are visualized by the boxes on the cache screen, is the cache size dividedby the cache-line size. All the sizes are given in realistic bytes.Next to the size, an essential parameter of the cache is the set associativity. This can be varied fromdirect-mapped to fully set-associative caches. As explained in chapter 2, direct-mapped is cheaper and fasterbecause there is only one speci�c location for a selected data-item, which makes searching much easier andfaster. The other extreme is fully associative cache, which can put the data in any cache-line. This structureneeds more expensive hardware to �nd a speci�c data-item and is much slower than direct-mapped cache.39



Figure 3.37: The List of Breakpoints when a trace is loaded.On the screen all the cache-lines in the same set are bound together in a red box. When the cache is direct-mapped, all cache-lines belong to one set and thus there is one red box drawn around the whole cache. Thereare two red boxes drawn if there is a 2-way set-associative cache. All cache-lines in the �rst half of the cachebelong to the �rst set, the second half of the cache are the corresponding cache-lines in the second set.In this tool is only a simulation of the performance of these architecture and there is no special hardwarepresent. The search penalty for fully associative cache is not expressed in the simulation. The interpretationmust be done manually by the user. So, the user can not directly conclude there is a better performancewhen there are less misses in a fully associative cache. But this is explained in chapter 5.Once the cache architecture is speci�ed and the simulation has started, the user is not able to changethe architecture. When the user do want to change the parameters of the cache, he will need to abort theprogram and start the simulation again.3.8.2 Write policyThis policy is only relevant on write-misses, because when there is a write to a data item already situatedin cache, there always will be a write to this level, independently of the write policy. Though, when thereis a write-miss the allowed allocate policy is essential. This is explained in section 2.5 and will be discussedbriey in the next subsection on allocate policies.The �rst option is write back, which writes to cache on a hit and cause unique data in this level.Replacement of this data- item must be preceded by a write to a higher level which must preserves theunique item. The other option is write through, which writes to all levels simultaneously in the memoryhierarchy- and takes care of enough data copies in the hierarchy. The advantages and drawbacks are clearlydisplayed in section 2.5. But in both cases there will be a write to the cache on a hit.40



Figure 3.38: The menu option Parameters.
Figure 3.39: The architecture speci�cation3.8.3 Allocate policyAs discussed in the previous subsection, the allocate and write-policy are only essential on write misses. It isnow essential in the manual performance evaluation, whether the requested data item must be allocated incache or only changed in the lower level without allocating the data in cache. The allocate-on-write policytakes more time, because there must be data transferred to other levels, which is skipped in the no-allocateon write. The other side of the story is when the non-allocated data item is directly referenced again, thereis a penalty to pay with respect to the allocated data item in cache.3.8.4 Replacement policyPrograms usually wish to use more space than possible in cache. There is a choice to make which data itemcan be placed in cache. Conicts must be solved by a replacement policy, discussed in section 2.4. Directmapped is very simple: there is only one choice, which in fact is no choice. Though when the set associativityis higher than one, the policy decides which data item is replaced when all set-associated cache-lines are inuse. This menu option gives the user the choice between three policies; First In First Out, Least RecentlyUsed and Random replacement.First In First Out will replace the data item with the oldest arrival time. Least Recently used replacesthe data item which is referenced least recently. Random replacement just picks a cache-line to replace. Allpolicies can have their advantages, which are stated in section 2.4.3.9 Menu-Option OthersThe menu-option others is a mix of functions, related to the screen outlook, like refresh screen, grid mode,swap page, messages and extra info. The menu-option is shown in �gure 3.40.41



Figure 3.40: The menu option Others.3.9.1 Refresh screenSometimes when the CVT fails to redraw the screen new when a window is closed, the user can select thismenu option to refresh the screen and redraws the screen new.3.9.2 Grid ModeThe cache is divided in a large rectangular block, where each row is consecutive. This rectangle can bedivided into small boxes, which are called cache-lines. These cache-lines are easier to select when smallwhite lines surround these boxes. It is a tool to determine the cache-line number more convenient than whenthere is no grid.3.9.3 Swap PageAs discussed before, the cache is divided into consecutive rows. But when the cache consists of too manycache-lines, visualization on one page is not possible anymore. Therefor the visualization is done in severalpages. The red box show the user the current page in cache which is visualized. This option has two sub-options; "swap right" and "swap left". "Swap left" can be used to go one page to the left when you're not atthe �rst page and "swap right" can be used to swap a page to the right when you're not at the last page ofthe cache. The bar just below the cache changes simultaneously the page position in cache (see �gure 3.41).The user can also use the mouse to change the page in cache. As explained before in the introduction, theuser can click on any un�lled rectangle within the cache-bar to change the page to the requested page.
Figure 3.41: Page three of the cache is currently visualized3.9.4 Sub-Option Messages 42



Figure 3.42: The Message/Information window.In this section the messages option is described, with this option the messages that the CVT sends to theuser (e.g. a message from the Tool after just setting the Messages On is shown in �gure 3.42) can be set On(the messages will be sent) or O� (the messages will be swallowed), the messages are set to O� by default.This option is included since one of the advisors (we won't mention his, oops, that's one guess less, name,nor that he comes from France, oops again, sorry Olivier) thought that the messages sent by the CVT werein too great number. The messages are sent by several sources, the CVT will make this clear in the messagewindow by setting the status-bar to "This message comes from 'source'", where 'source' is either of thefollowing parts of the CVT :� Tool will send the user general messages on the status of the CVT.� Interpreter (Program Loader) will send messages when the CVT is loading in a program, like "Every-thing is Okidoki !!!!" or "Loop index at line 15 not de�ned".� Trace Loader will send messages like "Last part of trace loaded" or "Error occurred at line 166".� Add additional color will send messages on the outcome of the check on additional color de�nitions,like "Additional color added to the list" or "Error on position 8".� Add statement breakpoint will send messages on the outcome of the check on the entered statementnumber with setting a statement breakpoint, like "Statement breakpoint added to the list."� Add cache breakpoint will send messages on the check of the entered cache area to be break-pointed,like "Last cache line is out of reach"� Add loop value breakpoint will send messages on the outcome of the check on the loop value functionentered, like "Error at position 17".� Add program counter breakpoint sends messages like "Program counter breakpoint added to the list".� Timer breakpoint sends messages like "Timer Breakpoint deleted" or "Timer Breakpoint set".� Statistics sends messages like "Statistics changed to Miss statistics".ErrorsThe only messages that can not be set o� are the error messages, this is done to, e.g. prevent the user fromstaring at the screen while nothing happens after she has pressed the OK button while trying to add an43



Figure 3.43: The Message/Error window.additional color. In �gure 3.43 a window is shown in which the interpreter (the program loader) sends themessage that there was an error at line 1 (the CVT was tried to be fed with an executable �le and it doesnot like that).3.9.5 Sub-Option Extra InfoThe option Extra Info has two sub-option to either place or delete the extra info, toggling can also (moreconvenient) be done by the provided button (also look at section 3.3.12). When the extra info is set, awindow will appear with in it, depending on the kind of input supplied, extra information. The kind ofinformation shown in the window is discussed.ProgramsThe extra info with programs, as shown in �gure 3.44, consists out of the names of the loop indices printedright under each other, with next to it the actual value of the loop index at this time and between parenthesisthe begin and the end value of the loop at this time. On the bottom of the rectangle the actual value of thetimer is printed. In the �gure, e.g. the actual value of j is at this time 54, the begin value is 53 and the endvalue is 56, while the actual value of the timer at this moment is 49999 (this means at this time there werealready 49999 references simulated).TracesSince traces can consist out of huge amounts of entries, with a numerous amount of di�erent programcounters, the overview could be lost fast. To handle this amount of program counters more easily, in thetable, the 20 program counters around the program counter that caused the last reference, and the programcounter self are shown. An arrow before a program counter indicates which program counter produced thelast reference. If the program counter that caused the last reference is already present in the table, only thearrow is replaced. Behind the program counters, the data they caused a reference to is shown. In �gure 3.45the extra info table is shown when a trace was simulated.This simulated trace consisted out of a continuous loop of thirty program counters (30 statements in aprogram) that referenced consecutive data. In the �gure, the last program counter that caused a referenceis 26 and the data referenced is 88. At this time the timer has a value of 188 as shown on the bottom of thetable. 44



Figure 3.44: The Extra Info on Programs.3.10 Making the InputThe input of the CVT consist out of two sources, programs and (memory) traces. The advantage of programs,which are executed by the CVT itself, is that the CVT is aware of what arrays are used and is consequentlyable to give statistics on each of the arrays. For sake of simplicity, there was no real parser included in theCVT, this means that not all kinds, though the most interesting can (see section 3.10.1), of programs canbe simulated, they have to be in a speci�c format (see 3.10.1). For simulating other kinds of programs ortesting architectures with large mixes of all kinds of programs the trace part has been implemented (see3.10.2).3.10.1 ProgramIn this section the making of a program is discussed, actually once the user knows what the structure of aCVT-program is like, the rest is child's play. A text-editor needs to be started and a normal loop nest canbe rewritten easily into the format of the CVT.The Program Look a Like 45



Figure 3.45: The Extra Info on Traces.In �gure 3.46 the program structure for a CVT-program is shown. What is clear from the �gure is thata 'program' in CVT-terms is a perfectly nested loop nest, with the arrays used declared on the upper linesand (separated by an empty line) the loop nest itself. Notice that there are no IF-statements implementedand that there are only references to data (this means that the data itself is not implemented, e.g. a writeto array A will not change the data on the address the write is directed at).To make things more clear, an example that performs blocked matrix-matrix multiply is provided. In�gure 3.48 the original program that performs the matrix-matrix multiply is shown. First the array decla-rations have to be found, it is easy to see that three two-dimensional arrays are used, X,Y and Z. The arraydeclarations become "X 0 1,N;1,N" and the other 2 go analogous (where the base addresses can be chosencontinuous or with gaps between it, or even overlapping). Note that in the program to be read in by theCVT, the variable N has to be substituted by a value, in the example CVT-program, N is substituted by300.The next thing to do is to rewrite the loops in CVT-format, the loop-declarations in itself are quite easy,they are exactly the same, except the variables N and B have to be substituted by a value, in the exampleprogram, B was substituted by 30. The less easy part is the rewriting of the statements. The �rst statementis the easier one, there is only one reference to data there, so the rewritten statement is "R X 1*i,1*k". Sincethe statements must be rewritten to reads and writes to memory, with one read or write per line, the next46



Array Name1 Base-Addres Lower-Bound,Upper-Bound;............;Lower-Bound,Upper-Bound.... p dimensions........Array NameK Base-Address Lower-Bound,Upper-Bound;............;Lower-Bound,Upper-Bound<<<< Empty line >>>>DO Index Name1 Begin Value,End Value Stride....Statement 1........N loops....Statement K....DO Index NameN Begin Value,End Value StrideStatement L....Statement MENDDO....Statement N........ N ENDDO's....Statement O....ENDDO(A statement is de�ned in the next �gure)Figure 3.46: The CVT program look a likestatement has to be rewritten as 3 lines and the order is important. The �rst thing that happens is a read toarray Z, then a read to array Y and last but not least a write to array Z. In �gure 3.49, the result is shown.Input Speci�cation Justi�cationThe special kind of structure the CVT needs deserves some further discussion. For several reasons there waschosen for the speci�c input structure and not a general parser. These reasons are :� Generic enough for research. First of all, the experience has been that the regular interleaved accesseswithin a loop nest induce cache interference phenomena that are hard to understand and recognize.The top of the bill research has been on this loop nests and almost all of the loop nests used in thepapers and articles we have read on cache interference problems, can be simulated using the CVTprogram possibility. Since research on this kind of loop nests has been one of the goals of the CVT,there was no immediate need for a full parser and the gaps that exist can be �lled up by traces (asmentioned below).� Time and simplicity. Another reason for the speci�c input structure is the amount of time that wasassociated with the project "The CVT". The goal of the CVT is to do research into programs (especiallythe kind of programs that can be simulated by the CVT as discussed in the previous statement) andarchitectures. To implement a full parser for the CVT would have been way beyond the goal of the47



Statement Kind Statement ID Array Reference ID Array Namec1*Index Name1+c2*Index Name2+....+cN*Index NameN+cN+1,d1*Index Name1+d2*Index Name2+....+dN*Index NameN+dN+1,........ p times if Array 'Array Name'.... has p dimensions....e1*Index Name1+e2*Index Name2+....+eN*Index NameN+eN+1- "Array Name" is a character-string.- "Base Address" is a long integer.- "Lower Bound" is an integer.- "Upper Bound" is an integer.- "Index Name" is an character-string.- "Begin Value" is one of the following :- Constant (integer)- Linear Expression (Lin. Expr.) = k1*Index Name1+k2*Index Name2+....+kL-1*Index NameL-1+Constant- Min(Lin. Expr., Lin. Expr.)- Max(Lin. Expr., Lin.Expr.)- End Value is of the same type as Begin Value.- Stride is an integer.- Statement Kind is a 'R'(ead) or a 'W'(rite).- Statement ID is an integer.- Array Reference ID is an integer.Figure 3.47: The way a statement is implemented in a CVT's programproject. In further versions of the CVT, that will be implemented by other students, the goals willbe set at di�erent levels and a full parser will be implemented. This means we have tried to keep theparse-part of the CVT as generic and modular as possible for further implementation.� Trace part �lls up the holes. The programs that can not be simulated with the CVT in itself, can besimulated with traces. Here, at Leiden University, research is done on a parser that pops out memorytraces, also look at [18]. If there could be extra information �tted in the trace (like from to which arraythe reference is), it would eliminate the need of a full parser for the CVT.3.10.2 TracesAs described in section 3.5.4 the format of a trace is that of one (long) continuous �le of long integers. Themaking of a trace is done by either letting a program pop out a memory trace in the format the CVT desires(as is tried to accomplish by the parser/trace-maker from [18]). Or make the trace with other programs (likethe one described in [17]) and convert them automatically.3.10.3 Source-TracesIn section 3.5.5 the exact format of a source-trace is described. A source-trace can be either made by insertingthe in that section mentioned fprintf statements (or any equivalent in other programming languages), or byspecialized tools. 48



DO kk = 1,N,BDO jj = 1,N,BDO i = 1,N,1DO k = kk,min(kk+B-1,N),1r = X[k,i];DO j = jj,min(jj+B-1,N),1Z[j,i] + = r * Y[j,k];ENDDOENDDOENDDOENDDOENDDOFigure 3.48: The fortran code that performs matrix-matrix multiply, for matrices of size N*N and block-sizeB.3.11 Further TuningThis section describes the tuning of the CVT to the users needs, like plugging in a simulator of the user orchanging internal parameters of the CVT or using them in the users own simulator.3.11.1 The SimulatorThis section describes the plugging in of a simulator. But �rst it starts with describing the simulator alreadyimplemented in the CVT. The simulator implemented is simulating the cache speci�ed by the user (e.g. thecache size, write policy) in a rather simple way. It checks the CVT's internal cache for a certain piece ofdata (at the address sent by the CVT) and sends the result (cache line number and a boolean that indicatesif the probe was a hit or a miss) back to the CVT.Plugging in another simulator is relatively simple. Some changes to routine names and recompiling willdo the trick. The simulator can either have an internal cache or use the data structure that is present in theCVT for statistics purposes (the next section describes this data structure). Please watch out for duplicatenames for variables, in the �le "typedef.h" all the global variables used by the CVT are speci�ed.There are two routines the visitors cache have to provide. One is the main function that the CVT callsto check a cache line for the requested data, which is called 'Cache Simulator'. The function declaration hasto be as shown in �gure 3.50 in the top nine lines. The parameters that are sent to this function by theCVT are :� Address The address of the referenced data.� Read The reference was a write, value is 'False', or a read, value is 'True'.� PC The program counter that caused the reference (with traces).� Extra The extra �elds from the trace (if appropriate).These parameters can (must) be used by the visitors cache, to send back to the CVT the following information: � Number The cache line number in which the referenced data must be placed or is present (this mustbe stated by the return value of the function).� The return value of the function (BOOL) The visitors cache must return True if the referenced datawas present (a hit) and False if the requested data is not present (a miss).49



X 0 1,300;1,300Y 90000 1,300;1,300Z 180000 1,300;1,300DO kk = 1,300,30DO jj = 1,300,30DO i = 1,300,1DO k = kk,min(kk+29,300),1R X 1*k,1*iDO j = jj,min(jj+29,300),1R Z 1*j,1*iR Y 1*j,1*kW Z 1*j,1*iENDDOENDDOENDDOENDDOENDDOFigure 3.49: The CVT code that performs matrix-matrix multiply, for arrays of 300*300 and a blockingfactor of 30.The other function that the CVT requires is a function that clears the visitors cache, called 'InitVisi-torsCache'. This function is called when the abort button is pressed, or when the program has come to anend, and the cache must be ushed to restart the simulation from scratch. When these two functions havebeen implemented (or the original routines have been renamed), the 'make' command will recompile theCVT and the user is able to conquer the world after she has tested her architecture by running the CVTsimulating that special kind of architecture.Note that the cache size, cache line size, write policies etc. can be implemented by the user the wayshe wants (she can make the simulator anyway she want, so the internal cache can be as big as she want).But, and this is very important to note, not tuning the visitors cache size etc. to that of the CVT's internalcache is catastrophal, e.g. by keeping a �xed sized visitors cache of 8Kb and setting the CVT's cache to 4Kb(by the menu options) will give some, not so nice, errors. These hazards can be solved by using the CVT'svariables for cache size etc., as discussed in the next section.Function declaration of main function of the simulatorBOOL Cache Simulator(Address, Read, Number, PC, Extra1, Extra2, Extra3)long int Address;BOOL Read;int *Number;long int PC;long int Extra1;long int Extra2;long int Extra3;Function declaration of help-function for the CVTvoid InitVisitorsCache ()Figure 3.50: Function declarations of functions needed to let the CVT work with a visitors cache.50



3.11.2 Using and changing CVT's data structures and variablesFor the users convenience there are several data structure and variables that can be used (especially in thevisitors cache) and there are other that can be changed (like the number of trace lines the CVT loads in, ata time). This section �rst describes the usable data-structures and then the ones the user can tune for herpersonal needs. Note that only the environment and cache data-structures are discussed here, if the userwants to change the CVT itself, it is important to look at the appropriate �le and the �le "typedef.h" thatcontains all the global variables used by the CVT.The data structures the user can use in her own visitors cache are the variables and data-structure shownin �gure 3.51. Note that the data-structures may not be altered, also the cache data structure, it may onlybe used as information. The Cache data-structure has a few other entries, but they are only for internal(statistics) use and have no meaning for the visitors cache. The information stored in these �ve entries isenough to simulate all kinds of caches. The hooks can be used by the visitors cache, if and only if, there areno extra entries speci�ed in the trace.The variables are :Cachesize (a long integer)Cacheline size (a long integer)Setassociativity (a long integer)writepolicy (either 'through' or 'back')allocatepolicy (either 'allocated' or 'notallo-cated')replacementpolicy(either '�fo', 'lru' or 'ran-dom')The cache itself is of the following data-structure : "Cacheline Cache[Cachesize]",i.e. an array of Cachesize cachelines, wherea cacheline has the following relevant �elds: � free A boolean that states if the cache-line is free or not� AddressOfData A long int that statesthe physical address� Hook1, Hook2, Hook3 The three extraentries from the trace-lineFigure 3.51: Usable variables and data-structure.There are also a few 'de�nitions' that are stated in the �le "typedef.h", that can be altered by the user.Note that after changing one or more 'de�nitions' the CVT must be completely recompiled (This meansdelete all "*.o" �les and compile). In principle all the 'de�nitions' may be given other values, but we onlydiscuss the for the user interesting ones. The maximal length of array names and loop names (de�nitionsfor 'Max Length ArrayName' and 'Max Length LoopIndices) are set to 11 by default, but if the user insistson using larger names, it can be set to a higher value.The number of lines read from a trace-�le at one time is set by the de�nition 'MaxNumTraceEntries' andby default to 1000, this can be changed by the user if the loading of the next part is taking up too muchtime and the user has enough memory to cope with the higher amount of trace entries (that are all stored inmemory). The number of di�erent colors program counters can be assigned, is set by the number of entriesin the program counter color bu�er (de�nition 'Number Of Bu�er Entries', by default 512).Other important de�nitions that can be changed, are the de�nitions that control the speed, SpeedRun-51



Factor determines how many times 50 instructions are executed in one 'run-loop', by default the value is 1.The de�nition 'DelayFactor' determines the amount of time between the execution of one instruction.Another important value is set by the de�nition 'MultiplyFactor' that is used to present the address tothe simulator in number of bytes (Multiplyfactor is 4) or in doubles (MultiplyFactor is set to 8). The defaultfor this de�nition is 4.
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Chapter 4Using the CVT for SoftwareOptimizationsThis chapter will give an overview of the current cache issues and how software optimizations can addressthem. Another goal of this chapter is to show the user what bene�ts the CVT can bring in understanding(by visualization) the exact cache behavior of codes restructured by software optimizations. Indeed, becausethese optimizations aim at reordering loop execution, they can signi�cantly inuence the cache behavior.Furthermore, we show that the CVT can give a useful insight on the cache behavior of large and complexloops (like those found in numerical codes).4.1 IntroductionThere are three kinds of misses, the compulsory, capacity and conict misses (also look at chapter 2). Thenext few paragraphs will shortly discus the software optimizations that have been proposed for each type ofcache misses. These optimizations are discussed in more detail in the next few sections.The only way to prevent compulsory misses is prefetching, which can be done through either hardware orsoftware means. The hardware techniques are discussed in chapter 5. The principle of software prefetching isto fetch data in advance, using statements inserted by the compiler. In section 4.5 the CVT cache simulatoris changed to perform like a cache that is able to perform software prefetching and a test is ran with it.However, most software optimizations aim at decreasing the number of capacity misses. The mostcommonly used software optimization is blocking, as described in [3, 4]. When the amount of data to bereused does not �t in cache, blocking restructures the loop so that computations are performed on sub-blocksthat do �t in cache. Though these techniques 0 deal with capacity misses, researchers have become awareof the fact that they also induce more complex cache phenomena (conict misses), as discussed in [1, 3].Blocking in relationship with the CVT is described in section 4.3.Nonsingular loop-transformations represent a more elaborate class of software optimizations for reducingthe number of capacity misses. These transformations induce complex reference patterns that make cachebehavior di�cult to understand from the source code. In section 4.4 such optimization are discussed (as wellas unimodular loop-transformations which form a sub-set of non-singular loop-transformations), as well asthe way the CVT can be used to better understand their impact on cache behavior.As mentioned above, researchers have recently become more aware of the third kind of misses : conictmisses, also called cache interferences. These conict misses consist out of one datum bumping out someother datum that could be reused later on. To date, there are few software optimizations dealing with cacheinterferences, because of their complex behavior. In section 4.2 it is shown how the CVT can be used forspotting statements, cache or array areas that exhibit lots of interferencesThe CVT can also be used to analyze complex loops that resist modeling. Such loops can be eitherregular numerical codes, but with numerous or complex array subscripts (see section 4.2), or sparse loopswhere one or several arrays are indirectly addressed (see section 4.6.53



Finally, the CVT can be used to gather information on the locality properties of C-codes, to which littleresearch has been devoted. The frequent use of pointers induces weird reference patterns that cannot or aredi�cult to analyze from the source code.4.2 Cache InterferencesThis section will provide the user with some insight on cache interferences by �rst discussing two models thatwere developed for cache interference phenomena in numerical codes. Next, a small example is provided thatshows how cache phenomena are visualized with the CVT. Then more complex numerical code is analyzedwith the CVT.Cache interferences fall into two categories, namely self-interferences and cross-interferences. Self-interferenceis the case where elements of an array bump out data elements that could be reused in next references tothe same array statement. Cross-interference is the case where interferences occur between di�erent state-ments. Especially within numerical codes (which usually deal with large arrays and loop nests), the regularinterleaved array accesses induce cache interference phenomena that are hard to understand.One model that tries to analyze a loop nest cache usage, is described in [10]. This model provides a wayto approximate the number of distinct accesses (called DA in the paper) and the number of distinct cachelines used (called DL) for a single array reference in a given loop nest. With these numbers, the number ofcache misses within a loop nest can be estimated. Then it is shown how these results can be used to guideprogram transformations such as loop interchangeAnother model developed especially for numerical codes, is called NUMODE and is described in [1]. Thismodel aims at understanding and quantifying cache interference phenomena. The principle is to de�ne thesets of data to be reused (reuse sets) and the sets of interfering data (interference sets) and to computetheir intersections. Though important results have come out of this paper, the feeling exists that whilereading the paper, the available pictures, derived from the computations, provide more insight than theactual computations in itself. This intuitive and graphical view of the workings in cache, coming from thismodeling technique, inspired the CVT. The paper also stresses the role of two kinds of parameters : arraydimensions and array base addresses. Fortran programDO I=1,100,1DO J=1,100,1ArrayA[J] = ArrayB[J]ENDDOENDDOCVT codeArrayA 2000 1,100DummyArray 2100 1,100;1,3ArrayB 2450 1,100DO I=1,100,1DO J=1,100,1R ArrayB 1*JW ArrayA 1*JENDDOENDDOFigure 4.1: Example loop nest and corresponding CVT code to show overlap between arraysLet us now show how to visualize these phenomena with the CVT. Consider �gure 4.1, both the fortran54



code and the loop nest that is used to feed the CVT are shown (the CVT loop format and how to rewritenormal code to CVT code is explained in section 3.10.1).
Figure 4.2: ArrayA and ArrayB are conicting.For the experiments in this chapter, a direct-mapped cache of 8 Kb and a cache line size of one arrayelement bytes is used. In �gure 4.2, a screen-shot from the CVT is shown when ran with the exampleprogram. In this �gure cache-lines �lled with data elements from ArrayA correspond to the white boxes inthe cache area and the data-elements from ArrayB to dark grey boxes. From [1] we learn that if the relativedistance between ArrayA and ArrayB is smaller than the set of elements to be reused, interferences canprevent reuse. On-screen, interferences are shown by the colored cache lines that overlap. The interferencecan also be viewed in the statistics area, which is shown in �gure 4.3. The statistics area shows the numberof misses for each cache line and the total miss ratio. It appears that much more cache misses occur in cachelines 464 to 501, where the two array references overlapFigure 4.3: The statistics area, showing a peak of misses where the two arrays overlap.It is obvious that the cache is large enough to store the two arrays without overlapping. It also clearlyappears that overlapping can be avoided by shifting one of the arrays base addresses. Another solution is tocopy one of the arrays. In �gure 4.4 a screen-shot from the CVT is shown after the base address of ArrayBhas been changed to 2690. It is obvious, both from the cache area and the statistics area that now that thearrays do not overlap, no conict misses occur.The CVT can also be used to analyze complex loop nests with many references. Such a loop nest,extracted from the numerical code FLO52, from the Perfect Club code [15], is analyzed. In �gure 4.5, thefortran code of the FLO52 loop is shown, and the corresponding CVT code is placed in section A.1. Notethat the statement numbers (S1 to S46) are not in the original CVT code, they are added to refer to in thenext few paragraphs.In �gure 4.6, a screen-shot is shown after the FLO52 loop is completely simulated, the �rst �ve cachelines are obtained by the variables (XY, YY, PA, QSP, QSM), the arrays are colored from light grey todark grey : P (lightest), X, W, FS (darkest). During execution, it is noticed that there are occurring crossinterference e�ects, of which some could be preventing reuse. In the next paragraph a cross interferencephenomenon is discussed. 55



Figure 4.4: ArrayA and ArrayB completely present.DO J=2,9DO I=1,41XY = X(I,J,1) -X(I,J-1,1)YY = X(I,J,2) -X(I,J-1,2)PA = P(I+1,J) +P(I,J)QSP = (YY�W(I+1,J,2) -XY�W(I+1,J,3))/W(I+1,J,1)QSM = (YY�W(I,J,2) -XY�W(I,J,3))/W(I,J,1)FS(I,J,1) = QSP�W(I+1,J,1) +QSM�W(I,J,1)FS(I,J,2) = QSP�W(I+1,J,2) +QSM�W(I,J,2) +YY�PAFS(I,J,3) = QSP�W(I+1,J,3) +QSM�W(I,J,3) -XY�PAFS(I,J,4) = QSP�(W(I+1,J,4) +P(I+1,J)) +QSM�(W(I,J,4) +P(I,J))ENDDOENDDO Figure 4.5: Loop nest extracted from the FLO52 program.To check arrays for interference, it is best to set the colors of all the arrays, but the one to analyze, toblack and do a simulation. When we do this for e.g. for array W (a screen-shot is shown in �gure 4.8), wesee that the data brought in by statement 10, to be reused by statements 16,29 in the next iteration of Iand statement 27 in the same iteration is not ushed out by any other array (the color is not ipping fromW's color to black, to W's color). When we look, on the other hand, at array X separated from the otherarrays, it is noticed that there is cross interference which is preventing reuse (the color of the cache lines isipping from X's color to black to X's color). In �gure 4.9 a screen shot is shown. To further analyze whatwe have noticed, we look at the array statistics to prove that reuse is prohibited and at a simulation withmore arrays colored to �nd out what array(s) are cross-interfering with array X.When we compare the reference and miss statistics of array X (look at �gure 4.7), it is obvious thatpossible reuse is prohibited (the number of references to a certain element of array X, is of the same amountas the number of misses, which means an element, that was loaded in by a reference, is ushed out beforeit could be reused by the next reference to the same element). This �gure shows the elements of the �rstpart of array X that are loaded in by statements 1 and 2. Totally, there are 8 bands of 41 misses startingat element 0, the bands are placed 194 array elements apart from each other (Only the �rst two are shownin this part of the statistics area). The area covered by statements 3 and 4 is similar, where the �rst area isfrom array element 6790 to 6830. With more arrays colored, it is seen that the data brought in by statement1 and to be reused by statement 2, is ushed out by references to FS (statement 25 and 46). Also, the databrought in by statement 3, to be reused by statement 4, is ushed out by references to FS and P(statement32 and 6). 56



Figure 4.6: Screen-shot of the CVT after completing the FLO52 loop
(a) Miss statistics (b) Reference statisticsFigure 4.7: Miss and reference statistics for �rst part of Array X4.3 BlockingBlocking, also called tiling, is one of the most well-known optimization techniques for reducing capacitymisses, therefor it is discussed in a separate section of this chapter. Blocking reorders the execution sequencein such a way that iterations from outer loops are executed before completing all iterations of the inner loop.In other words, blocking improves data locality by transforming the loops in such a way that they deal withsub-matrices (blocks), which are small enough to �t in cache, instead of the whole matrices which are usuallytoo large.Consider, e.g. the matrix matrix multiply code for matrices of size N x N in �gure 4.10. The sameelement X[k,i] is used by all iterations of the inner most loop, so it is register allocated and fetched frommemory only once. Since the matrices are ordered in column major order, the inner most loop accessesconsecutive elements of the Y and Z matrices. The same column of Z is reused on the next iteration of thesecond loop and the same column of Y is reused on the next iteration of the outer most loop. If data, thatcould be reused, remains in cache depends on the size of the cache. If the cache is not large enough to holdat least one N x N matrix, elements from array Y that could be reused, will be ushed from cache. If thecache size is less than N elements, reuse on elements of array Z is also prohibited.To improve the cache performance (decrease the chance that data is ushed from cache before it is reused),the loop nest can be blocked. Figure 4.11 shows the fortran code for blocked matrix matrix multiplication,for a matrix of size N x N and a block size of B. Now, only a sub-matrix of size B x B of Y and a column oflength B of Z has to reside in cache to exploit the reuse.In the example, blocking could be applied to the loop immediately. But, in general, it is not alwayspossible to block the entire loop nest, some loop nests can not be blocked at all. Sometimes it is necessary57



Figure 4.8: All arrays colored black except array W
Figure 4.9: All arrays colored black except array Xto apply loop transformations such as interchange, skewing and reversal to produce a set of loops that areboth able to be blocked and advantageous to be blocked. In section 4.4.3 an algorithm that addresses thisproblem, is discussed.In [3] it is shown that blocking techniques achieve below optimal performances because the cache isconsidered as a local memory, i.e., only capacity misses are reduced and interference misses are ignored.Lam and Wolf present a model that estimates the miss-rate for blocked loops, taking the interference missesinto account. The model is built around parameters, easily extracted from the loop nets :� D(v) The number of references for variable v.� R(v) The reuse factor of variable v.� Sp(v) Self interference, the fraction of accesses that map to non-unique locations in the cache withinone iteration of loop p.� Fp(v) The footprint of variable v for loop p, which is the fraction of the cache used by variable v inone iteration of loop v. This is to determine the fraction of cross interference.Combining these parameters, the total miss rate can be estimated. The self-interference part of the modelhas been given much attention in the paper. The cross-interference part much less, both because the inuenceis less, but also because of their higher complexity. The CVT can help grabbing intuitions on the workingsof such complex phenomena. 58



DO i=1,N,1DO k=1,N,1r = X[k,i];DO j=1,N,1Z[j,i] += r�Y[j,k];ENDDOENDDOENDDOFigure 4.10: Matrix matrix multiplication for matrices of size N * NDO kk=1,N,BDO jj=1,N,BDO i=1,N,1DO k=kk,min(kk+B-1,N),1r = X[k,i];DO j=jj,min(jj+B-1,N),1Z[j,i] += r�Y[j,k];ENDDOENDDOENDDOENDDOENDDOFigure 4.11: Blocked matrix multiplication for matrices of size N * NAn interesting part of the paper is the part on choosing the optimal blocking size, which is not as onewould expect, the largest block that �ts in cache, it is not favorable to increase the blocking size after acertain value (called the critical blocking factor), because of the high number of self-interferences on arrayY, which will decrease the performance instead of increasing it.To do some research on choosing the optimal blocking factor, the blocked matrix-matrixmultiply programis rewritten in the CVT format, as is shown in section A.2.For the experiments we are doing here, we set the matrix size to 100. The �rst blocking factor tried withthe CVT, is 8. In �gure 4.12, the miss and reference statistics for array Y are shown after 19999 iterationsof loop i (the loop carrying reuse for array Y), just before the incrementation of loop index jj which loadsin di�erent blocks, which means that all the elements of Y that could be reused should be reused now. It isclear that the elements are being reused (the number of references to an element is larger than the numberof misses). Some peaks in the miss area deserve some more attention to �nd out if these are self-interferenceor cross-interference misses. When the history of a cache line that is �lled with an element of array Y ispopped up, it is clear that all misses occurred due to cross-interference with array X and Z. This indicatesthat this blocking factor produces no self-interference for array Y. We will try a larger blocking factor (sincewe want the largest blocking factor that produces no self-interference), lets say 16.When the CVT is fed with a blocked matrix-matrix multiply with a blocking factor of 16. The results,after the same number of iterations as in the previous test are shown in �gure 4.13. Note that there areless references to the several blocks, because the blocks are larger (and the same amount of references wassimulated). In the miss-statistics area, it is seen that there are enormous peaks at the beginning of eachblock (every reference causes a miss). When these areas are analyzed, it shows self-interference for array Y.This indicates this blocking factor is too large.When we experiment more, we �nd a optimal blocking factor of 12 for this problem. The miss andreference statistics are shown in �gure 4.14, and a screen shot from the CVT after completing the loop is59



(a) Miss statistics (b) Reference statisticsFigure 4.12: Miss and reference statistics for Y, blocking factor is 8
(a) Miss statistics (b) Reference statisticsFigure 4.13: Miss and reference statistics for Y, blocking factor is 16shown in �gure 4.15. Also, from the total miss ratio's (table 4.1), it is clear that this blocking factor isoptimal.4.4 Nonsingular Loop TransformationsIn this section an outline is given on loop transformations in terms of unimodular or nonsingular matrices.First, some background on dependences and unimodular matrices is presented. Next, a theory is discussedwhich shows that three important loop transformations, namely reversal, interchange and skewing, canbe modeled using unimodular matrices. After that, an algorithm is discussed that applies unimodular looptransformations to optimize data locality. The last part of this section is on nonsingular loop transformations.X Y Z TotalNon blocked 1.000 (9900) 1.000 (990000) 0.104 (206791) 0.405(1218772)Blocking factor 8 0.995 (129332) 0.052 (51761) 0.074 (148790) 0.105(329883)Blocking factor 12 1.000 (90000) 0.073 (72605) 0.058 (116391) 0.090(278996)Blocking factor 16 1.000 (70000) 0.379 (379449) 0.052 (103673) 0.180(553122)Table 4.1: Miss ratios per blocking factor60



(a) Miss statistics (b) Reference statisticsFigure 4.14: Miss and reference statistics for Y, blocking factor is 12
Figure 4.15: After �nishing blocked matrix-matrix multiply, blocking factor is 12.4.4.1 Some theoryWhen a loop transformation is applied to some kind of loop nest, it is obvious that we want the transformedloop to produce the same output as the original loop. Or, in other words, we want :� The transformed loop to traverse the same instances.� The transformed loop to keep the dependencesAn iterations space, which is n-dimensional if the loop nest consists out of n loops, consists out of all thepoints (i1; : : : ; in) where L1 <= i1 <= U1; : : : ; Ln <= in <= Un. A loop transformation is valid, when thetransformed loop traverses the same iteration space as the original loop.A dependence, denoted with a dependence distance vector (d1; : : : ; dn), means that there are iterations(i1; : : : ; in) and (j1; : : : ; jn) for which the relation ~i + ~d = ~j holds. In other words, there are iterations(i1; : : : ; in) and (j1; : : : ; jn) that refer to the same memory location M, (i1; : : : ; in) precedes (in lexicographicalorder) (j1; : : : ; jn) and (i1; : : : ; in) is (in lexicographical order) the nearest, with respect to (j1; : : : ; jn) thatwrites to M. Dependences can also be described by dependence direction vectors. There is a dependencein the loop nest with a distance vector, denoted by (s1; : : : ; sn), si 2 f�1; 0; 1g, if any direction vector(d1; : : : ; dn) satis�es (�1s1; : : : ; �nsn), with �i a positive integer. With this theory, we can de�ne a validloop transformation more formal : a reordering of a loop is valid if and only if each distance vector remainspositive or, equivalently, if each direction vector remains positive. Where a distance vector (d1; : : : ; dn) ispositive, denoted by d1; : : : ; dn = 0anddi; : : : ; dn > 0.61



Since we want to write loop transformations as a matrix multiplication, especially a matrix multiplicationwith unimodular matrices, for bene�ts mentioned later on, some background on unimodular matrices ispresented.A unimodular matrix is a square integer matrix U, where det(U)=�1. The bene�t of using unimodularmatrices for describing loop transformations is that the product of two unimodularmatrices stays unimodularand that the inverse of a unimodular matrix is unimodular. Another bene�t is that any unimodular matrixcan be expressed as the product of reversal, interchange and upper skewing matrices (and also as a productof reversal, interchange and lower skewing matrices). Where a reversal matrix is obtained from an n x n unitmatrix, denoted as In, by negating a diagonal element of In. The interchange matrix is obtained from Inby interchanging two columns (or rows) of In. The skewing matrix is obtained by replacing a zero elementof In by a non-zero integer element, if it is replaced above the main diagonal it is called an upper skewingmatrix, otherwise a lower skewing matrix.4.4.2 Unimodular transformations of double loopsIn [12], Banerjee presents a uni�ed matrix-based theory for transforming double loops, in order to determinethose instances of the loop-body that can execute in parallel.One of the goals of the paper is to write loop transformations as multiplying a loop nest, denoted by,for a double loop, (L1,L2), by a unimodular matrix U. The transformed loop is denoted by (K1,K2), thus(K1;K2)T = U (L1; L2)T . This means every iteration, (i1,i2) in the original iteration space is mapped to aniteration (i01; i02)T = U (i1; i2)T . In the paper, an algorithm is presented to �nd for every double loop (L1; L2),the transformation of (L1; L2) under a unimodular matrix U, in the form of another double loop, (K1;K2).Note, that for loop nest of depth > 2, the new loop bounds are not as easily found as described in the paper.A system of inequalities is obtained by substituting U�1(K1; : : : ;K2)T for (L1; : : : ; L2)T . The actual loopbounds are found by applying Fourier-Hotzkin elimination [14] to this system, for implementation details,look at [13]. Also note, that the transformation is valid if and only if for each distance vector (D1,D2) > 0in (L1,L2), we have U (D1; D2)T > 0.There are some special cases of loop transformations :� Outer loop reversal, when the transformation is derived from the special reversal matrix U =� �1 00 1 � . This will make the loop traverse through the iteration space backwards with respect tothe outer loop.� Inner loop reversal, when the transformation is derived from the special reversal matrix U =� 1 00 �1 � . This will make the loop traverse through the iteration space backwards with respectto the inner loop.� Loop interchange, when the transformation is derived from the special interchange matrix U =� 0 11 0 � . This will make the inner loop of the original loop nest the outer loop of the transformedloop nest and vice versa.� Skewing of the Inner loop by the Outer loop, when the transformation is derived from the specialupper skew matrix U = � 1 q0 1 � , where q is the skewing factor.Important to note is that any unimodular transformation of the loop nest (L1,L2) can be accomplished bya �nite sequence of loop reversals, interchanges an skewings of the inner loop by the outer loop.From the theory in the previous paragraphs, an algorithm is derived that �nds a unimodular matrix U,such that, (K1,K2) is equivalent to the original loop nest, K2 can be executed in parallel and the iterationcount of the transformed loop is minimized.To illustrate this algorithm, an example is provided. Consider matrix vector multiply, as shown in �gure4.16. In this program there is a dependence vector (0,1), which prevents parallelizing the inner loop. With62



DO i = 1,100,1DO j = 1,50,1Y [i] = Y [i] + A[i; j] �B[j]ENDDOENDDODependence vector (0,1)Algorithm, �nd the most suitable (u11; u21) :Step 1) Initialize LIST to all possibilities for the �rst row of U :LIST = (0; 1)T ; (1; 0)T ; (0;�1)T ; (1; 1)TStep 2) Delete all possibilities from the LIST that would disrupt thedepence structure :Delete (1; 0)T and (0;�1)T because of dependence(0,1)Step 3) Make the best choice from the LIST ; take the �rst from the sequence(0; 1)T ; (1; 0)T ; (0;�1)T ; (1; 1)T; (p; 1)T that is present in LIST :Best choice is (1; 0)TStep 4) Completion procedure; take (0; 1)T for (u12; u22).This makes U = � 0 11 0 �DO i = 1,50,1DO j = 1,100,1Y [j] = Y [j] +A[j; i] �B[i]ENDDOENDDODependence vector (1,0).Figure 4.16: Transformation of matrix-vector multiply to parallelize the inner loop.the algorithm, of which the steps are shown in the �gure, we �nd the matrix U = � 0 11 0 � as the bestunimodular matrix that enables the parallelization of the inner loop. This unimodular matrix represents, asis explained in the previous paragraphs, loop interchange. The resulting code is also present in the �gureand in this code, the inner loop can be parallelized.From the code it is obvious that this transformation was perfect for enabling the inner loop to beparallelized and in this simple example it is also obvious that the data locality, was not attacked by thetransformation. When larger loop nests are optimized for parallelism, the transformed code will not providesuch an easy view on the data locality subject. At this point the CVT can help grab ideas on what is changedto the data locality by the transformation.4.4.3 Optimizing data locality through unimodular loop transformationsIn [4], Wolf and Lam discus unimodular loop transformation from the perspective of data-locality. First,a more abstarct representation of data-dependences, referred to as dependence vectors, is presented. De-pendence vectors are a generalisation of the in section 4.4.1 presented distance and direction vectors. Adependence vector in an n-nested loop is denoted as ~d = (d1; d2; : : : ; dn). Each component di is representedby [dmini ; dmaxi ], where dmini 2 Z [ f�1g,dmaxi 2 Z [ f1g and dmini � dmaxi . Directions '<', '>', '=' and'�' correspond to the ranges [1,1], [-1,-1], [0,0] and [-1;1]. A distance component d0icorresponds to thedegenerate interval [d0i; d0i]. 63



With this theory, the dependence structure of a loop is are captured by a set of distance vectors. Thenthe localized vector space is computed from the distance vector set and the transformations matrix and itis used to capture the transformations potential to exploit locality. Furthermore, the inherent reuse of theloops is captured by several reuse vector spaces :� Self-temporal reuse vector space. Capturing reuse that occurs when a reference within a loopaccesses the same data location in di�erent iterations.� Self-spatial reuse vector space. Capturing reuse that occurs when a reference within a loop accessesdata on the same cache line in di�erent iterations.� Group-temporal reuse vector space. Capturing reuse from di�erent references that refer to thesame location.� Group-spatial reuse vector space. Capturing reuse from di�erent references that refer to the samecache line.Then the �nal locality from the transformed code is evaluated by intersecting the reuse vector space withthe localized vector space.DO I = 0,t,1DO J = 0,N-1,1A[J+1] = 13*(A[J] + A[J+1] + A[J+2]);ENDDOENDDODO II = 0,N-1+t,BDO I = 0,t,1DO J = Max(I,II),Min(I+1000,II+B-1),1A[J-I+1] = 13 (A[J-I] + A[J-I+1] + A[J-I+2]ENDDOENDDOENDDOFigure 4.17: Original and transformed loop nests, that perform 1-dimensional SOR.
(a) Miss statistics (b) Reference statisticsFigure 4.18: Miss and reference statistics for array A in the SOR loop.With these results, an algorithm is presented that �nds the best combination of loop transformations(uni�ed as unimodular matrix transforms), such as loop interchange, skewing, reversal and blocking, to64



(a) Miss statistics (b) Reference statisticsFigure 4.19: Miss and reference statistics for array A in the SOR loop.improve the data locality of a loop nest. That the resulting loop nests are quite di�cult to fathom, is shownin the next few paragraphs with a loop that performs SOR.In �gure 4.17, the original loop and the transformed loop are shown. The original loop must �rst beskewed, to make the inner loop fully permutable and then it is blocked to optimize to data locality. It iseasy to see, that the transformed loop nest is more di�cult to read than the original. A transfomation ofa more complicate loop nest, e.g. 2-dimensional SOR, makes the complexity grow exponentially. The loopnests are transformed to CVT code (as is shown in A.3) and tested.Screen shots are not illustrative, the whole cache is �lled up with one color (there is only one array), andso they are not included. The miss and reference are more illustrative: in �gure 4.18 the miss- and reference-statistics of unblocked version are placed and in �gure 4.19 those for the blocked version. It is obvious thatthe reference statistics for both loops are the same (as they should be), but that the miss statistics arequite di�erent, for the unblocked version almost all references miss, thouch for the blocked version only onereference misses. The decrease in miss-ratios is enormous : 0.246 for the unblocked and 0.012 for the blockedversion. Note that there are 1024 elements mapped on 512 pixels, this means the number of misses of twoelements are added, this could mislead a user, but not in this case, where the references are symmetric. Alsonote that, in this case, any blocking factor smaller than Cs would have done the trick in this case.4.4.4 Nonsingular loop transformationsDO i = 1,3,1DO j = 1,3,1A[i+j,4j-2i+3] = j;ENDDOENDDODO u = -2,10,2DO v = �u2 + 3max(1; d u2+12 e);�u2 + 3min(3; b u2+32 c); 3A[u+3,v] = (u+2v)/6;ENDDOENDDOFigure 4.20: Loop nest transformed by a nonsingular loop transformtion.Unimodular matrices are a special case of nonsingular integer matrices, which are square integer matricesU, where det(U) 6= 0. The advantage of using nonsingular matrices, as presented in [9], is that the completionprocedure is easier and it permits a new loop transformation called loop scaling.65



The completion procedure, i.e. given the �rst few rows of a loop transformation, 'pad out' the remainingrows to generate a matrix that represents a legal transformation (look at 4.4.1, for the de�nition of a legaltransformation), is also easier. This is because in a nonsingular matrix, fewer constraints are to be satis�ed.In the paper a completion procedure is presented as an algorithm. The only drawback is that generatingthe transformed loop nest is somewhat more intricate than when nonsingular matrices are used, this is themain concern of the paper and algorithms are presented to �nd the transformed loop nest.Nonsingular loop transformations produce even more di�cult to read code than unimodular transforma-tions. To show this an example is provided in �gure 4.20. Even for a simple loop as shown in the �gure, thenonsingular loop transformation with matrix U = � �2 41 1 � , produces hard to read code. It is obviousthat when larger loop nests are optimized, even more hard to read code is produced. This is where the CVTcan help to get a feeling of what is happening with the data locality after nonsingular loop transformationsare applied.4.5 Software PrefetchingSoftware prefetching [7] is a technique to reduce the number of compulsory misses in cache. This subject isinteresting for two reasons :� It is one of the few software optimizations for dealing with compulsory misses (normally it is done inhardware, through larger cache lines or hardware prefetching)� It shows both how the simulator of the CVT can be changed to deal with di�erent kind of architecturesand how the CVT can deal with memory traces e�ectively.After examining hardware prefetch techniques used on the RiCEPS benchmark, Callahan, Kennedyand Porter�eld found that the programs for which the hardware prefetching did not improve the memoryperformance, all had patterns that could be predicted during execution by simple code that is generated bythe compiler.The idea of software prefecthing is to provide a non-blocking prefetch instruction that causes data at aspeci�ed memory address, which is predicted by the compiler, to be brought into cache. The compiler willassist the processor in prefetching, so it needs to have a mechanism to inform the cache that a memoryaddress will be needed. This is implemented by having a cache load instruction, which can be viewed as ano-wait load. For this purpose, a cache must be built that can have multiple outstanding requests.The compiler will follow a certain strategy to identify data to be prefetched. The references with thegreatest probability of generating a large number of misses must be prefetched. Especially array referencesthat refer to di�erent elements on each iteration cause a lot of compulsory misses and are important toprefetch (e.g. a array subscript that uses the inner most loop index will be accessing di�erent values on eachiteration of the inner loop). For prefetching to be e�ective at reducing miss delays for the processor, theprefetch must preceed the actual load by enough time to allow the load from memory to cache to complete,but not so far that the data might be ushed out of the cache before being used. An algorithm is providedthat will help the compiler to decide which data should be prefetched. It is shown, through simulations, thatsoftware prefetching is at least as well as hardware prefetching and succesfully prefetches data that cannotbe handled by either longer cache lines or hardware prefetching, e.g. the usage of induction variables in thesubscripts of array accesses.Allthough software prefetching seems a very attractive way to reduce the number of compulsory misses,one can not forget that it induces some overhead (the additional execution time required to perform a cacheload: issuing the prefetch instruction and computing the prefetch address). In high performance systemsthat can issue more than one instruction per cycle, the costs of the overhead can be completely hidden underother instructions (overhead reduction through machine parallelism). And even when this is not the case,the overhead can be reduced by unnecessary prefetch elimination and register allocation, making softwareprefetching practical on other long-latency machines.To tune the CVT to work with software prefetching, the case was examined for which the overheadof a cache load is completely hidden, which is valid for most high performance systems nowadays. This66



means that a load performed by the special prefetch instruction will load the data into cache, not causing acompulsory miss, whatsoever. There are two important notes to make here :� The simulator of the CVT has to change in such a way that, whenever a special prefetch instructionloads in data, a miss does not occur.� The program format of the CVT is not applicable in this case (note that no program format wouldhave been), so a trace must be made.Tuning the simulator does not requite that much e�ort, the only thing to change is that whenever thespecial prefetch instruction is issued, the number of misses (per cache line and per program counter) is notincreased. The other statistics and the actual data transfer (in the CVT simulated by setting some �elds ofa cache line) can take place as normal.DO i = 1,100,1DO j = 1,100,1DO k = 1,100,1LOAD(A(j,i))LOAD(B(k,i))PREFETCH(B(k+1,i))LOAD(C(j,k))PREFETCH(C(j,k+1))STORE(A(j,i))A(j,i) = A(j,i) + B(i,k) � C (j,k)ENDDOENDDOENDDOFigure 4.21: Matrix-Matrix multiply with prefetch instructions.
Figure 4.22: Screen shot after the software prefetched matrix matrix multiply.Making the trace is not too much e�ort either, a little c-program will do the trick. In section B.1 theprogram that makes trace of a matrix-matrix multiply with prefetch instruction is placed. The original loopis shown in �gure 4.21. The �rst three entries of a trace line are used as normal, for the program counter(each instruction is given an own unique program counter, from 0 to 5), the address (note that the addresis calculated for an array that is stored in column major order) and the read/write �eld (which is set toan arbitrary value if the reference is the prefetch instruction). The �rst extra entrie is used to specify an67



(a) Miss statistics (b) Reference statisticsFigure 4.23: Total miss and reference statistics after software prefetched matrix matrix multiply.instruction as either normal (the value of this �eld is 0), or as the prefetch instruction (value of the �eld is1), the other two extra entries are not used.After simulating a small matrix matrix multiply (matrices of only 100 elements), the screen of the CVTlooks like in �gure 4.22. The colors from the program counters (from 0 to 5) are, from white to dark grey: 0(read A[I,J]), 4 (prefetch C[K+1,J]), 5 (write A[I,J]), 2 (prefetch B[I,K+1]), 1 (read B[I,K]), 3 (read C[K,J]).When simulating, it is seen that most prefetch instructions work prefectly: a cache line loaded in by aprefetch instruction (the color of that cache line is that from a program counter that represents a prefetchinstruction), is very often replaced by the associated 'normal' read. In the screen shot, the statistics areapresents the user with the number of misses per program counter. What is learned from this area, is that,the read to A[I,J] (PC 0) always produces a miss, but is also always reused by the write to A[I,J] (PC 5).Also, in this run 90% of the reads to B[I,K] is correctly prefetched and 99% is correctly prefetched for readsto C[K,J].In �gure 4.23 the number of references and the number of misses for the whole cache are shown. Whatcan be seen in this �gures con�rms the in the previous paragraph made remarks. The �rst band of misses(from cache line 0 to 99) corresponds to the reads to A[I,J], which all miss once. The second band (fromcacheline 101 to 110) corresponds to the reads to B[I,K], which misses every iteration of the outer loop. Thelast miss (on cache line 202) corresponds to the only miss on the read to C[K,J], which can not be prefetched.4.6 Sparse codesSparse codes represent a special class of numerical codes, which have usually more complex reference patterns,due to the indirectly addressing of at least one array. Because of these irregular reference patterns, cachebehavior seems non-predictable and hard to analyse. Little research has been devoted to this subject becauseof this apparently random behavior.DO I = 1,N,1DO J = D(I),D(I+1)-1,1Y(I) = Y(I) + Matrix(J)�X(Index(J))ENDDOENDDOFigure 4.24: Sparse Matrix Vector multiplyIn [2], a study on the locality within Sparse Matrix Vector multiply is presented. The sparse matrixis stored by the storage-by-column technique, look at �gure 4.24 for the resulting loop. The data localityfor the arrays Y and D is similar and exhibits awless spatial and temporal locality, they provoke mainly68



intrinsic misses and account for a small share of the total cache misses (since usually the matrix dimension ismuch smaller than the number of non-zero elements). The main source of misses comes from arrays Matrixand Index, which have no temporal locality and exhibit awless spatial locality. These arrays provoke mainlyresponsible for intrinsic misses, which are easy to evaluate. Another source of misses comes from array X,which behavior is much more complex, due to the indirect addressing. But, if a uniform distribution isassumed within a band and if the average distance within two columns is of the order of the cache line size,there is some spatial locality. Array X is also the only array which presents unexploited temporal locality,however this is non-trivial and hard to analyze and exploit.
Figure 4.25: Screen shot after the Sparse Matrix Vector multiply.

Figure 4.26: The GRE 1107 matrixTo analyze the behavior of array X, classic deterministic modeling cannot be used, instead, probabilisticmodeling is used. Approximations for the number of self-interference misses (note that for the sake ofsimplicity, only self-interference misses are studied, c.f. [3]) and the number of intrinsic misses are presented.More important (and the main purpose of the paper) is highlighting the role of several of the problemparameters :� Line size Ls The line size is a critical parameter, mainly because of its inuence on the intrinsicmisses, but also on cross-interference misses. 69



� Degree of interfernencew = WBCs , whereWB is the bandwidth andCs the cache-size. This parameterindicates how many elements of X conict for the same cache line, and therefor reects quite well thedegree of self-interference.� Density d = nnzWB , where nnz is the average number of non-zero elements per row. It indicates theaverage distance between non-zero elements on a row and a column of the original matrix A. It isa measure of the degree of temporal and spatial locality of the non-zero elements of matrix A, andconsequently, of the references to array X.To improve the behavior of Sparse Matrix Vector multiply, some optimization techniques are discussed.First, bandwidth reduction, which is e�ecient in grouping non-zero elements, and minimum-degree, whichscatters the non- zero elements across the matrix. Second, blocking techniques are discussed. It is shownthat classic blocking (as discussed in section 4.3) is only pro�table for nearly dense matrices and not forsparse matrices, because each element is not reused a su�cient number of times to override the overhead ofblocking. Another blocking technique, blocking by diagonal, is presented and shown more e�ective than theclassic blocking techniques. Blocking by diagonal blocks sparse matrices around their elements of symmetry: diagonals. The original large band is split in several small band, such that their width is of the order ofcache size.To illustrate the usage of the CVT with repsect to sparse matrices, we simulate the workings of SparseMatrix Vector multiply in cache. Because the CVT cannot handle indirect addressing in a CVT program,we have to make a trace for the program. This is straight forward, in section B.2 the c-code to make a traceis presented. It loads in a matrix (stored by row) and writes a trace line for each read or write of the originalloop.For the simulation we took the sparse matrix GRE 1107 from the Harwell-Boeing sparse matrix collection(see [16]), in �gure 4.26, the outline of that matrix is shown. When the trace is �nished, the screen lookslike �gure 4.25. The colors of the program counters (0 till 4) are, from white to dark grey : 0 (read to Y[I]),4 (write to Y[I]), 2 (read to Index[J]), 1 (read to Matrix[J]) and 3 (read to X). The sparsity of the dark greydots (coming from program counter 3, the reference to array X) is directly related to the sparsity of theGRE 1107 matrix. Note that the large band of dark grey dots from cache line 213 to cache line 313, doesnot come from consecutive elements of array X, but small bands of elements that happen to map to a largerband in the cache (as we have learned from the history). Also note the whimsical miss behavior, as can beseen in the statistics area, which is also directly related to the sparsity of the references.
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Chapter 5Using the CVT for HardwareOptimizations5.1 IntroductionMost program do not access all code or data. There is a small percentage of code which is executed intensively,e.g. a numerical code where nested DO-loops execute a multiplication of two matrices. This hypothesis ofusage a portion of the code lead us to two phenomena; temporal locality and spatial locality. Temporallocality is also called locality in time, which means that if a datum is referenced, it will tend to be referencedsoon again. Spatial locality is also called locality in space, which means that if a datum is referenced, anotherphysically nearby datum will tend to be referenced soon. These principles lead to a new development intechnology of memory hierarchy. When these reusable data would be used in a faster hardware organization,there could be a tremendous speed up. You might think to hold all data in this faster piece of memory, butthere is a trade o� in memory hierarchy; Fast memory is expensive and can not hold a lot of data because itis physically impossible to build big fast expensive hardware solutions, when it would loose its speed becauseof its bigger size. Each level in the hierarchy is faster and more expensive per byte than the level below,where the level close to the processor is the highest level.5.2 TerminologySuccess or failure of an access in the upper level is respectively called a hit or a miss. A hit will improvethe speed up, because the latency to get this datum from a lower level is now avoided. But when a missoccurs, the datummust be fetched from a lower level and will cost more time. Hit ratio is a percentage whichindicates the fraction of all references which were found in the upper level. The miss ratio is the percentagewhich indicates which fraction of all references was not found in the upper level and had to be fetched froma lower level.Since memory hierarchy is introduced in order to speed up computers, the speed of hits and misses arevery important. The hits are clearly an improvement when the cycle time is decreased to get this datumto the processor. But now the penalty we have to pay for misses. Because the processor �rst has to checkfor presence of this item in the upper level, then when a miss is determined, it will fetch this datum froma lower level. This is more than just direct accessing this lower level. The access time of a miss is biggerthan a memory hierarchy without this higher level. Beside the access time, the miss penalty includes alsothe transfer time which is related to the bandwidth between the two levels.5.3 Memory Hierarchy EvaluationIt could be misleading to test a memory hierarchy on the CVT to take the miss ratio as indicator for theperformance. A high miss ratio would indicate a bad performance and a low miss ratio would indicate a71



good performance. But this indicator is independent of the speed of hardware. For an extreme example,suppose we would test a hierarchy with only one level; memory. There will not be any misses and performvery well compared to a hierarchy with two levels, where a few misses occur, but exploit the reusable data.Therefore it is better to introduce a more realistic indicator, the average memory-access time.Average memory-access time =Hit time + Miss rate * Miss penaltyFigure 5.1: Performance evaluation.This is still not the execution time! The reads and writes to cache are handled as references in thesimulator, but a write takes more time than a read because of the tag checking, which cannot be done inparallel on a write, because of replacing unique data! Therefore we must interpret this indicator in respectto the realistic execution time. The miss penalty is closely related to the block size, the minimumunit whichcan be transfered. Suppose we would increase the block size, there is only space for fewer blocks in the higherlevel when we do not change the size of this level. Though spatial locality might be more exploited, becausemore data is transferred. The number of misses could decrease because of the potential spatial locality, butbigger block sizes displace useful information more often and cause more misses. The trade o� is found inthe pollution point, where the optimum of these parameters is reached.5.3.1 Cache ParametersThe previous sections discussed the memory hierarchy. The highest level, which is the closest level to theprocessor, is nowadays the cache. Therefore we named our tool the Cache Visualization Tool. But otherlevels are also easily simulated. When you write an appropriate simulator according our restrictions, youcould simulate any level in the memory hierarchy. Below you will �nd some cache parameters which wereused in currently used workstations and minicomputers.But this indicator can not be judged on without knowing the real cpu performance. To clarify thisremark, the following example will illustrate the misleading performance of two di�erent cache architectures,direct- mapped and 2-way set associative cache. Assume that the CPI is normally 1.5 with a clock cycletime of 20 ns, that there are 1.3 memory references per instruction and that the size of both caches is 64KB. Since the speed of the CPU is tied directly to the speed of the caches, the 2-way set associative cacheneed 8.5% more time to identify a hit or a miss by usage of the multiplexer. Suppose the miss penalty forboth cache architectures is 200 ns. The miss-rate for the 64 KB direct mapped cache is 3.9In this case, the CPU-time for direct-mapped caches is slightly better than 2-way set-associative caches(see formula in �gure 5.4), despite of the better average access time for the 2-way set-associative caches,calculated in the formula in �gure 5.3!Parameter Minimum Maximum Unitcache line size 4 128 byteshit time 1 4 clock cyclesmiss penalty 8 32 clock cyclesaccess time 6 10 clock cyclestransfer time 2 22 clock cyclesmiss rate 1 20 percentagecache size 1 256 KB- the minimum average memory-access time = 1 + 0.01 * 8 = 1.08 cc.- the maximum average memory-access time = 4 + 0.20 * 32 = 10.40 cc.Figure 5.2: Range of average memory access time72



AMAT-1way =20 ns + 0.039 * 200ns = 27.8nsAMAT-2way =20 ns * 1.085 + 0.030 * 200ns = 27.7nsFigure 5.3: Calculation average memory access timeCPUtime-1way =IC*(1.5*20ns+1.3*0.039*200)=40.1*ICCPUtime-2way =IC*(1.5*20ns*1.085+1.3*0.030*200)=40.4*ICFigure 5.4: Calculation cpu-performance.5.4 CachesEssentially all basic caches are the same, except that they can vary in degree of set associativity from 1 toN. Ideal would be caches which can hold all data which might be reused in the near future. This solutionwould solve the high performance issue!Though, this solution is far from realistic. If the cache is n-way set associative, then we'll need someadditional hardware to check all N sets in parallel where the requested data is located. This will cost a lotof extra money. Besides the costs, its physically impossible to make caches as big as memory because of thenecessary additional hardware which makes space also an issue! But small fully associative caches have stillthe advantage of avoiding conict misses.The opposite of fully associative caches is direct-mapped cache. Besides that this is a cheaper cache,because no additional hardware is required, it is also faster to �nd data in cache because its addressing isunique. There is only one way to hit the requested datum in cache. One major drawback of direct- mappedcaches is the sensibility for cross- and self-interferences; addresses which map to the same location in cachewill de�nitely be bumped out.Between these extremes, direct-mapped- and fully-associative caches, there are a lot of alternatives; p-way associative caches, where 1 < p < N and p an power of two! P must be a power of two because thecache must be divided into sets of similar size and this can only be done by powers of two, where the cachesize is also a power of two. This seems the golden middle way. There are less conict misses than with directmapped and there is less extra hardware used than fully-associative caches. But there are always exampleswe can think of where a particular architecture would fail. Because all designs have their advantages, it isuseful to combine those architectures, like this is done with the victim cache (see section 5.6).5.5 Replacement policyWhen data is required into cache it must be put into a cacheline, but what to do when that cacheline isalready taken. It is not di�cult when there is an invalid cacheline in the corresponding set, then the invalidcacheline will be displaced by the new required item. But when all cachelines are valid and still one mustbe bumped out, a replacement strategy is needed to determine which element must be replaced. There areseveral replacement policies implemented in this tool:� Random replacement When all cachelines in the calculated set are valid, the cacheline to be replacedis chosen randomly. One advantage of this policy, is that it can be simply implemented in hardware.It is more complex when you use other policies; you have to keep track on which cacheline is used e.g.least recently or came in �rst!� Least Recently Used replacement This policy is based on temporal locality. When a datum is notreferenced recently after it has been brought in, it probably won't be used in the near future. Therefore73



this seems a perfect policy to bump out least recently used cachelines. But imagine the followingreference pattern in a 2-way set associative cache:First there is a read to datum A followed by a read to datum B, mapping to the same location incache. Data A and B can be placed in the selected set. Now there is a write to datum A, which hitsin cache. Now datum C is required in the same set. Least recently used cacheline in this set is datumB, because the the last action to datum A was a write, which occurred after the read to datum Band is replaced by datum C. When this scenario is repeated, which is very likely in nested DO-loops,only datum B and C will switch every time. Suppose there was no write to datum A. Then datum Cwould replace datum A, because of the order in which the reads to datum A and B had occurred. Inthis worst-case scenario there is no reuse, because datum C bumps out datum A, datum A bumps outdatum B and datum B bumps out datum C. This is an typical example of compulsory misses. Becausewhen we would use a 4-way set associative cache, there would not be any interference and all possiblereuse will be exploited.� First-In-First-Out replacement If we use the same scenario as we used in LRU replacement (a read todatum A followed by a read to datum B, a write to datum A followed by a read to datum C, whichall map to the same cache location) the performance of FIFO is worse. When both items A and B arein cache, a hit will occur on data-item A but datum C will bump out datum A, because this elementhas the earliest arrival time. Accordingly datum A will bump out datum B, because its smaller arrivaltime than datum C etc. This example is equivalent to the worst case example of LRU policy.These policies are developed in order to reduce the chance of throwing away reusable information. Forall policies there are worst cases but the intention is to replace unreusable data as much as possible. Bythe way, these policies are not useful when we use a direct-mapped cache, where there is only one choice toreplace a cacheline.5.6 Write policyThough the average cache accesses consists of reads, we should not neglect the writes. Basically there aretwo basic options for write policies; Write- through and write-back. Write through writes its data both tocache and a lower level in the memory hierarchy. One advantage is that the data in cache can not be dirty,while there is always a clean copy in a lower level. Write-back will only write to cache. This means thatthere is unique data in cache, which is not present in a lower level. Hence, when this dirty cacheline mustbe replaced, a clean copy must be created in a lower level before this data is overwritten. This option,compared to write through, can avoid some memory tra�c but need an extra bit to indicate whether thecacheline is dirty or clean. When a cacheline is clean, means that there is a clean copy in a lower level, whenit's dirty there is no copy in a lower level. Hence, multi-processors will want write back to reduce memorytra�c per processor and write through to keep the memory and cache consistent. On a write miss there aretwo options; load the required block from a lower level in the cache and write to it or write directly into thelower level without allocating the cacheline in cache. The �rst method is called allocate on write, the secondis called no-allocate on write.5.7 Opportunities of the CVTResearch to benchmarks and architectures is already done in other papers. Therefore is chosen to selectsome test cases which clearly illustrate certain phenomena in di�erent caches. Though this tool can be usedfor comparison of di�erent architectures, this tool is developed to unveil unpredictable cache phenomena.The following sections will be focused on how we can detect performance slow down, rather than testing theperformance of all existing memory hierarchies. 74



5.7.1 How can we do research?First, we should make a trace of an existing program, which e.g. performs poorly with respect to ourexpectations. When this trace is in the right format (see section 3.5.4) and the simulator is not changed fora special new hierarchy, the trace can be loaded in the CVT. The simulation could be fast forwarded so thatthe �nal trace statistics can indicate which program counters cause a lot of misses. These program countersare often found in DO-loops, because of their often huge number of iterations. Second, when we found ourbottle-neck(s), we can focus our research on simulation of this DO-loop with a small CVT-program. Theadvantage of these small programs is that the reference patterns to array structures can be visualized in thearray statistics. Third, we can do a fast forwarded simulation, where the �nal miss statistics might indicateslow performance. This area might need a closer look. We restart our simulation on normal speed and watchthe development in cache, where our eyes are focused on the potential bottle-neck area. When it takes sometime before there are some references we could also set a breakpoint on a cache area; when a reference occursin our research area, the simulation will be halted, and we can continue step by step though this critical partof the simulation.Cache size Set Associativity Total miss rate Compulsory Capacity Conict1KB 1-way 0.191 0.009 5% 0.141 73% 0.042 22%1KB 2-way 0.161 0.009 6% 0.141 87% 0.012 7%1KB 4-way 0.152 0.009 6% 0.141 92% 0.003 2%1KB 8-way 0.149 0.009 6% 0.141 94% 0.000 0%2KB 1-way 0.148 0.009 6% 0.103 70% 0.036 24%2KB 2-way 0.122 0.009 6% 0.103 84% 0.010 8%2KB 4-way 0.115 0.009 7% 0.103 90% 0.003 2%2KB 8-way 0.113 0.009 8% 0.103 91% 0.001 1%4KB 1-way 0.109 0.009 8% 0.073 67% 0.027 25%4KB 2-way 0.095 0.009 9% 0.073 77% 0.013 14%4KB 4-way 0.087 0.009 10% 0.073 84% 0.005 6%4KB 8-way 0.084 0.009 11% 0.073 87% 0.002 3%8KB 1-way 0.087 0.009 10% 0.052 60% 0.026 30%8KB 2-way 0.069 0.009 13% 0.052 75% 0.008 12%8KB 4-way 0.065 0.009 14% 0.052 80% 0.004 6%8KB 8-way 0.063 0.009 14% 0.052 83% 0.002 3%16KB 1-way 0.066 0.009 14% 0.038 57% 0.019 29%16KB 2-way 0.054 0.009 17% 0.038 70% 0.007 13%16KB 4-way 0.049 0.009 18% 0.038 76% 0.003 6%16KB 8-way 0.048 0.009 19% 0.038 78% 0.001 3%32KB 1-way 0.050 0.009 18% 0.028 55% 0.013 27%32KB 2-way 0.041 0.009 22% 0.028 68% 0.004 11%32KB 4-way 0.038 0.009 23% 0.028 73% 0.001 4%32KB 8-way 0.038 0.009 24% 0.028 74% 0.001 2%64KB 1-way 0.039 0.009 23% 0.019 50% 0.011 27%64KB 2-way 0.030 0.009 30% 0.019 65% 0.002 5%64KB 4-way 0.028 0.009 32% 0.019 68% 0.000 0%64KB 8-way 0.028 0.009 32% 0.019 68% 0.000 0%128KB 1-way 0.026 0.009 34% 0.004 16% 0.013 50%128KB 2-way 0.020 0.009 46% 0.004 21% 0.006 33%128KB 4-way 0.016 0.009 55% 0.004 25% 0.003 20%128KB 8-way 0.015 0.009 59% 0.004 27% 0.002 14%Figure 5.5: Trace research using 32 bytes cachelines and LRU replacement.This table 5.5 (see bibliography [21]) unveils the virtues of certain cache types. When the associativity75



increases, the number of conict misses decreases. This is explained by the opportunity to place two or moredata-items, which map to the same cache location, in cache at the same time without bumping out reusabledata. When the size increases, the number of capacity misses is decreasing. This can be explained that moredata is able to stay in cache. The number of compulsory misses is constant for size and set associativity ,except when change the blocksize. When we change the blocksize, the number of data-items transferred tothe cacheline is more, and thus a bigger chance that a consecutive element is already in cache. In table 5.5we can also see the trade o� between all di�erent architectures. This is not done for victim caches. Thismemory hierarchy tries to �nd a way between the speed of the direct-mapped cache and the conict avoidedfully associative cache.5.7.2 Victim cacheSome caches are combined in one new hardware design. The victim cache (see bibliography [20]) is a direct-mapped cache in the highest level and a small fully-associative cache on the level just below. First, thisarchitecture uses the speed of the direct-mapped cache and second reduces the miss penalty by holding hotdata items close to the cache in the fully associative cache. The drawback of interference in the direct-mapped cache is combined with the advantage of avoiding interferences in the fully associative cache. Theclock cycle time of a miss in the direct-mapped cache is reduced by a small fast fully associative cache.Compared to the previous cache architectures, this is a good solution, but this solution is more expensivethan all the others discussed before. Though, also for this architecture there are examples we can think ofwhere this architecture could fail. Because when there are a lot of misses to both levels, there is an enormousmiss penalty to pay.How can we test architectures which are nowadays developed and are not directly supported by theCVT? One thing we have to do is write a guest-simulator, call it 'sim.c' and recompile the CVT (see section3.5.4 on the format of a guest-simulator). The compiler of the CVT-program will generate addresses to theguest simulator, which needs to determine whether it is a hit or a miss according to the set-associativity,replacement-policy and write-policy. The CVT will do the visualization and statistics. Important is to tunethe CVT-architecture parameters on the implied architecture in the simulator (i.e. the CVT cache size isstandard 2048 bytes and the guest-simulator will use a cache size 4096 bytes which can generate addressesbigger than the CVT cache size. Thus, adapt the CVT-parameter 'cache size' to 4096 bytes, set associativity,replacement- and write policy).
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The �rst option is rather complicated because we will need two separate simulations; one simulation ofthe �rst level, the direct-mapped cache, and one simulation of the second level, the fully associative cache.This second level needs a small modi�cation of the CVT; Besides the result whether it is a miss or a hit,the guest-simulator needs to determine in which level this activity took place. Hence, the references tothe second level are only the misses of the �rst level. The modi�cation is rather simple; in the CVT-�le'program.c' there is a function which determines what to do when a hit or a miss occurred. When thisfunction also checks for a level than the procedure is the same. This possibility is only useful when we wantto evaluate the performance exactly. It is rather important to know the number of hits in the second level,where these hits prevent a huge miss penalty for a request to the third level, main memory. The questionis how important the miss-penalty is of one clock-cycle when a miss occurred in the direct-mapped cachewhich will hit in the fully associative cache compared to miss-penalty of i.e. 20 clock-cycles when a requestwill miss in both levels? Therefore the second option to simulate two levels and visulize only one level, seemsmore appropriate.This second option needs also a small modi�cation of the CVT. How can two levels be simulated whenthere is only visualization space for one level? Most activity will take place in the �rst level of the victimcache, which is also rather big compared to the small fully associative cache. Therfore the choice is made tovisualize the direct-mapped cache. When one prefers to visualize the second level, the CVT need some moremodi�cation like explained in the previous paragraph about the two seperate simulations of the levels. Toupdate the screen and statistics appropriately, we have to adjust the the function which handles the hits inCVT-�le 'program.c'. Normally when a hit occurs, updating the statistics is su�cient where the element isalready visualized in cache. But when a hit occurs in the second level, the victim cache will bring this datuminto the �rst level which was not in the �rst level! Though, when the guest-simulator returns the 2nd levelin which it hit, the CVT must visualize this in the �rst level cache. The simulation of the misses remainsthe same. This approach implies a little approximation of the performance evaluation, where we neglect thedata-transfer between the �rst and second level. This implies we cheat one clock-cycle on every miss there isin the �rst level. This is justi�ed when i.e. 20 clock-cycles miss penalty must be payed to retrieve this datumfrom main memory because a reference misses in both levels of this victim cache. This can be evaluated bythe performance formula's, discussed in section 5.3.5.8 Test resultsAs we have seen in table 5.5 capacity-misses reduce in percentage of all references when we increase thecache size and this phenomenon is reduced by more expensive and bigger caches. These capacity-missesare easily solved when money and space are not an issue, but now we would also like to avoid compulsory-and conict- misses. Some papers ([20]) discuss new hardware architectures to prevent compulsory missesby prefetching data. This prefetching can easily be integrated in the guest-simulator. As we will see inthis chapter, increasing the cacheline size will demonstrate the usefulness of hardware prefetching. Othercache architectures, like miss caching and victim caching, are mainly designed to prevent conict misses.All these small hardware improvements can be tested and visualized in this CVT. We will concentrate ourresearch on capacity misses (changing the cache size), conict misses (changing the set associativity) andcompulsory misses (changing the cacheline size) using basic cache architectures and simple DO-loop examplesto demonstrate the usefulness of the CVT.Research will be done on four several architectures by varying the cache size, cacheline size and setassociativity where the bottle-necks of this architecture are discussed. The performance evaluation is essentialfor this part of the section, but is already explained in section 5.3. We will start our research by writing aCVT-program, which is a nested DO-loop containing �ve references to four di�erent arrays in the inner-loop.The unpredictable behavior made us choose this very simple nested DO-loop (see program in �gure 5.8). Aswe will see, even this simple example has already an unpredictable behavior!5.8.1 Cache size and Set associativityTable 5.7 unveils a phenomenon, which was not expected by our side, because we used a very uncomplicatedexample. We had expected a decreasing miss-ratiowhen we would increase the set associativity where a major77



Cache Sizearchitecture 1 KB 4 KB 16 KB 64 KBdirect-mapped 0.690 0.321 0.220 0.2082-way SA 0.710 0.293 0.206 0.2064-way SA 0.798 0.236 0.207 0.2068-way SA 0.798 0.253 0.211 0.206Figure 5.7: Miss ratios with respect to cache size and set associativity.part of the conict misses should be extracted. The opposite became true; increasing the set associativityfor a 1KB cache can also increase the miss-ratio! The bigger caches con�rm this view; increasing the setassociativity will not always decrease the miss-ratio. How can we explain this phenomenon? Let us createone very simple example where direct-mapped cache causes less misses than a 2-way set-associative cache:Suppose we have three data-items of 4 bytes each and a cachesize of 8 bytes and two cachelines. Callthese three data items A, B and C with addresses 0, 4 and 8 respectively. We have the following referencepattern ABCABCABC.... In a direct-mapped cache data-item A and C will show cross-interference in the�rst cacheline, but data-item B in the second cacheline will be reused every time it is referenced. Now wehave a 2-way set-associative cache and a LRU-replacement policy. As you will see with this same referencepattern, there will not be any reuse at all! This could be improved by changing the replacement policy toMost Recently Used, which performs in this case much better, but still the performance evaluation can bebetter for direct-mapped cache.In this section we will demonstrate the basic usage of the tool for testing hardware architectures. Wewill use a simple program; a nested loop with four arrays in the innerloop.ArrayA 0 1,100ArrayB 420 1,100ArrayC 940 1,100ArrayD 613 1,100;1,100DO I = 1,100,1DO J = 1,100,1S1 : R ArrayB 1*JS2 : R ArrayA 1*JS3 : R ArrayC 1*JS4 : W ArrayA 1*IS5 : W ArrayD 1*J,1*IENDDOENDDO Figure 5.8: Loaded test programIn order to illustrate this example in the tool, we will need to understand the reference patterns to thearrays. There will 10,000 iterations causing 50,000 references; each element of array B and C is referenced100 times, the 10,000 elements of array D will be referenced only once and every element of array A isreferenced 200 times (see �gure 5.9). Notice that when one array-element �ts into one cacheline, there cannot be any spatial locality in this DO-loop. Though, there is a lot of spatial locality when we increase thecacheline size as we will see in section 5.8.2. Array A, B and C might exploit some temporal locality, whendata is not ushed after 100 iterations.To illustrate the di�erence between set associative caches and a direct-mapped cache it is important tosee what the address-range is of a cache; The addresses in a 1 KB direct-mapped cache, range between 0 and1024 bytes. The addresses in a 1 KB 2-way S.A.-cache range between 0 and 512 bytes, but can be placed intwo equivalent sets. 78



Figure 5.9: Statistics of references to ArrayA
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4 3 2 1 2 3# arrays Figure 5.10: Address range in cachelines of 1 KB cacheWhen we simulate the program 5.8 on a 1 KB direct-mapped cache there is a lot of cross-interferencebetween 4 arrays in cachelines 0-7 (see scheme 5.10). This is also clearly illustrated in the �nal miss statisticswhere these cachelines contain 340 misses each (see �gure 5.12). Cachelines 100-163 su�er only from compul-sory misses of Array D. These 64 cachelines are as good as 2*20 cachelines in a 2-way set-associative cache(see scheme 5.11 and �gure 5.13), where only two arrays interfere and conict misses can be avoided. Thismeans that there are 14 cachelines causing more trouble than in a direct-mapped cache! Besides, cachelines16-35 and 144-163 will only have cross-interference from ArrayA and ArrayD. ArrayA will be reused every100 iterations, ArrayD will only have compulsory misses. ArrayA will never be ushed out, because ArrayDwill always have the least recently used element in the set; This means cacheline 16-35 will only have 1 missper cacheline from ArrayA and therefore cachelines 144-163 will su�er twice as much per cacheline, comparedto dirct-mapped cache (see �gure 5.13).This is a indication why the hardware improvement is performing worse than the direct-mapped cache;increasing the set associativity causes a smaller address range and will cause extra conicts which must alsobe solved by the set-associativity. This is clearly visible when we change the set associativity to 4. Theaddresses will range from 0 to 256 bytes, which means that arrays A, B and C will now also su�er fromself-interference, because these arrays are already (100 elements * 4 bytes) 400 bytes big!A 4KB-cache seems to behave more predictable when we see the miss-ratio decreasing from 0.321 to
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Figure 5.12: Final statistics of direct-mapped cache (1KB/256 cachelines)Figure 5.13: Final statistics of 2-way set-associative cache (1KB/256 cachelines)0.236 when we increase the set associativity from direct-mapped to 4-way set associative cache, but whenwe increase to a 8-way set-associative cache, a higher miss-ratio than the 4-way set associative cache occurs!Though there are still less misses than in a direct-mapped cache, the performance evaluation (see section5.3) might say the direct-mapped cache will perform better! And there is even no performance evaluationneccesary when we compare the 4-way and 8-way set-associative cache.Increasing more and more the cache size or set-associativity hardly improves the miss-ratios, and can beseen as an useless investment in the performance speed-up for this application.5.8.2 Cacheline size and Set AssociativityAs we have seen in the previous sections, increasing the set associativity will not always mean there is adecreasing miss-ratio. The access patterns to the arrays used in this example are highly consecutive, withouta stride in the DO-loops. This characteristic can be exploited by increasing the cacheline size; when we havea reference to an element of array X, not only the requested data-item will be brought in cache, but also hisconsecutive elements, hoping they also will be referenced soon. Table 5.14 shows a very good improvementcompared to the miss-ratios in table 5.7. Hence, this table 5.14 unveils the same phenomenon with respectto the set associativity; increasing the set associativity will cause extra conict misses which makes theperformance rather unpredictable. cacheline sizearchitecture 4 B 8 B 16 B 32 Bdirect mapped 0.234 0.120 0.063 0.0372-way SA 0.210 0.105 0.052 0.0274-way SA 0.220 0.110 0.055 0.0288-way SA 0.217 0.109 0.054 0.027Figure 5.14: Miss ratios with respect to cacheline size and set associativity.Also this scenario of increasing the cacheline size, so more data can be prefetched, can perform poorly.Suppose we have a stride of four in a nested DO-loop and the cacheline size is four elements. The referencepatterns are hardly consecutive anymore. The three extra elements brought in by the �rst request will notbe referenced soon, because element �ve is referenced next, which is not in cache and will also cause a miss.Increasing the cacheline size will also increase the clock-cycle time, where the is more (un-useful) data to be80



transferred. Thus, in the performance evaluation it is very important not to focus on the miss-ratio!Besides the unpredictable behavior of the set associativity, the e�ect of increasing the cache size is almostalways translated in a better miss-ratio. Increasing the cacheline size will also cause a better miss-ratio whenthe access patterns to the data-structure are highly consecutive. For this application in particular, a biggercacheline size will certainly improve the overall performance. This can be generalized for all DO-loops whichcontain a lot of consecutive access patterns. Increasing the set associativity seems forbidden for small caches.The address mapping will have a smaller range and cause extra interference. This e�ect seems less importantwhen the capacity of the cache is big enough. When all the conict-misses are solved, increasing the setassociativity will have no e�ect, where the limit is already reached.
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Chapter 6ConclusionsBecause of high memory and network latencies, the cost of cache misses is very high. Because of thecomplexity of cache phenomena such as cache interferences, it is often di�cult for programmers and hardwaredesigners to precisely understand the causes and origins of this poor behavior. Most analytical tools simplyprovide bottom lines, such as the hit ratio obtained after executing a code segment. Therefore, to improvesoftware and hardware performance, better analytical tools are needed to help in this regard. The CVT isdesigned to �ll this gap.In this report we have �rst presented some basic cache theory, which have led to the implementationof the CVT. A complete description of the functionality of the CVT is described, which includes a cachesimulator (others can be easily plugged in), an input program and trace emulator, a display environmentbased on Motif and a tool-box for setting breakpoints, displaying statistics, specifying methods for coloringcache-lines, etc.In chapter 4, an overview of current cache issues and how software optimizations can address them hasbeen given, by describing current methods and techniques. Another (more) important goal of this chapterwas to give a (potential) user an idea on what bene�ts the CVT can bring in understanding the exact cachebehavior of codes restructured by software optimizations.Chapter 4 starts of with describing how cache interferences are e�ectively displayed by the CVT, bylooking at a di�cult to understand loop nest and spotting bottlenecks in the code. Next, one of the mostwell-known software optimizations, blocking, is described by presenting a model and it is shown that theCVT is an e�ective tool for �nding the optimal blocking size.Nonsingular loop transformations, which is a more elaborate class of software optimizations, are presentedby describing some theory and models that try to optimize data locality through these transformations. Itis important to note, that code which is restructured by these transformations is very di�cult to read andsome leads are presented to the user to let the CVT help him understand phenomena coming from thistransformations.Software prefetching is included in this report for two reasons, it is one of the few software techniquesfor reducing compulsory misses and it shows how a di�erent simulator can be easily plugged in. A softwareprefetched matrix-matrix multiply is analyzed with the CVT and the results are discussed.The last part of this chapter is on sparse codes, which represent a special class of numerical codes, whichhave usually more di�cult reference-patterns, due to the indirectly addressing of at least one array. This partis important, because it shows how traces can be e�ectively used to gain insight on sparse codes behavior.The last chapter discussed hardware organizations and their impact on the performance. Analyzing a verysimple nested DO-loop used in this chapter already unveiled unpredictable cache behavior. Increasing theset-associativity, the hardware is expected to avoid certain conicts in cache. But this hardware improvementwill not always obtain the expected reduction of conicts. The advantage of more way set associative cacheis the choice of the location of data in cache in several cache lines. The additional hardware required shoulddecrease the the conict misses, but introduces another phenomenon; the address range is getting smallerwhen we increase the set associativity, which might cause extra conicts. The performance is so unpredictablebecause of dependencies in numerous parameters; hardware organization, software techniques, size, orderand access patterns to the used data-structures etc. You might say that relatively small caches su�er more82



from all these phenomenon. But one thing must be clear now; The CVT can give you insight in the inuenceof several parameters on the performance.Although this report has described the CVT as an e�ective tool to analyze and further optimize currentsoftware and hardware optimizations,the CVT in this state is only the start of what the tool should be likein the future. Things like multi-level hierarchies, a more elaborate input device, still other statistics andexpansions of the current statistics and di�erent options of the tool-box are to be implemented in the future.
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Appendix ACVT ProgramsA.1 CVT Code for FLO52This section presents the CVT code for the FLO52 program as discussed in section 4.2.XY 0 0,1YY 1 0,1PA 2 0,1QSP 3 0,1QSM 4 0,1X 5 1,194;1,34;1,4P 26389 1,194;1,34W 32985 1,194;1,34;1,4FS 59390 1,194;1,34;1,4DO J=2,9,1DO I=1,41,1(S1) R X 1*I,1*J,1(S2) R X 1*I,1*J+-1,1(S3) R X 1*I,1*J,2(S4) R X 1*I,1*J+-1,2(S5) W YY 0(S6) R P 1*I+1,1*J(S7) R P 1*I,1*J(S8) W PA 0(S9) R YY 0(S10) R W 1*I+1,1*J,2(S11) R XY 0(S12) R W 1*I+1,1*J,3(S13) R W 1*I+1,1*J,1(S14) W QSP 0(S15) R YY 0(S16) R W 1*I,1*J,2(S17) R XY 0(S18) R W 1*I,1*J,3(S19) R W 1*I,1*J,1(S20) W QSM 0(S21) R QSP 0(S22) R W 1*I+1,1*J,1 84



(S23) R QSM 0(S24) R W 1*I,1*J,1(S25) W FS 1*I,1*J,1 (S26) R QSP 0(S27) R W 1*I+1,1*J,2(S28) R QSM 0(S29) R W 1*I,1*J,2(S30) R YY 0(S31) R PA 0(S32) W FS 1*I,1*J,2(S33) R QSP 0(S34) R W 1*I+1,1*J,3(S35) R QSM 0(S36) R W 1*I,1*J,3(S37) R XY 0(S38) R PA 0(S39) W FS 1*I,1*J,3(S40) R W 1*I+1,1*J,4(S41) R P 1*I+1,1*J(S42) R QSP 0(S43) R W 1*I,1*J,3(S44) R P 1*I,1*J(S45) R QSM 0(S46) W FS 1*I,1*J,4ENDDOENDDOA.2 CVT code for Blocked Matrix x MatrixIn this section the CVT code for blocked matrix matrix multiply is presented, the fortran code is shownin �gure 4.11 in section 4.3. Before the CVT can be fed with this code, the B (of Blockingsize) and N(of Matrixsize) must be substituted by a value. Note that if the matrix size exceeds 100 x 100, the baseaddresses of the arrays have to be changed if the arrays may not overlap in main memory (which is usual).X 0 1,N;1,NY 10000 1,N;1,NZ 20000 1,N;1,NDO kk=1,N,BDO jj=1,N,BDO i=1,N,1DO k=1*kk,S(1*kk+(B-1),N)R X 1*k,1*iDO j=1*jj,S(1*jj+(B-1),N)R Y 1*j,1*kR Z 1*j,1*iW Z 1*j,1*iENDDOENDDOENDDOENDDOENDDO 85



A.3 CVT code for SORThis section presents the CVT code for both the original SOR loop nest and the blocked SOR loop nest.The original nest is, when N, t and B are substituted by 1000, 20 and 10 respectively : A 0 0,1002DO I=0,20,1DO J=0,1000,1R A 1*JR A 1*J+1R A 1*J+2W A 1*J+1ENDDOENDDOAfter skewing and blocking, the loop looks like :A 0 0,1002DO II=0,1020,10DO I=0,20,1DO J=Max(1*II,1*I),Min(1*I+1000,1*II+9),1R A 1*J+-1*IR A 1*J+-1*I+1R A 1*J+-1*I+2W A 1*J+-1*I+1ENDDOENDDO
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Appendix BTrace MakersB.1 Making a trace for software prefetched matrix matrix mul-tiplyB.2 Making a trace for Sparse Matrix Vector multiply
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#de�ne N 10#de�ne BA ArrayA 0#de�ne BA ArrayB BA ArrayA + N * N + 1#de�ne BA ArrayC BA ArrayB + N * N + 1for(I = 0; I < N ; I + +)for(J = 0; J < N ; J ++)for(K = 0;K < N ;K + +)/* Load A(I,J) *Help[0] = 0;/* The Program Counter */Help[1] = BA ArrayA + I + J * N; /* The address calculation */Help[2] = 1; /* It is a read */Help[3] = 0; /* It is not a special instr. */fwrite(Help, sizeof(Help), 4, FilePointer);/* Load B(I,K) */Help[0] = 1; /* The Program Counter */Help[1] = BA ArrayB + I + K * N; /* The address calculation */Help[2] = 1; /* It is a read */Help[3] = 0; /* It is not a special instr. */fwrite(Help, sizeof(Help), 4, FilePointer);/* Prefetch B(I,K+1) */Help[0] = 2; /* The Program Counter */Help[1] = BA ArrayB + I + (K + 1) * N; /* The address calculation */Help[2] = 1; /* Does not matter, needs to be *//* loaded in. */Help[3] = 1; /* It IS a special instr. */fwrite(Help, sizeof(Help), 4, FilePointer);/* Load C(K,J) */Help[0] = 3; /* The Program Counter */Help[1] = BA ArrayC + K + J * N; /* The address calculation */Help[2] = 1; /* It is a read */Help[3] = 0; /* It is not a special instr. */fwrite(Help, sizeof(Help), 4, FilePointer);Prefetch C(K+1,J) */Help[0] = 4; /* The Program Counter */Help[1] = BA ArrayC + I + 1 + K * N; /* The address calculation */Help[2] = 1; /* Does not matter, needs to be *//* loaded in. */Help[3] = 1; /* It IS a special instr. */fwrite(Help, sizeof(Help), 4, FilePointer);/* Store A(I,J) */Help[0] = 5; /* The Program Counter */Help[1] = BA ArrayA + I + J * N; /* The address calculation */Help[2] = 0; /* It is a write */Help[3] = 0; /* It is not a special instr. */fwrite(Help, sizeof(Help), 4, FilePointer);endforendforendforFigure B.1: C-code to make a trace for software prefetched matrix-matrix multiply88



#de�ne BAofY 0#de�ne BAofD BAofY + N#de�ne BAofMatrix BAofD + Nonzero#de�ne BAofIndex BAofMatrix + Nonzero#de�ne BAofX BAofIndex + N/* Read in the array dimensions and number if non-zero elements */fscanf(InputPointer,"%in %in %in", &N,&M,&Nonzero);for(OldHelp = 1, DHelp = 1, DCounter = 1, Counter2 = 0, Counter = 0, D[0] = 1;Counter < Nonzero; Counter++)fscanf(InputPointer, �%i %i %f�, &Index[Counter], &DHelp, &Matrix[Counter]);if(DHelp ! = OldHelp)OldHelp = DHelp; D[DCounter] = D[DCounter - 1] + Counter2;Counter2 = 0; DCounter++;endifCounter2++;endforfor (I = 0; I < N; I++)for (J = D[I] - 1; J < D[I+1] - 1; J++)/* Read to array Y(I) */Help[0] = 0;Help[1] = BAofY + I;Help[2] = 1;fwrite(Help, sizeof(Help), 3, FilePointer);/* Read to array Matrix(J) */Help[0] = 1;Help[1] = BAofMatrix + J;Help[2] = 1;fwrite(Help, sizeof(Help), 3, FilePointer);/* Read to array Index(J) */Help[0] = 2;Help[1] = BAofIndex + J;Help[2] = 1;fwrite(Help, sizeof(Help), 3, FilePointer);/* Read to array X(Index(J)) */Help[0] = 3;Help[1] = BAofX + Index[J];Help[2] = 1;fwrite(Help, sizeof(Help), 3, FilePointer);/* Write to array Y(I) */Help[0] = 4;Help[1] = BAofY + I;Help[2] = 0;fwrite(Help, sizeof(Help), 3, FilePointer);endforendfor Figure B.2: C-code to make a trace for Sparse matrix vector multiply89
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