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RESULTS

INTUITION: UNPACKING A NAVIGATION INSTRUCTION
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Observation Update:
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Recent work [1-3] show Bayes filters can be embedded into deep neural networks.
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observations and actions extracted from the instruction.

Advantages of this approach:

Instruction following can be formulated as Bayesian State Tracking with

Uncertainty: an explicit probability for every trajectory the agent could

take (naturally handles multimodal hypotheses)
Interpretability: inspect the predicted goal location distribution
Performance: Improved goal location prediction

|deas for future work:

More sophisticated policy module, RL training and data augmentation

Reasoning about unseen map regions




