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Abstract
In this work, we focus on taking advantage of the facial cues, beyond the lip region,

for robust Audio-Visual Speech Enhancement (AVSE). The facial region covers the lip
region and furthermore reflects more speech-related attributes obviously, such as gender,
skin color, nationality, and so on, which are beneficial for AVSE. However, besides the
speech-related attributes, there also exist static and dynamic speech-unrelated attributes
which always cause speech-unrelated appearance changes during the speaking process.
To address these challenges, we propose a dual attention cooperative framework, named
DualAVSE, to ignore speech-unrelated information and fully capture speech-related in-
formation with facial cues, then dynamically integrate such information with the audio
signal for AVSE. Specifically, to capture and enhance the visual speech information be-
yond the lip region, we propose a spatial attention-based visual encoder to introduce the
global facial context and automatically ignore speech-unrelated information for robust
visual feature extraction. Secondly, we introduce a dynamic visual feature fusion strat-
egy by incorporating a temporal-dimensional self-attention module, which enables the
model to robustly handle facial variations in the process. Thirdly, the acoustic noise in
the speaking process is always not a stable constant noise, which makes the audio quality
in the contaminated speech signal vary in the process. Accordingly, we introduce a dy-
namic fusion strategy for both the audio feature and visual feature to address this issue.
By integrating the cooperative dual attention reflected in both the visual encoder and the
audio-visual fusion strategy, our model can effectively extract beneficial speech infor-
mation from both audio and visual cues for AVSE. We performed a thorough analysis
and comparison on different datasets with several settings, including the normal case and
hard case when visual information is unreliable or even absent. These results consistently
show that our model outperforms existing methods under multiple metrics.

1 Introduction
Speech enhancement aims to improve the quality and intelligibility of audio speech by sup-
pressing or eliminating background noise in the original noisy speech signals. It plays a
key role for several downstream applications, such as automatic speech recognition [25, 26],
speaker recognition [13, 36], hearing aids [7, 24, 47], and so on.
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Inspired by the McGurk effect [32] that visual cues play an important role in speech
processing in human brains, researchers have begun introducing visual cues to combine with
audio for speech enhancement in recent years.
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Figure 1: Illustration of our idea. Beyond lip motion, the facial region contains abundant
speech-related information such as gender, age, nationality, and skin color, which can reflect
the tone or accent of a speaker. Furthermore, such helpful information in the facial region is
always hard to conceal compared with the small lip region. This leads to the main motivation
for using facial cues in our method. However, there also exists speech-unrelated information
in the facial region such as background, glasses, microphone, and speaker’s hand move-
ments. Additionally, some real-world issues, such as lip occlusion, head pose rotation, low
resolution, and so on, would cause visual quality to vary during speech. At the same time,
the non-stationary noise makes the audio quality also change significantly with time. These
observations and analysis lead to our dual attention cooperative framework for AVSE.

Existing AVSE methods [3, 21, 22, 33, 48] mostly take the speaker’s lip region as visual
input to capture semantic information for assisting speech enhancement. This additional
information from visual modality remarkably improves the performance of speech enhance-
ment. However, extracting the accurate lip region is typically challenging due to the common
occurrence of lip occlusion and low-resolution issues in practical scenarios.

Beyond the lip region, the facial region contains additional abundant information that is
beneficial for speech enhancement, such as the speaker’s gender, age, nationality, skin color,
and so on, which can reflect the speaker’s vocal tone, accent, and other characteristics re-
lated to speech. Some works have preliminarily investigated the manners to use the face for
speech enhancement tasks [3, 9, 20]. However, the utilization of facial information for AVSE
is still very limited and challenging. As shown by [9], the full face image contains redun-
dant irrelevant information for the speech enhancement task and if facial information is not
utilized properly it will not improve the performance for AVSE. Specifically, the speaker’s
facial images may contain decorative objects like glasses or backgrounds that are unrelated
to the speech itself. How to effectively utilize facial cues is an important and challenging
problem for effective speech enhancement.

In this paper, to extract valuable information from facial regions, we firstly developed
a visual feature extractor equipped with a spatial attention module. This extractor aims
to collect the global context from the whole facial region, instead of focusing only on a
local area, and meanwhile ignoring the irrelevant redundant information. This global context
includes both the lip motion which is directly correlative to the audio speech information, and
the facial appearance characteristics which implies the speech traits like tone, accent, and so
on. Secondly, it is widely acknowledged that during the speech, speakers tend to naturally
gesture with their heads and facial expressions. This means that the degree to which visual
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cues assist with speech enhancement is constantly changing. Based on this observation, a
dynamic visual feature fusion strategy is proposed to consider the reliability of visual features
at different time steps and to reduce unreliable visual information during the modal fusion
stage. Thirdly, unstable noise in real-world scenarios always causes significant fluctuations
in speech quality. Therefore, a dynamic audio feature fusion strategy is finally introduced to
measure the dependability of audio across various temporal segments.

Based on these three points mentioned above, we propose our cooperative dual attention
framework for AVSE, named DualAVSE. For the visual encoder, the dual attention mecha-
nism is reflected in the process of both extracting robust visual features and measuring the
reliability of visual features in the temporal dimension during the modal fusion stage. For the
audio-visual fusion module, the dual attention mechanism is reflected by the dynamic fusion
strategy in both the visual and audio modalities based on the temporal dimensional atten-
tion module. By integrating these two cooperative dual attention mechanisms, our method
is robust for the speech-unrelated facial cues and shows advantages for the AVSE task under
several different settings.

In summary, our main contributions are as follows: (1) Unlike traditional methods that
rely solely on the lip region, we explore leveraging facial cues for AVSE. We propose a
novel cooperative dual attention framework to take full advantage of both facial and audio
cues. (2) We introduce the dual attention mechanism cooperated in two aspects, including
the process of the visual encoder itself and the dynamic fusion of the audio-visual modalities.
(3) Our approach not only surpasses existing methods evaluated under multiple metrics but
also demonstrates robustness to the challenge of unreliable or even absent input videos.

2 Related Work
2.1 Audio-Only Speech Enhancement
Audio-only speech enhancement aims to improve the quality and intelligibility of audio
speech signals and plays an important role in various applications such as hearing aids [7,
24, 47], teleconferencing, speech recognition [25, 26], and so on. Most Traditional meth-
ods including Spectral Subtraction [6], Wiener Filtering [27], and Minimum Mean Squared
Error [14] are based on statistical assumptions, handling stationary noise well. In recent
years, deep learning-based methods have shown promising results for AOSE. According to
the manner to obtain enhanced speech, existing speech enhancement technologies can be
divided into two categories: mask-based methods [49, 50, 51] and mapping-based meth-
ods [11, 17, 18, 23, 28, 29, 38, 42, 45, 52]. [49] estimates an ideal binary mask (IBM)
to indicate the presence or absence of speech at each time-frequency bin, which has been
one of the most classical methods and greatly promotes the development of speech en-
hancement afterward. A variant of IBM ideal ratio mask (IRM) [50] is proposed to in-
dicate the desired signal-to-noise ratio (SNR) at each time-frequency bin. Another vari-
ant of IBM complex ideal ratio mask (cIRM) [51] operates on the complex domain in-
stead of the magnitude domain, which represents both the amplitude and phase at each
bin and improves the performance of AOSE. Different from the mask-based methods, the
mapping-based method directly estimates the enhanced speech and can be classified into
spectrum mapping [23, 28, 29, 52], complex spectrum mapping [17, 42], waveform map-
ping [11, 18, 38, 45], etc. based on the input type. These AOSE methods based on deep
learning have significantly surpassed traditional enhancement algorithms due to their excel-
lent non-linear mapping capabilities. Additionally, it has achieved good denoising effects for
non-stationary noise in real-world scenarios. Given the advantages of mask-based methods,
in this paper, we employ cIRM for predicting enhanced audio.
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2.2 Audio-Visual Speech Enhancement
Inspired by McGruk [32] and the Cocktail effect [8], researchers have begun attempting
to introduce visual cues in the speaking process together with the audio signal for speech
enhancement in recent years. Since lip motion can intuitively reflect semantic information
during speech. Most existing AVSE works [3, 20, 21, 22, 22, 33, 37, 48, 57] extracted visual
information based on target speaker’s lip regions of interest (ROIs). However, it is always
hard to precisely extract lip ROIs and lip motion information when faced with real-world
issues such as lip occlusion, head pose rotation, low resolution, and so on. [3] proposed the
utilization of an enrollment audio of the target speaker to supplement missing discriminative
information when the visual encoder experiences lip occlusion. This improves the model’s
robustness to lip occlusion and achieves good results. [20] introduces a single-face image of
the target speaker to provide a prior for what sound qualities to listen for, as a replacement
for the enrollment audio to mitigate this issue. In this work, we propose to extract global in-
formation from the speaker’s facial video. In addition, considering the dynamic effect of the
speaker’s characteristics on the speech enhancement in real-world scenarios, we introduce
a dynamic fusion strategy for visual features to compute reliability at different time steps,
which is then utilized for guiding the subsequent audio-visual fusion. As the non-station of
the noise and speech, we also employ the dynamic fusion strategy in the audio encoder.

2.3 Audio-Visual Speech Analysis
Audio-visual speech analysis is a well-established field that aims to extract information from
both the visual and audio modalities during speech production. Most research in this area
has focused on audio-visual speech recognition (AVSR) [1, 35, 41, 44, 54], where the goal
is to recognize spoken words by combining information from both audio and visual cues,
with emphasis on lip movements due to their importance in conveying phonetic information.
The remarkable performance that these methods have achieved illustrates the significance of
visual speech information. In addition to these lip-based AVSR, some researchers have ex-
plored the visual speech information beyond the lip [55, 56]. These researches demonstrate
that leveraging face as input yields significantly better performance compared to traditional
methods taking the lip ROIs. Their works also inspire us to utilize facial cues for AVSE.

3 DualAVSE
In this section, we present DualAVSE for conducting speech enhancement with facial ROIs
and noisy audio. Our DualAVSE framework consists of a visual encoder with a spatial atten-
tion module (SAM), a U-Net style audio codec, and a modality attention module (MAM), as
indicated in Figure 2.

3.1 Visual Encoder
Inspired by the visual speech recognition works [30, 31], the backbone of our visual encoder
contains a 3D convolutional layer that performs downsampling on the input image sequence
in the spatial domain. Subsequently, we employ a lightweight ShuffleNet V2 network to ac-
celerate the model convergence without compromising its performance. Finally, a Temporal
Convolutional Network (TCN) is used to model the temporal dependencies on the output
features of ShuffleNet V2. The visual features output by TCN has a dimension of Cv ×Tv,
where Cv is the channel dimension and Tv is the time dimension.

Spatial Attention Module. To efficiently capture global contextual information from
the entire facial image, extract potential speech-related features from the facial region, and
avoid and potential interference from the speech-unrelated information, we introduce a spa-
tial attention module (SAM) based on self-attention in the auxiliary network. We implement
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SAM with a single self-attention layer for simplicity here. SAM scrutinizes every pixel
of the input in the spatial domain, establishing connections with all other pixels within the
same frame of the feature map. Thus SAM has the potential to capture the spatial context of
the whole face, which enables the subsequent networks to relatively easily obtain beneficial
information from regions beyond the lips.

Dynamic Fusion Strategy for the Visual Feature. Considering the dynamic variations
of the video quality across the time steps, we introduce a dynamic fusion strategy for in-
tegrating the visual encoder’s output features. We combine the intermediate features from
the visual encoder and the audio encoder (in Sec 3.2) to generate an attention vector alphav,
which aims to measure the reliability of visual and audio modalities. The dimension of αv is
Tv ×1. αv is applied to assign a weight to each frame’s visual feature before the final fusion
of audio-visual features. Further details to fuse the visual features together with the audio
features will be presented in section 3.3.
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Figure 2: Our proposed DualAVSE architecture.

3.2 Audio Encoder
For the audio encoder, it takes the complex spectrum Snoisy obtained by applying the Short-
Time Fourier Transform (STFT) to the noisy audio snoisy as input. Snoisy has the dimensions
of 2×F ×T , where F and T represent the frequency and time dimensions of the spectrum,
respectively. The encoder is composed of 9 convolutional layers and 7 average pooling layers
as shown in Figure 2, which would downsample the input spectrum’s frequency dimension
to 1 and the time dimension to Ta. The final output feature has a dimension of Ca×Ta, where
Ca and Ta denote the channel and temporal dimension respectively.

Dynamic Fusion Strategy for the Audio Feature. In real-world scenarios, non-stationary
noise exhibits diverse variations, leading to significant fluctuations in speech quality over
time. We employ a similar structure as the visual encoder to obtain an attention vector αa,
whose dimension is Ta×1. It is then applied to the audio feature of the audio encoder before
fusing audio-visual features. Further details will be presented in section 3.3
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3.3 Modality Attention Module
As discussed in section 3.1 and 3.2, in real-world scenarios, the reliability of both audio
and visual modalities varies significantly over time. Based on this observation, we have
introduced the dynamic fusion strategy to integrate the audio and visual features, leading to
the design of our modality attention module (MAM). The intermediate features from both
the audio (ma) and visual (mv) encoders are reduced in dimensionality using Global Average
Pooling (GAP). Afterward, they are fused by concatenation. The fused features are passed
through a fully connected layer followed by a softmax activation function, resulting in a
2×N attention vector α , where N represents the number of frames, N = Ta = Tv. α is
calculated as 1. We employ a learnable temperature parameter (t) to sharpen α as below,

α = Softmax
(

FC([GAP(mv);GAP(ma)])

t

)
. (1)

During modality fusion, this attention vector was used to weigh the modality reliability
at each time step as below:

fav = fv ⊗αv + fa ⊗αa, (2)

where fav is the fused audio-visual feature, ⊗ denotes Element-wise multiplication at each
time step. The fused features are then passed to the decoder to generate Mp.

3.4 Audio Decoder
The audio decoder adopts a symmetric structure to the audio encoder. It takes the fused
audio-visual features as input and goes through a series of upsampling operations to ulti-
mately output a predicted cIRM Mp with a dimension of 2×F ×T , the same as the input
spectrum. Subsequently, the predicted Mp is multiplied with the input spectrogram in the
complex domain to obtain the predicted complex spectrogram. Finally, the enhanced audio
is obtained by performing the inverse Short-Time Fourier Transform (iSTFT) on the pre-
dicted complex spectrogram.

3.5 Training Objective
Our model predicts a complex mask Mp to estimate the speech of the target speaker. Our
training objective is to minimize the distance between the predicted mask Mp and the ground-
truth mask Mgt . Mgt is calculated as below:

Mgt = Sclean ∗S−1
noisy, (3)

where ∗ denotes complex domain multiplication, Sclean denotes the complex spectrum of
target clean speech, and S−1

noisy denotes the inverse of the complex spectrum of the input
noisy audio. We minimize the L2 based loss as below:

L = ||Mgt −Mp||2. (4)

4 Experiments
4.1 Experimental Seetings
4.1.1 Datasets
LRS3 [2]: This dataset contains 438 hours of talking videos from TED and TEDX clips
downloaded from YouTube. We evaluate our method on the pretrain subset which contains
407 hours of video. We partitioned this subset into training, validation, and testing sets with
a ratio of 8:1:1. Each frame in the video underwent face detection using the 3D FAN [53],
which allowed us to extract 68 facial landmark points. Then, Procrustes analysis was applied
to perform an affine transformation on the target face. This transformation was used to align
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the target face with the mean face. The input image size for the face region is 112×112. To
compare the model with the lip region as input, we also extracted lip ROIs from each frame
using the same method, resulting in 88×88 pixel-sized lip regions of interest.
DNS4 [12]: We follow [11] to obtain the noise signal from the noise subset of the DNS
dataset. The subset contains approximately 181 hours of noise audio collected from a wide
variety of events. During training and evaluation, we utilized these samples as background
noise to add noise to the clean speech and construct synthetic noisy audio inputs.
GRID [10], CHiME [5]: We also evaluate on GRID with CHiME3 benchmark datasets to
compare our model with the state-of-the-art AVSE methods: L2L [15], VSE [19], OVL [48].
The GRID dataset consists of 33 speakers. For our experiments, we follow the general
setting [4] to designate speakers s2 and s22 as the validation set, speakers s1 and s12 as the
unseen unheard test set, and the remaining 29 speakers as the training set. We sample noise
from CHiME to corrupt the clean speech. The noise in CHiME is categorized into 4 types:
Cafe, Street, Bus, and Pedestrian. The CHiME dataset is divided into training and testing
sets with an 8:2 ratio as [48].

Following the prevailing practice in speech enhancement domain [1, 16, 20], we use
synthetic noisy samples to train and evaluate our models. This is achieved by combining
the waveforms of two separate clips, where one clip contains clean speech from the target
speaker and the other clip contains interfering audio in the form of background noise.

4.1.2 Evaluation Metrics
For evaluating our methods, we use standard speech enhancement metrics involving Signal-
to-Distortion-Ratio (SDR) [39], Short-Time Objective Intelligibility (STOI) [43] and Per-
ceptual Evaluation of Speech Quality (PESQ) [40]. (i) SDR: It is a commonly used metric
for evaluating the quality of speech enhancement algorithms. It measures the ratio of signal
strength to distortion between the processed speech signal and the original clean signal. (ii)
STOI: It measures the intelligibility of the signal (from 0 to 1), higher is better. (iii) PESQ:
It rates the overall perception quality of the output signal (from 0.5 to 4.5), higher is better.

4.1.3 Implementation Details
Our AV speech enhancement framework is implemented in PyTorch. For all experiments, we
sub-sample the audio at 16kHz, and the input speech segment is fixed to 2.55s long as [20].
STFT is computed using a Hann window with a length of 400, a hop size of 160, and an
FFT window size of 512. The complex spectrogram is of dimension 2× 257× 256. The
audio feature output by the audio encoder is of dimension Ca ×N, with Ca = 512,N = 64.
The input to the visual encoder is the face ROIs of the size of 112× 112 from a sequence
of N = 64 frames (2.55s). The visual feature output by the visual encoder is of dimension
Cv ×Tv with Cv = 512,Tv = 64. The entire network is trained using an Adam optimizer with
weight decay of 1e-4, and batch size of 56. During training, we randomly sample a speech
segment and a noise segment in the training set to synthesize training samples of noisy audio.

Our DualAVSE utilizes a three-stage training approach to fully leverage the strengths of
both MAM and SAM modules. In the first stage, the entire network is trained until conver-
gence. In the second stage, the audio encoder and visual encoder up to SAM are frozen, and
the remaining parts are trained until convergence. In the third stage, the entire network is
unfrozen and trained until convergence.

To simulate real-world noise environments, we set four different signal-to-noise ratio
(SNR) conditions: low SNR (-15dB), moderate SNR (-10dB, -5dB), and high SNR (0dB).
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4.2 Results
In this section, we give a detailed evaluation of the proposed method, including ablations,
robustness analyses, and comparison to baselines. We first compare the performance of our
models when they are conditioned on different input modality combinations; we then per-
form robustness tests in settings where visual modality is unreliable; we finally compare to
the SOTA on the speech enhancement tasks. We also provide extra quantitative and qualita-
tive results in the supplementary material.

4.2.1 Ablation Study

To better understand the influence of different components in the proposed model on the
overall performance, we conducted an ablation study on the input type and the attention
modules. The results of the ablation experiments are presented in Table 1.

AVSE Baseline vs. AOSE Baseline. The AVSE baseline is obtained by inserting a
Visual Encoder without SAM and MAM into the Audio Encoder. It can be observed from the
first three lines in Table 1 that incorporating visual modality brings significant improvement.

MAM. After further incorporating MAM into the AVSE Baseline when using the face as
input, the model’s performance shows obvious improvements across all metrics compared to
the AVSE Baseline. This suggests that MAM, compared to simple concatenation fusion, is
more effective in leveraging the information from both modalities.

SAM. The model’s performance significantly improved over the baseline when intro-
ducing the SAM, indicating that the introduction of global context allows the model to more
fully exploit the visual modality information.

DualAVSE. The final comparative results demonstrate our method significantly outper-
forms the baseline and yields the best performance. Moreover, comparing the results of the
models using face and lip inputs, it can be seen that using the face as input leads to greater
improvement. This demonstrates that the additional information contained in the facial re-
gion can be effectively explored by our method to improve the performance of AVSE.

Model -15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI
AOSE Baseline 3.38 1.333 0.639 6.41 1.502 0.735 8.76 1.718 0.812 11.09 1.999 0.868
AVSE Baseline input lip 3.34 1.356 0.665 6.47 1.536 0.751 8.91 1.765 0.819 11.41 2.071 0.873
AVSE Baseline input face 3.79 1.363 0.676 6.89 1.540 0.759 9.34 1.770 0.825 11.62 2.082 0.877
+MAM 3.83 1.364 0.676 6.94 1.555 0.761 9.35 1.790 0.828 11.70 2.103 0.879
+SAM 4.19 1.406 0.695 7.28 1.606 0.776 9.73 1.864 0.839 12.12 2.186 0.887
DualAVSE input lip 4.25 1.402 0.693 7.32 1.603 0.775 9.77 1.858 0.839 12.11 2.190 0.888
DualAVSE input face 4.45 1.435 0.700 7.54 1.643 0.780 9.96 1.909 0.843 12.32 2.241 0.889

Table 1: Ablation study for our Audio-Visual Speech Enhancement method on LRS3 dataset.

4.2.2 Robustness to the Unreliable Visual Modality

To explore the difference between using the face and lip region as input, we conducted a
series of comparisons. As shown in Table 2, we separately trained AVSE models using the
face and lip region as input. During testing, we applied different visual masks to evaluate
the robustness of the model. For the face input, we used four approaches: Fa normal face
input; Fb no face input; Fc random mask of the face video; and Fd occlusion of the lip area
in the face input. For the lip input, we used three approaches: La normal lip input; Lb. no
lip input; and Lc random mask of the lip video. For the random mask of the video, time and
spatial dimensions are both randomly selected from 0 to 100%.
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The comparison of Fb and Lb shows that when the visual modality information is re-
moved from the AVSE model in the testing process, the model trained with face input per-
forms better. This intriguingly suggests that using the face as input can indeed more com-
petently assist the model in learning the audio modality, thereby enabling it to extract more
useful information for speech enhancement.

Comparing the results of Fd and Lb, it can be seen that regions of the face other than the
lip area can also effectively assist the model in speech enhancement. Here we calculate the
performance gain by calculating the average of all metrics under all SNRs. All subsequent
calculations follow the same methodology. Their performance degradation relative to their
respective baselines is 1.62% and 2.43%, respectively, indicating that using the face as input
has good robustness to lip occlusion issues.

A similar conclusion can be drawn by comparing the results of Fc and Lc. Random
masking of the face causes a performance degradation of 0.46%, lower than the degradation
of a random mask of the lip area, which accounts for 0.81%. As under the same random
masking ratio, masking the face typically covers a larger area than masking the lip region.
These results further highlight the robustness of using face input.

Model -15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI
Fa: Reliable Face 4.45 1.435 0.700 7.54 1.643 0.780 9.96 1.909 0.843 12.32 2.241 0.889
Fb: mask whole face 3.88 1.410 0.667 7.26 1.620 0.765 9.71 1.880 0.836 12.09 2.220 0.886
Fc: mask lip in face 4.16 1.418 0.681 7.37 1.628 0.771 9.83 1.891 0.838 12.23 2.223 0.888
Fd: random mask face 4.38 1.429 0.694 7.50 1.638 0.778 9.91 1.903 0.842 12.27 2.236 0.889
La: Reliable Lip 4.25 1.402 0.693 7.32 1.603 0.775 9.77 1.858 0.839 12.11 2.190 0.888
Lb: mask whole lip 3.86 1.385 0.664 7.06 1.581 0.760 9.53 1.839 0.832 11.90 2.169 0.884
Lc: random mask lip 4.16 1.397 0.688 7.28 1.600 0.772 9.34 1.852 0.838 12.08 2.186 0.887

Table 2: Robustness to the unreliable visual modality.

4.2.3 Comparison with Others
Since we utilize the DNS dataset as the noise, we compare with the noise suppression tech-
niques Sudo rm -rf [46] provided on the DNS benchmark. Table 3 shows that DualAVSE
significantly outperforms Sudo rm -rf [46].

Model 0dB

SDR PESQ STOI
Sudo rm -rf [46] 7.65 1.462 0.822
DualAVSE 12.32 2.241 0.889

Table 3: Results on the LRS3 dataset with noise from DNS4.
Because there are not many methods available for AVSE and almost all the methods are

trained and tested on different datasets without a unified testing set. We reproduce several
state-of-the-art open-source methods to perform comparison as shown in Table 4.

We reproduce VisualVoice [20], MuSE [37], DEMUCS [11] and evaluate them on LRS3
+ DNS4 datasets. We also adapt DEMUCS to AVSE by adding the same visual encoder as
ours (3D front-end + ShuffleNet V2 + TCN) which encodes the video into temporal features
that are then concatenated with the audio features from the original audio encoder. We refer
to this model as AV-Demucs. All models were implemented based on official open-source
code and trained until convergence according to the original paper. We perform comparison
to the previous methods in Table 4. They are all evaluated on LRS3 + DNS4 datasets. For
all noise conditions, DualAVSE outperforms other approaches in quality and intelligibility,
achieving significant improvements across all metrics.
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We also perform a comparison with existing AVSE methods on GRID + CHiME: L2L [15],
VSE [19] and OVA [48]. As shown in Table 5, our model yields superior performance across
all noise conditions.

Model -15dB -10dB -5dB 0dB

SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI SDR PESQ STOI
DEMUCS [11] 2.33 1.210 0.561 5.84 1.297 0.682 9.10 1.443 0.777 11.85 1.631 0.839
AV-DEMUCS [11] 3.03 1.213 0.611 6.15 1.314 0.694 9.47 1.483 0.787 11.86 1.666 0.843
MuSE [37] -1.02 1.160 0.568 2.82 1.230 0.648 5.97 1.320 0.731 8.53 1.460 0.797
VisualVoice [20] 2.52 1.317 0.643 5.73 1.475 0.735 8.16 1.682 0.808 10.32 1.963 0.865
DualAVSE 4.45 1.435 0.700 7.54 1.643 0.780 9.96 1.909 0.843 12.32 2.241 0.889

Table 4: Comparison on the LRS3 dataset with noise from DNS4.
SNR -5dB 0dB 5dB 10dB 15dB 20dB Avg
L2L [15] 2.02 2.58 2.92 3.16 3.32 3.50 2.92
VSE [19] 2.04 2.54 2.81 3.00 3.12 3.22 2.79
OVA [48] 1.99 2.59 2.98 3.28 3.51 3.67 3.00
DualAVSE 2.16 2.67 3.06 3.43 3.79 4.05 3.19

Table 5: PESQ results On GRID dataset with noise from CHiME. Higher is better.
Furthermore, we conduct comparisons with the methods AV c-ref [34] and VS [3], which

also leverage facial cues for audio-visual speech separation (AVSS). For a fair comparison,
we also input our model with two speaker inputs for training and testing. The results in
Table 6 and Table 7 clearly demonstrate that DualAVSE outperforms both [34] and [3].

Models SDR PESQ
AV c-ref [34] 8.05 2.70
DualAVSE 9.24 2.75

Table 6: Comparison with AV
c-ref [34] on GRID.

Models SDR
VS [3] 12.8

DualAVSE 13.4

Table 7: Comparison
with VS [3] on LRS3.

5 Ethical Discussion
Despite numerous positive applications, our method can also be misused. For example,
audio-visual speech enhancement techniques can be used for eavesdropping.

For this academic research, we utilize only publicly available datasets. We aim to ap-
proach this work ethically within the constraints of an academic research environment, in
hopes of responsibly advancing speech enhancement.

6 Conclusion
In this paper, we presented a robust Audio-Visual Speech Enhancement (AVSE) framework
that leverages facial cues beyond the lip region. By incorporating global facial context and
dynamic fusion strategies for visual and audio features with dual attention mechanisms, our
model effectively captures speech-related information and mitigates the impact of noise and
irrelevant attributes. The experimental results demonstrate the superior performance of our
approach under various noise conditions and challenging scenarios. Our work showcases
the robustness and effectiveness of utilizing facial cues in AVSE tasks, paving the way for
improved speech enhancement systems in real-world settings.
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