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Abstract

Using only image-sentence pairs, weakly-supervised visual-textual grounding aims
to learn region-phrase correspondences of the respective entity mentions. Compared
to the supervised approach, learning is more difficult since bounding boxes and textual
phrases correspondences are unavailable. In light of this, we propose the Semantic Prior
Refinement Model (SPRM), whose predictions are obtained by combining the output of
two main modules. The first untrained module aims to return a rough alignment between
textual phrases and bounding boxes. The second trained module is composed of two sub-
components that refine the rough alignment to improve the accuracy of the final phrase-
bounding box alignments. The model is trained to maximize the multimodal similarity
between an image and a sentence, while minimizing the multimodal similarity of the
same sentence and a new unrelated image, carefully selected to help the most during
training. Our approach shows state-of-the-art results on two popular datasets, Flickr30k
Entities and Referlt, shining especially on Referlt with a 9.6% absolute improvement.
Moreover, thanks to the untrained component, it reaches competitive performances just
using a small fraction of training examples.

1 Introduction

Visual-textual Grounding (VG), i.e. the task of locating objects referred by natural language
sentences, requires a joint understanding of both visual and textual modalities. Depending
on the amount of annotations used during training, VG can be tackled in a different manner.
In this work, we focus on the weakly-supervised setting [3, 11, 35, 37, 40] in which the
only available annotation refers to image-sentence pairs. In other words, it is only known
which sentence describes each image in the dataset, but not the objects in the image referred
by the textual phrases composing the sentence. In contrast, in a fully-supervised setting the
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2 RIGONI ET AL: SEMANTIC PRIOR REFINEMENT MODEL

model is trained using all the region-phrase pairs [4, 11, 16, 29, 31, 39], which in practice is
a difficult and very expensive annotation to collect.

To this end, we propose a simple model referred as to Semantic Prior Refinement Model
(SPRM), whose predictions are obtained by combining two modules: (i) the first, which does
not require training, for each textual phrase returns a rough alignment with a candidate ob-
ject bounding box, (ii) while the second, composed by two trained sub-components, refines
the rough alignments in the final phrase-bounding box alignments. Given a textual phrase
and an image as input, the model recognizes the most relevant objects in the image using a
pre-trained object detector, and predicts the bounding box referred by the phrase adopting
the two aforementioned modules. Specifically, the rough alignment is based on the similar-
ity score (i.e. concept similarity) between the head of the textual phrase and the predicted
label of the bounding boxes. Here, the key idea is that the head of the phrase should be very
similar (semantically speaking) to the content of the bounding box and, thus, to its class.

The model is trained to maximize the multimodal similarity between an image and a
sentence describing that image, while minimizing the multimodal similarity of the same
sentence and a new unrelated image, adequately selected. We investigated the model perfor-
mances on the Flickr30k Entities and the Referlt datasets, showing that our model presents
consistent and competitive results in both datasets. Moreover, we evaluated our model per-
formance in low-data environments, showing that our model can still achieve surprising re-
sults even when trained with just a tiny fraction of training examples

Our contributions can be summarized as follows: (i) we propose a new model which
is based on the novel idea of first predicting a rough alignment between the phrase and a
bounding box, and then refining the prediction; (ii) we conduct extensive experiments on
the popular Flickr30k Entities and Referlt datasets, showing state-of-the-art results (in the
weakly-supervised setting); (iii) our model, even when trained on a small fraction of the
available examples (e.g. 10%), achieves consistently competitive results.

2 Related Works

In the literature, there are many works related to our proposal. Attention was successfully
used to generate spacial attention masks able to localize regions referred by phrases preserv-
ing linguistic constraints [38], using self-supervision [14], or even by leveraging a multi-
modal semantic space [1]. Attention was also employed to reconstruct a subset of the input
like query subject, location, and context [21], or the full input along with the proposal’s infor-
mation [4]. Basically, the idea is to reconstruct the input from selected relevant features such
that the model learns to ground entities mentioned in the text. Along with traditional ground-
ing systems, a regression loss is implemented to refine the bounding boxes coordinates [23].
Spacial transformer [13] was successfully employed to compute correlation scores between
phrase and image’s spacial features map [40].

Following the encoder-decoder architecture, a slightly different approach consists of
learning to ground entity-region by randomly blending arbitrary image pairs, which are re-
constructed conditioned by the corresponding texts [3]. Leveraging the idea of a similarity
measure between the two modalities, other works developed a contrastive learning frame-
work where the model localizes entity-region by image-sentence supervision: the contrastive
examples may be guided by replacing words in sentences [11], or either distilling knowledge
in order to compute accurate similarity scores [36]. Using the bounding box’s labels and
attributes in the representation of image features allows to compute meaningful embedding
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that can be compared with the language modality [37]. Eventually, object detectors may be
combined to extract redundant and robust information about regions [35].

A different approach instead overcomes weak supervision by learning to ground through
caption-to-image retrieval task: learning caption-to-image retrieval intrinsically means learn-
ing to ground, i.e., the model learns to return the correct image given a caption if and only if
it has properly understood how to ground the caption with the image [5].

3 Problem Definition

Formally, given an image I € Z and a sentence S € S the VG task aims to learn a map
y:Z xS — 22%B1 where Qg is the domain of the noun phrases defined on S, and By is
the domain of all the bounding boxes defined on I. More precisely, the set Qg is defined
as {q j}T:p where m is the number of noun phrases and g; € N? is a vector containing the
initial and final character positions in the sentence S.

In this work, given an image I, we deploy a pre-trained object detector to extract the set
of bounding box proposals Py = {(cx, ., Ix)}_, C By, where ¢, € R* represents bounding
box coordinates, h; € R" is the v-dimensional vector representing the bounding box features,
and I; € O denotes the class with the highest probability to represent the content of the
bounding box over the object detector pre-defined set of categories ®. The bounding box
proposal’s classification is a common feature offered by most object detectors and will be
used in Section 4.1 to define the concept similarity.

In the weakly-supervised approach, a training set of n examples is defined as D =
{(I;,S;)}!_,. In other words, only the information about sentence S; describing the image I;
is available at training time, while it is unknown which region b € 3y is described by a noun
phrase g € Os. Hence, we learn ¥(1,S) such that it returns a subset I' C Qg x Py where each
couple (g, p) € T aligns the noun phrase g to the bounding box proposal p.

4 Our Method

Figure 1 depicts our Semantic Prior Refinement Model (SPRM) architecture, which is com-
posed mainly of two modules. One is the Concept Branch (CB) (see Section 4.1), responsible
for predicting a first rough set of region-phrase correspondences. Those alignments are ob-
tained through a process named “concept similarity” that captures the semantic information
conveyed by prior knowledge in object detector and word embedding. In particular, it com-
pares the word embeddings of the phrase’s head and the bounding box class to get unimodal
scores. No training is required. The information is matched by relying on two important as-
sumptions: (i) the proposal’s label semantically describes the bounding box content, (ii) and
the word embedding space represents the semantic similarity of the words. Moreover, the
CB includes a positional heuristic that helps to reduce ambiguity for candidate alignments.
The other module (see Section 4.2) is made by two sub-components, namely Visual
Branch and Textual Branch, and it is trained to learn a multimodal embedding space for
region-phrase correspondences given image-sentence pairs. The multimodal representations
are constructed to maximize the similarity of region-phrase pairs when both come from the
same example, while minimizing the similarity between the regions from the positive ex-
ample and phrases from another example. The second refined set of alignments is obtained
by measuring the similarity between learned multimodal visual and textual features for the
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Figure 1: Our model architecture overview. The model computes a first rough set of
alignments by leveraging prior knowledge from the object detector and word embedding (i.e.
Concept Branch). A simple positional heuristic is injected as an extra source of prior knowl-
edge to reduce ambiguity for candidate alignments. Then, the visual and textual branches
(i.e. Trained Sub-Components) match learned multimodal features to predict a second, re-
fined set of alignments. The two sets are then combined together by the Refined Predictions
module to compute final scores for grounding.

bounding box proposal and noun phrase. The resulting scores are then combined by the pre-
diction refinement module (see Section 4.3) to produce final scores. The candidate alignment
is chosen to be the proposal with maximum similarity with the noun phrase.

4.1 Concept Branch

The Concept Branch (CB) is designed to face the most important problem in the weakly-
supervised VG: the unavailability of region-phrase ground truths. We make use of external
sources of knowledge to fill this gap. The CB leverages a pre-trained object detector to ab-
stract the content of an image’s region through the bounding box classification label, that
is the concept expressing the content of the region. The bounding box classification label
is a common feature in most object detectors allowing them to express the content of the
bounding box as a concept in the language domain. To understand the concept expressed
by a textual phrase, we use an off-the-shelf NLP parser deployed to extract the head of the
phrase [14]. In fact, the head of a textual phrase determines its syntactic category. Then,
by means of a pre-trained word embedding that conveys prior knowledge of words, the CB
computes the similarity between the two concepts to obtain a rough score named “concept
similarity”. In this process, there is no training involved; thus the process is entirely inde-
pendent of training data and can be treated as prior knowledge.
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This method, although general enough to cover a vast set of cases, suffers from some
limitations. First, the proposal’s classification may be noisy and incorrect, driving the CB
to inaccurate alignments. Second, the word embedding similarity may be biased and impre-
cisely captures the semantic similarity between words. Third, the CB produces equal scores
when proposals have the same label. In order to deal with this issue, we adopted another
source of prior knowledge based on spatial relations. For proposals with the same label, we
extract relative positional information (e.g. “top”). We then match those relations with a
location extracted from the phrase by a simple text search (e.g. “left” in “dog on the left”).

Formally, given a set of p bounding box proposals Py, let EP1 = {ef’ }5:1 be the cor-
responding set of g-dimensional vectorial embeddings, where each ekp’ is the embedding of
the bounding box class I, for 1 < k < p. Given a noun phrase g ;j composed by a sequence

of L(q;) words W4/ = Wi ..wZéqJ_)], let E9/ = {e }lL:(qu  be the set of words embedding

of size g associated with each word in the noun phrase q;. Let s’j € R® and s, € R® be two
multi-hot vectors that encode locations in g; and relations in the k-th proposal, respectively.
Then, the concept similarity score for each proposal is:

Pr : v T o .
P Ssim (6 ir €y ) if S s’ >0,
Sjk—fmask( '>eklast'asZ) - 7 ( ) !
J J
—1 otherwise.

where fqim is a similarity measure (e.g. cosine similarity) and fsim(é I e,7:’ ) returns the sim-
ilarity score between word embeddings of phrase’s head & ; and proposal’s label ekp’ . The

function f,,¢ returns this similarity score only when the phrase and the proposal share at
least one spatial reference, otherwise —1 is returned.

4.2 Visual and Textual Branches

Given the set of bounding box proposals Py detected in the image I by the object detector,
for each of them, our model extracts the spatial features H* = {h}}}_, where h} € R’, as
indicated in [29]. Moreover, contrary to the Concept Branch, the Visual and Textual branches

adopt trainable word embeddings E' ! = (ey’_, and EY = {eV }IL:(‘{’ )

bounding box classes and to the words of the noun phrases, respectively.
Initially, both visual and spatial features are concatenated and then projected on a smaller

associated to the

dimensional space, thus leading to a set of new vectorial representations H!l = {hg }L],
with i) = W/l ()|
R&*(5+7) is a matrix of weights, and b/l € R is a bias vector. The new representation is then
summed to the word embedding of the bounding box label to obtain the final visual features
h; = hL‘ —+—E,7:’, where h;, € RS.

Given the set E?/ of trainable word embeddings associated with the noun phrase ¢ It
the textual branch applies a function f,,. to generate only one embedding htj € R” for each

hk) —i—b”, where || indicates the concatenation operator, hL‘ c RS, wll e

phrase ¢ It This textual features extraction is defined as h’j = fonc (qu ).

Note that the embeddings E”" and EY are generated with trainable modules that share
the weights among each other (weights sharing). So, during training, the word embeddings
learn multimodal embeddings for the visual and textual information.
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4.3 Refined Predictions

The prediction module is in charge of refining the rough predictions S, i.e., the Concept
Branch predicted scores, using the visual h; and textual h; features. Initially, starting from
h;, and h’j, the model predicts the probability P, that a bounding box proposal of index k
is referred by the noun phrase g; as P = fsim(h,‘;,h’j), where fim is a similarity measure
between vectors. Please note that in our work, we adopt the cosine similarity function;
therefore, hj, and h’j have the same vector dimension, i.e. g = T.

Finally, the rough predictions are refined in f’jk = w*Pj;+ (1 — ) *Sj; using an hyper-
parameter @ € {x € R | 0 <x < 1}. Therefore, the model predictions are not constrained to
values defined by concept similarity, but they co-work for the final predictions.

4.4 Loss Function

Inspired by [37], we adopt a contrastive loss. The contrastive objective £ aims to learn
the visual and textual features by maximizing the similarity score between paired image-
sentence examples and minimizing the score between the negative examples.

Formally, given two training examples (1,S), (I',S’) € D such that S # S" and I # I, the
loss function L is defined as:

1 & Py
= — rIS 'rI/S 'rI’S:7 jA ’
LoarS) o+ fpar@S) o Spur1S) = D) max g

Positive example ~ Negative example

where fpq, is the similarity function defined over the multimodal pair image-sentence, m is
the number of queries in S and P jk 1s the predicted similarity between noun g ; and proposal
Py Basically, the goal of f,,; is to aggregate the similarity scores of all the region-phrase
pairs, determining the degree to which the phrases correspond with the content of the image.

In contrast to what is done in [37] where for each positive example, several negative
examples built from the batch are considered, we adopt just a specific negative example
(I',S). The negative example is built from the example (I',S’), selected from the batch
precisely to be the one where the sentence S’ is the most similar to the sentence S. This
allows the model to focus on fine-grained region-phrase details that differ between the two
examples. Precisely, given a training example (I,S) € B, the negative example is chosen as:

L(g;)

1 .
Yy ke

i=1

~

(I',8") = argmax fi;n(£(S"),E(S)),

1
(1”75//)68’ I’l’l

where B' = B\{(I,S)}. Thus, the similarity is measured in the word embedding space.

S Experiments

5.1 Datasets and Evaluation Metrics

In this work, we have evaluated our model on the Flickr30k Entities [25] and ReferIt [17]
datasets.! The Flickr30k Entities dataset contains 32K images and 360K queries, while the

'We considered the two most largely adopted datasets among the 15 papers used as comparison in our work.
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Referlt [17] dataset contains 20K images and 120K queries. Following the previous works
in the area, we adopted Accuracy as the main evaluation metric. Namely, given a noun
phrase, it considers a bounding box prediction to be correct if and only if the Intersection
over Union value between the predicted bounding box and the ground truth bounding box
is at least 0.5. Moreover, we also calculate the Pointing Game Accuracy for comparison
purposes [1, 5,23, 27]. Pointing Game Accuracy considers an example to be positive whether
the center of the predicted bounding box lies wherever inside the ground-truth box.

5.2 Model Selection and Implementation

The model selected for evaluating the test set of the Flickr30k Entities and of the Referlt
datasets is chosen on the epoch that better performs in terms of Accuracy in the validation
set. We search for the best hyper-parameters on both Flickr30k Entities and Referlt datasets,
independently on the considered fractions of training data {5%, 10%,50%, 100%} used for
learning. We selected 107> as the learning rate step and we have adopted GloVe [24] as word
embeddings, where T = g = 300. In our work, f,, is implemented with a LSTM [32] neural

network. The vector h’j is the 7-dimensional LSTM output of the last word w‘LI{q ) in the noun
J

phrase g;. The bounding box proposals P are extracted with the Bottom-Up Attention [2]
object detector with a confidence score of 0.1 for Flickr30k” Entities and 0.2 for Referlt’.

The bounding box features have a dimension of v = 2048. We use the cosine similarity as a
similarity measure fij,, between vectors. Our SPR model code is publicly available online*.

5.3 Experimental Results

We compare our model to several approaches in the literature on the Flickr30k Entities and
Referlt datasets. We also assess our model performance when trained only with a small
number of training examples. Indeed, the untrained Concept Branch module should give
stability to the model even when it is trained on a small training set, as it should help to
counter the overfitting trend that occurs with small datasets.

5.3.1 Full Training Set Scheme

Table 1 compares our model results to those of several approaches in the literature. Our
model proposal outperforms all other approaches on standard Accuracy and Pointing Game
Accuracy. In particular, in the Flickr30k Entities, our model’s improvements over the State-
of-the-Art are +0.8% in Accuracy and +2.08% in P. Accuracy. While on Referlt, the im-
provements are +9.65% and +3%, respectively for both the metrics.

To assess the soundness of our approach we tested a variant of our model that replaces vi-
sual and textual branches, responsible to learn the multimodal embedding space, with CLIP’s
multimodal embeddings (referred as SPR baseline + CLIP) [26]. As the results show, in Ta-
ble 1, our full SPR model still outperforms the variant with CLIP. This occurs because CLIP
was trained to capture the multimodal coarse-grained information from image and sentence
pairs, while in VG we need more fine-grained details regarding the alignments region-query.

2We used the same features of [37].
3https://github.com/MILVLG/bottom-up-attention.pytorch
“https://github.com/drigoni/SPRM/


Citation
Citation
{Kazemzadeh, Ordonez, Matten, and Berg} 2014

Citation
Citation
{Akbari, Karaman, Bhargava, Chen, Vondrick, and Chang} 2019

Citation
Citation
{Datta, Sikka, Roy, Ahuja, Parikh, and Divakaran} 2019

Citation
Citation
{Liu, Wan, Ma, and He} 2021

Citation
Citation
{Ramanishka, Das, Zhang, and Saenko} 2017

Citation
Citation
{Pennington, Socher, and Manning} 2014

Citation
Citation
{Schmidhuber, Hochreiter, etprotect unhbox voidb@x protect penalty @M  {}al.} 1997

Citation
Citation
{Anderson, He, Buehler, Teney, Johnson, Gould, and Zhang} 2018

Citation
Citation
{Radford, Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell, Mishkin, Clark, etprotect unhbox voidb@x protect penalty @M  {}al.} 2021

Citation
Citation
{Wang, Tan, Shen, Mahoney, and Yao} 2020

https://github.com/MILVLG/bottom-up-attention.pytorch
https://github.com/drigoni/SPRM/

8 RIGONI ET AL: SEMANTIC PRIOR REFINEMENT MODEL

Model Backbone Proposals Flickr30k E. (%) Referlt (%)
ode:
(Pre-training) (Pre-training) 1 Acc. 1P Acc. 1 Acc. TP Acc.

Top-down Saliency [27] InceptionV3 (IN) - - 50.10 - -
KAC Net [4] VGG16 (VOC) SS,EB 38.71 - 15.83 -
Semantic Self-Sup. [14] VGGI16 (IN) - - 49.10 - 39.98
Anchored Transformer [40] VGG16 (VOC) EB 33.10 - 13.61 -
Multi-level Multimodal [1] PNASNet - - 69.19 - 48.42
Align2Ground [5] RN152 (IN) BUA (VG) - 71.00 - -
Counterf. Resilience [10] RN101 (IN) F-RCNN (CC) 48.66 - - -
MAF [37] RN101 (IN) BUA (VG) 614 - - -
Contrastive Learning [11] RN101 (IN) BUA (VG) 51.67 76.74 - -
Grounding By Sep. [3] VGG16, PNASNet (IN) - - 75.60 - 58.21
Relation-aware [23] RN101 F-RCNN (VG) 59.27 78.60 37.68  58.96
Contrastive KL Distill. [36] RN101 (IN) BUA (VG) 53.10 - 38.39 -
EARN [22] RN101 EB, F-RCNN 38.73 - 36.86 -
RefCLIP [15] Darknet-53 YoLo3 (VG) - - 42.64 -
SimMaps [33] VGG16 (IN) - 45.56 79.95 38.74  70.25
SPR baseline + CLIP (ours) RN101 (IN) BUA (VG) 56.89 77.06 40.99 57.48
SPR model (ours) RN101 (IN) BUA (VG) 62.20 80.68 48.04 62.40

Table 1: Results on Flickr30k Entities and Referlt test sets. Acc. is the standard accuracy
metric, while P. Acc. is the pointing game accuracy metric. For each work we report in the
column Backbone the adopted visual features encoder, abbreviating ResNet-101/152 [12]
with RN101/152. In the Proposals column we listed proposal networks or object detectors
employed, where SS: Selective Search [34], EB: EdgeBox [42], F-RCNN: Fast-RCNN [28],
BUA: Bottom-up Attention [2]. In both columns, the pre-training dataset is indicated in
parenthesis, whenever available, following these abbreviations: VG: Visual Genome [18],
IN: ImageNet [6], CC: MS-COCO [20], VOC: PASCAL VOC [9].

The hyper-parameter @ regulates the weight of the Concept Branch on the final predic-
tions: the higher the value, the less the Concept Branch affects final predictions. For this
reason, in Figure 2 we present the Accuracy results obtained with our model trained on the
entire training set at different values of @: {0.1,0.25,0.4,0.5,0.75,0.9}. As shown by the
chart, @ greatly affects the model performance in both datasets, allowing the model to reach
its peak of performance when @ = 0.4 in Flickr30k Entities and @ = 0.75 in Referlt.

5.3.2 Small Training Set Scheme

In this section, we present the results obtained with our model on the datasets where only
a fraction of training examples are used for training. Figure 3 reports our model Accuracy
results. On Flickr30k Entities, the model is able to obtain State-of-the-Art results even when
trained with only 50% of the training data, while on Referlt, even when the model is trained
with 5% of the training examples, it achieves State-of-the-Art performances. As expected,
the Concept Branch module, which does not require training, makes the model training more
stable and helps to counter the overfitting trend that occurs with small datasets.

5.3.3 Model Ablation

In this section, we assess the performance of our model’s components: (i) the untrained
Concept Branch, (ii) the trained visual and textual branches, (iii) and the Relative Positional
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Figure 2: Accuracy results on Flickr30k Figure 3: Accuracy results on Flickr30k

Entities and ReferlIt test sets varying the @ Entities and Referlt test set by our model

hyper-parameter. Results obtained by train- trained in low-data environments. The per-

ing the model on 100% of the training set. centage refers to the fraction of the training
set considered during training.

Information component. The model achieves the best results when both the Concept Branch
and the trained modules jointly work to produce the final predictions, as shown in Table 2.

The boost in Accuracy given by the
Concept Branch is Sllgmﬁcant: —%3.8'58% Concept Trained Rel. Posit.  Flickr30k  Referlt
and +30.41% for Flickr30k Entities and Branch Modules Information Entities (%) (%)

Referlt, respectively. As expected, the % v X 23.52 15.03
Relative Positional Information compo- v x ® 54.96 40.07
nent constantly improves the model accu- v 4 v 55.02 42.69
racy by +0.1% on Flickr30k Entities and v v b4 62.10 45.44
by +2.6% on Referlt. Further investiga- 4 v v 62.20  48.04

tions showed that Flickr30k presents few
spatial references in the queries, which
explains the difference in performance
gains between the two datasets.

Table 2: Model Ablation. Accuracy of our
model’s components. The Concept Branch con-
tributes more to the final model performances.

5.3.4 Comparison to V&L models

The recent success of CLIP [26] in learning image-level visual representations from image-
text pairs has inspired a new line of research [19, 41] to extend large V&L models on fine-
grained correspondence between sentences and objects in images. In the same direction of
research, in this section we compared our model to GLIP [19]. GLIP aims to learn region-
level visual representations, thus enabling fine-grained alignment between image regions and
textual concepts and works in a fully-supervised fashion. It is trained on 27M of grounding
data, including Flickr30k. All the ground alignments are used, when available, during train-
ing. Thus the comparison between our model, which uses weak annotations, and GLIP is
unfair. Nevertheless, we compared the two methods in the zero-shot setting, i.e. GLIP-T (B)
trained only on object detection dataset Objects365 against our untrained Concept Branch
(CB). GLIP-T (B) obtains 36.10% accuracy on Flickr30k while our CB scores 55.02%.
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5.4 Limitations

Our model limitations stem mainly from the word embedding and the object detector com-
ponents. In fact, the design of our proposal is well-suited for GloVe, Bottom-Up Attention,
and LSTM components. However, these approaches are no more State-of-the-Art. Mod-
ern approaches, such as Large Language Models (LLMs) like BERT [7], could improve the
performance of our model. Indeed, LLMs take advantage of their effective contextual capa-
bilities to embed words in a sentence. In our architecture, LLMs can replace: (i) the LSTM
in the Textual Branch, and (ii) the current GloVe embeddings in the Concept Branch. In
both cases, the introduction of this new component is not straightforward, especially in the
Concept Branch. In fact, the concept similarity scores are computed between the head of
the phrase and bounding box classes. Thus, it is not clear what context the LLMs should
consider during the embedding of class labels.

Furthermore, our model’s dependency on the object detector performance is made ex-
plicit by the Concept Branch. Usually, in other works this dependency is hidden in the
multimodal features fusion process, which relies on visual features and proposals from the
object detector’s output. To ensure an objective comparison of results, we use the same
object detector that the current State-of-the-Art model MAF [37] utilizes. This detector is
Faster-RCNN with ResNet-101, which has been trained on Visual Genome. We also make
sure to adopt precisely the same features shared by MAF’s authors. However, more recent
object detectors could improve our model’s performance.

6 Conclusion

Our work focused on tackling the task of weakly-supervised visual-textual grounding, where
the lack of ground truth alignments presents a challenge for learning. Our core contribution
resides in the Concept Branch. It captures the semantic similarity between the image’s region
and the phrase by matching the bounding box class and the phrase’s head in a word embed-
ding space. The alignments are obtained leveraging pre-trained object detector and word
embedding, thus training is not required. The new knowledge does not depend on training
data and can be treated as prior with many advantages. First, it enables compositionality as
new models could be built on top of the prior to avoid starting from scratch. Second, this
knowledge helps the training phase, especially in the first epochs where the model can’t be
guided as in the fully-supervised setting. Third, the independence of training data also en-
ables performance stability which makes our model suitable in low-data environments. As
proven by our results, this approach presents State-of-the-Art performance on Flickr30k En-
tities and ReferIt benchmarks. Inspired by [23], future works aim to extend our loss function
to include a bounding box regression component, that has been proven to boost VG models
performances. Additionally, future work will explore the use of different object detectors’
categories [30]. Finally, inspired by [8], we aim to incorporate knowledge graph information
in the model, enhancing the Concept Branch module with more structured information.
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