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Abstract

This paper explores the potential of event cameras to enable continuous time Reinforcement
Learning. We formalise this problem where a continuous stream of unsynchronised
observations is used to produce a corresponding stream of output actions for the environment.
This lack of synchronisation enables greatly enhanced reactivity.

We present a method to train on event streams derived from standard RL environments,
thereby solving the proposed continuous time RL problem. The CERiL algorithm uses
specialised network layers which operate directly on an event stream, rather than aggregating
events into quantised image frames.

We show the advantages of event streams over less-frequent RGB images. The
proposed system outperforms networks typically used in RL, even succeeding at tasks
which cannot be solved traditionally. We also demonstrate the value of our CERiL
approach over a standard SNN baseline using event streams. Code is available at https:
//gitlab.surrey.ac.uk/cw0071/ceril.

1 Introduction
Reinforcement Learning (RL) is an approach to learn long term strategies to maximise a given
reward signal with high generalisation to unseen environments. This is generally framed as a
trial-and-error type exploration problem, which attempts to generalise to unseen environmental
states based on similar previously seen states. This approach to learning has obvious parallels
to learning in nature.

These parallels are even more apparent for RL systems driven by visual input observations.
The majority of prior work rely on ‘ground truth’ observations, i.e. the agent position and task-
related information are provided directly. In the real world though, it is often impossible to
obtain this information and a visual stream of a much higher dimensional state representation
is unavoidable. Approaches that directly operate on raw image frames have not been as
extensively studied. Several algorithms have been proposed for simple, synthetic images
and video game environments like Atari games [7], but the high dimensional state space,
containing potentially tens of thousands of pixels, makes the learning problem far more
challenging.

One aspect of vision-based RL (and indeed all RL) which differs from nature is the
treatment of time. It is almost always assumed that time is split into a number of discrete and
equally spaced intervals or ‘steps’. Each step includes an observation of the environment,
which leads to an action, which in turn updates the environmental state. This makes sense
for vision based systems using traditional frame based cameras, where observations of the
environment generally constitute ‘frames’ which are regularly spaced in time. However,
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Figure 1: A typical digital camera produces frames at a set rate, leading to a discrete policy and actions at regular
time intervals as shown in row 1. Traditional event camera systems follow the same paradigm by aggregating the
event stream as shown in row 2. Our proposed continuous CERiL formulation shown in row 3 produces a continuous
action stream directly from the observation streams.

modern developments in sensor technology called ‘event cameras’ may make it possible to
rectify this mismatch.

Event cameras are a type of asynchronous visual sensor. This means that every pixel
triggers a signal independently based on its own detected brightness change. There is no
‘shutter’ mechanism to trigger a synchronised measurement from all pixels. As a result the
output of the camera is a continuous stream of event signals, with variable rate and interval
depending on the scene contents. This provides greatly reduced latency and environmental
changes are recorded within microseconds. In addition the sensor avoids motion blur, and
provides greatly enhanced dynamic range and low power consumption.

This constant stream of observations is much closer to how a biological vision system
operates. However, without discrete ‘frames’ it becomes more challenging to apply standard
deep-learning techniques. As a result, lots of work utilising event cameras for deep-learning
has followed a similar approach. The event stream is aggregated into a number of regularly
spaced ‘event images’ which capture information such as the number of events, or the variance
in the timestamps. The obvious downside to this approach is that many of the advantages
that the sensor provided are lost. In particular, the aggregation reintroduces a regular ‘shutter’
which means that the system cannot react rapidly to its observations.

In contrast, this paper formalises the RL problem in the continuous time domain, where a
stream of input events leads to a continuous stream of output actions. We then demonstrate
how a continuous actor and critic network can be produced using a recently developed deep
learning approach known as Event Decay Neural Networks (EDeNNs) [18]. This applies a
unique form of 3D spatio-temporal convolution directly on the continuous observation volume.
The result is a continuous stream of actions and value estimates respectively. The interaction
with the environment and the update of the network parameters still happens at discrete times.
However, these times are irregularly spaced and can be far more frequent than the traditional
environmental observation, limited only by the speed of the control loop. Our approach is
contrasted against the two alternatives in Figure 1. To summarise, the contributions of this
work are:

1. A new formalisation of the continuous RL problem, including definitions of the loss
functions for Proximal Policy Optimisation (PPO).
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2. A framework to turn any OpenAI gym environment into a continuous RL problem, as
long as it implements a traditional render function.

3. A novel framework based on the PPO paradigm to solve these continuous RL problems.
We refer to this algorithm as Continuous Event-based Reinforcement Learning.

The code supporting all these contributions will be made available to the community to help
spark further research in this area.

2 Related Work
RL became mainstream when a system was demonstrated playing backgammon at an expert
level [14], and actually advanced understanding of the game’s theory. Since then, approaches
have become more complex and capable. In 2015, Mnih et al. introduced Deep Q-Network
(DQN), which was the first mainstream approach which operated on a visual render stream,
and could play many Atari 2600 games at a human level [9]. DQN is an off-policy algorithm,
which is named as such because the policy used for behaviour is not necessarily the policy
used to populate a replay buffer with experience. More recently popular is PPO [13], an
on-policy algorithm which improves upon Trust Region Policy Optimization (TRPO) [11]
by requiring only first-order rather than second-order gradients. PPO makes use of a ‘Trust
Region’, and significant policy updates are ‘clipped’ which mitigates the effect of adverse
policy changes.

Due to large amount of agent-in-the-loop experience which needs to be collected for
RL, it is very common for a simulation to be used. OpenAI gym makes effort to standardise
environments for easier distribution [2]. It includes simple physics models such as CartPole
and MountainCar, as well as providing access to Atari games. Event camera research is an
emerging field, and there are a few simulation tools available. ESIM [10] is able to generate
event streams from a variety of sources, from 2D images or 3D models. It is purposed
towards generating datasets, which are scarce because the cost of event cameras is prohibitive.
AirSim [8] is a multi-sensor simulator for drones and cars, more directed at robotics simulation.
Vemprala et al. make use of AirSim and present an RL approach using PPO [17]. They propose
an ‘event Variational Autoencoder (eVAE)’ to preserve temporal information, inspired by the
growing popularity of Transformer networks [16]. Spiking Neural Networks (SNNs) are a
type of network which, like event cameras, are biologically inspired. There have been a few
attempts at using SNNs in an RL framework, for example, for maze-solving [4] and drone
flight control [20]. One limitation with SNNs is that a large time period is typically required
for inference, a problem for time-limited tasks.

The most common RL environments have discrete action spaces. Many of the continuous-
control use the MuJoCo physics engine [15]. These take a floating point representing an
action as input, but they operate at a discrete rate. There are some existing continuous-time
RL approaches [3, 5, 19], but many of those require a dedicated engine and a known dynamics
model. Additionally, these are all predicated on direct state observations. To the best of our
knowledge, there has been no asynchronous vision-based work on continuous-time RL (i.e.
using event camera inputs). [1] proposes an approach for event-based RL. However, their
approach is based on first converting the event stream into a synchronous image-based format,
and so is not continuous-time RL.

Yıldız et al. point out a divergence between continuous-time and discrete-time trajectories
in CartPole [21]. Although simulating surrogate Ordinary Differential Equations (ODE)
dynamics is highly accurate, it at least depends on the physics state of a given environment to
be available. Our framework has to ability to generate a continuous observation space from
existing OpenAI Gym environment without requiring a specialised simulation.

3 Methodology
We will first describe our continuous time formulation of the RL problem. This ensures the
algorithm is suitable for use with asynchronous, irregularly sampled state-spaces, such as
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those resulting from high speed event cameras.
In traditional RL, times are sampled at equally spaced integer steps (i.e. t ∈ Z). A rollout

(Ω) is thus traditionally defined as an ordered set of states Ω = {s0,s1, . . . ,sT}. In contrast, in
this work we define a continuous time domain (t ∈ R) where a state may be sampled from the
rollout volume at any time as

st(x,y,c) = Ω(x,y,c, t), (1)

where x,y,c represent the spatial positions (x,y) and colour channels (c) of the resulting state.
It is worth noting that the rollout volume Ω may be sparsely populated. Regardless, the time
domain is continuous and states may be sampled as densely as the control scheme can operate.
Indeed the sampling of the states may be reactionary and uneven.

The reward function in an RL system traditionally provides a scalar reward signal for
a given state-action pair. We instead define a ‘reward density function’ r(at ,Ω, t). This is
queried to return the reward density over time at a particular point in the rollout, given action
at . The need to define this reward density function could potentially place some limitations
on the environments which can be used. However, in practice the reward schemes for most
traditional RL environments can be easily adapted to fit this definition. For example, ‘keep
alive’ or ‘finish quickly’ style environments like CartPole or MountainCar will respectively
provide a constant positive or negative reward per timestep. In these cases the reward density
can be similarly defined as a constant function. There also exist many ‘all-or-nothing’ type
sparse reward environments. Here the reward is determined solely by the final state of the
rollout. In this case the reward density function is set to zero at all points other than a brief
interval at the end of the rollout. More generally, for any existing discrete environment we can
define a valid reward density function. The density function must only obey the constraint

r̂τ(aτ ,sτ) =
∫

τ

t=τ−1
r(at ,Ω, t), (2)

where r̂ is the reward function of the original discrete time environment. Note that this
formulation is still able to support sparse/instantaneous reward schemes, by defining a short
interval over which the reward is distributed.

Given our definition of the reward density function, we can now define the return for a
time segment of a rollout as

R(Ω, t0,T ) =
∫ T

t=t0
γ

t−t0r(at ,Ω, t), (3)

where γ is the discount factor for future rewards.
We next define the value function for a state at a given time t within the rollout as

V π(Ω, t)=R(Ω, t,∞). Note that although this is an improper integral, in practice RL algorithms
will generally enforce a maximum episode length to prevent the agent getting stuck. This
provides a practical upper bound for the reward calculation. As detailed later, this value
function encodes the expected return for policy π(a|Ω, t), starting at state st within rollout
Ω. Finally, this value function now enables us to define the continuous time variant of the
advantage function [12] for a particular action sequence â as

A(Ω,τ, â) =
(∫

∞

t=τ

γ
t−τ r(â,Ω, t)dt

)
−V π(Ω, t). (4)

Given this formulation of the continuous time RL problem, we propose the Continuous
Event-based Reinforcement Learning (CERiL) solution illustrated in Figure 2. Here the
environment provides frequent but discrete RGB image observations and rewards. These are
then converted into continuous observation streams, and encoded via the continuous feature
encoder network. These feature encodings are finally passed to three network heads. The
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projection head attempts to recover the underlying physical state of the system, and is used as
a regularisation to help constrain the feature encoder. The other two heads represent the actor
and critic networks of the RL system. The various subsections of the flow diagram will now
be described in turn.

 

   

 

  

  

 

 

 

Figure 2: Flow diagram for training the proposed continuous RL system. The rollout buffer, shown in green, can be
appended and sampled over a variable time period. Blue arrows show the generation of the continuous time rollout
(see Section 3.1). Yellow arrows show how the rollout is sampled. Red arrows show the gradient paths for the policy
loss Lp, value loss Lv, entropy loss Le and the bootstrap loss Lb. Each ⊖ represents the application of the relevant
loss function.

3.1 Continuous time rollout generation
Although the definitions above generalise to any continuous time RL problem, this paper
specifically concerns itself with learning from the event stream produced by an event camera.
To generate these continuous time event camera rollouts, we propose a general purpose
approach based on the OpenAI Gym [2] environment specification. Firstly, where possible we
modify the environment to reduce the time elapsed per step to 1

N . The parameter N roughly
relates to the density of the event rollout with respect to the control loop. Next, after each
query of the policy network π(a|Ω, t) we undertake N repeated steps of the environment
using the selected action. At each step, we record the underlying state vector µt and render
the environment to an RGB image It . We note that both µt and It are still sampled at regular
discrete timesteps (albeit at a greatly increased ‘framerate’).

Next, we pass the image stream I through the event camera simulator ESIM [10]. This
produces an event stream E = {(x,y, p, t)} which is a set of event tuples, each specifying a
pixel location x,y, polarity p, and a timestamp t. These timestamps are no longer discretely
spaced, and may occupy any value along the continuous time domain. This is possible due
to the simulator’s modelling of event camera behaviour coupled with an interpolation of the
brightness values between frames.

We can therefore populate the continuous time rollout via

Ω(x,y, p, t) = [(x,y, p, t) ∈ E ] (5)

where [ ] indicates the Iverson bracket. This procedure can in principle be followed to create a
continuous time event rollout for any OpenAI Gym environment which implements a render
function.

3.2 Continuous time feature encoding
We manage the sparsity of the continuous event volume by building a feature encoder network
using Event Decay Convolution (EDeC) layers [18].
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This is superficially similar to performing a 3D convolution on the space-time event
volume. However, unlike a traditional 3D convolution kernel, each EDeC kernel includes only
a set of K ∈Rn×n spatial convolution parameters as well as a single temporal decay parameter
α ∈ [−1..1]. The kernel is defined according to these learnable parameters as

Kp(x,y, t) = Kp(x,y)αz−t , (6)

where z is the temporal extent of the 3D kernel. This special structure means the number of
learnable parameters per kernel is n2 +1 as opposed to zn2. More importantly this ensures a
densification of the sparse event volume, insuring information propagates across time. EDeC
kernels also have a separable structure, which enables extremely efficient online ‘streaming’
inference.

At layer l of the continuous feature encoder, the encoded rollout for the following layer
l +1 is produced according to

Ω
l+1(x,y, p̄, t) =

∫ T

t=0
∑
p

K p̄
p ∗Ω

l(x,y, p, t)αz−t . (7)

The input to the first layer of the feature network (Ω0) is the event encoding defined in
Equation (5). The final encoded volume which is to be passed to the other network heads, is
defined as Ω̂(x,y, p, t).

3.3 State space projection
Despite the specialised structure of the feature encoding network, it is still challenging to
extract useful information directly from the sparse event stream. In order to help with this, a
projection head P is introduced as a regularisation. This projection head attempts to recover
the stream of underlying physical states (µ from Section 3.1) of the environment based on the
encoded features. The corresponding loss is defined as

Lb(Ω̂) =
∫

|P(Ω̂, t)−µt |dt. (8)

It is worth noting that we do not force the encoded feature space to match the underlying
physical state. We only require that the physical state is recoverable. In reality the encoded
features are much higher dimensional and far more expressive than the physics state. During
experimentation we noted that using the ground truth physics state directly (as in many simple
fully observed RL problems) often leads to reduced performance, when compared to our
continuous feature encoding.

3.4 Actor & critic decoders
At the start of Section 3 we defined the continuous time variants of the return, value function
and advantage function. In CERiL we use a value network V π(Ω̂, t) which estimates the value
function at a particular time, given the encoded rollout as input. The critic loss for this network
is defined as

Lc(Ω̂) =
∫ ∣∣V π(Ω̂, t)−R(Ω̂, t,∞)

∣∣dt. (9)

We note that although this is defined in the continuous domain, it may only be backpropagated
to update the network weights at certain times, dependent on the frequency of the actor. Our
continuous actor network is similarly defined as π(a|Ω̂, t) which uses the encoded rollout to
compute the selection probability of each action, across time. In order to define the action
loss, we first specify the scaling factor c as

c =
π̂(a|Ω̂, t)
π(a|Ω̂, t)

(10)
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where π̂ is the delayed policy from before the last network update. This is analogous to the
scaling factor within the discrete PPO loss definition, which is designed to keep the update
within the trust region. This scaling factor allows us to define the loss function as the scaled
and clipped version of the continuous advantage function

Lp(Ω̂) =
∫

max
(
cA(Ω̂, t, â),clip(c,1−ε,1+ε)A(Ω̂, t, â)

)
(11)

where ε is a hyperparameter controlling the level of update clipping. This keeps the update
within the trust region. Finally, an entropy loss is introduced as

Le(Ω̂) =
∫

E(−log(π(a|Ω̂, t))). (12)

This ensures that the policy retains an element of exploration. In practice, the actor, critic and
entropy losses are only used to constrain their own respective network heads. The feature
encoding volume itself is primarily constrained by the loss defined in Equation (8).

4 Evaluation
4.1 Environments
Four environments with contrasting reward schemes were chosen. The first environment was
Pendulum. The task is to swing an arm to balance it upright with zero torque. The physics
state is µ = [x,y, θ̇ ], where θ is the orientation of the pendulum, x = cos(θ) and y = sin(θ).
It has a dense reward scheme; at each step, the reward is a function of the pendulum’s angle
and the torque,

r =−(θ 2 +0.1∗θ
2
dt +0.001∗ torque2), (13)

where θ = 0 is the upright and target position. The minimum reward is −16.3 and the
maximum is zero.

Figure 3: Pendulum environment step visualisations (RGB, events)

For the second environment, CartPole, the agent is a ‘cart’ which can be moved left
or right. A freely-rotating pole is anchored to the agent. Each step gives a reward of +1,
and the episode is terminated if the pole falls or if the cart moves too far from the starting
position. The agent should prolong the episode by balancing the pole, reaching a reward cap
of 500. At each timestep, the physics state of this environment is µ = [x, ẋ,θ , θ̇ ], where x is
the horizontal position, θ is the angle of the pole, and the dotted versions are the derivative of
their counterparts.

Figure 4: CartPole environment step visualisations (RGB, events)

Atari Pong was chosen for the third environment. It has a sparse reward scheme; A
reward of +1 or −1 is given when either the agent or the opponent scores a point, respectively.
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Figure 5: Pong environment step visualisations (RGB, events)

Environments with sparse reward schemes are particularly difficult for on-policy algorithms
as there is no feedback until something significant happens. For this environment the physics
state µ is the RAM state of the atari environment.

MountainCar was chosen as the final environment. The physics state of the environment
is µ = [x, ẋ] where x is the horizontal position of the cart. It has a simple reward scheme
which is the opposite of CartPole. A penalty of −1 is applied at every timestep, encouraging
early termination of the episode. The only way to terminate the episode is to reach the flag on
the right-hand side, which requires a prolonged chain of cycling between the two mountains.
This makes the environment incredibly challenging to solve without using imitation learning.
Without guidance, it is very rare for random motions to be consistent enough for the cart to
reach the goal. The reward signal also does not provide any guidance that the agent is getting
closer.

Figure 6: MountainCar environment step visualisations (RGB, events)

For the event stream observations (shown in Figures 3 to 6), note that events are only
generated where the brightness value of a given pixel changes. This means that it is common
for some parts of the scene to not be visible to the event camera. For example, when CartPole’s
pole is perfectly balanced, it may not generate events. Additionally, MountainCar’s hill and
goal are stationary and are therefore not visible. Nevertheless, the key aspects of these
environments are visible through the event camera simulator. Certain environments like Chess
may not be amenable to this approach, as the non-moving pieces are static and thus invisible.
However, the simple introduction of some camera jitter may be enough to circumvent this.

Approach Input data format Average rewards
Pendulum CartPole Pong MountainCar

NatureCNN [9] RGB −1242.2 9.4 17.9 −200.0
NatureCNN-e [9] 2D event image −1236.6 137.4 15.0 −200.0
SNN [6] Event stream −1177.1 87.3 −17.2 −200.0
CERiL (ours) Event stream -638.7 438.8 1.0 -97.6

Table 1: Best average rewards for OpenAI environments.

4.2 Baselines
We train a number of different policy types on each environment. The first is NatureCNN, a
3-layer Convolutional Neural Network (CNN) [9]. It has been used to achieve human-level
control in Atari games with RGB frames as input, and is commonly referred to as the ‘Nature
CNN’. This is applied to the RGB frames I. This is disadvantageous compared to state vectors
and event streams, since each RGB image does not encode any temporal information. For
example, in MountainCar, it is impossible to tell if the car is rolling up or down the hill, and it
is therefore more difficult to build momentum.
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The second baseline is NatureCNN-e. This uses same CNN network applied to the event
camera data. To allow the CNN to operate on an event stream, the events must be formatted
into an image tensor. To achieve this, we accumulate events within an interval at each pixel
location. We keep the positive and negative events as separate channels, C = 2, and produce
aggregated ‘event frames’ as

IE
t (x,y, p) =

t+1

∑
t
[(x,y, p, t) ∈ E ]. (14)

where [ ] indicates the Iverson bracket.
The third baseline is an SNN, for which an event stream is the ideal data representation.

This baseline takes a segment of the event stream directly as input, much like the proposed
CERiL approach. We use the network architecture proposed in [6], with the final layers
adapted to match the action space of the environment in question.

4.3 Results
We contrast the accuracy of the proposed CERiL algorithm against the baselines detailed
above. Every entry for each environment was run with the same network structure (where
possible) and hyperparameters. The actor and critic networks had an architecture consisting
of two fully-connected layers with 64 units, with Tanh non-linearity functions applied after
each. The results for each environment are shown in Table 1 and Figure 7.

(a) Pedulum environment. (b) CartPole environment.

(c) Pong environment. (d) MountainCar environment.

Figure 7: Average evaluation rewards for each environment.

For the first environment, Pendulum, the proposed CERiL approach clearly outperformed
the others. When examining the videos, CERiL manages to balance the pendulum upright for
short amounts of time. However, during these times, the event stream is almost empty. The
data-propagating nature of CERiL could be the main factor that sets it apart from the other
event-based approaches, as events from previous frames (on the swing-up) provide a signal
beyond what is immediately visible. The best reward achieved did reach the ‘completion’ state
of zero reward for at least one episode in each technique. This could indicate that the period
of time balancing the pendulum without receiving events may be too long, and perhaps a
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more sensitive event generator could allow the event-based RL networks to approach optimal
performance.

For the second environment, CartPole, the NatureCNN operating on RGB frames was not
able to solve the task. This is likely because there is no temporal information encoded in the
image frames. As a result, it is not possible to determine if the pole is falling. Note that it is
possible to observe changes over time through frame-stacking, although the effective time
period would end up being many times longer than a single step. The NatureCNN operating on
an aggregated event images fared better. However, it may sometimes be difficult to determine
the direction of motion from event images. Our CERiL approach was able to achieve a high
reward averaging close to the upper threshold, as it can leverage events in their original order.

For the third environment, Pong, the proposed CERiL approach begins learning much
more rapidly than all other approaches. At 0.6M steps, the performance is greater than that
of all competing approaches combined. However, at this point learning slows dramatically
and is overtaken by the. NatureCNN approaches at around 1M steps. The SNN baseline
proves unable to make any significant progress in this environment. It is likely that there are
some intricacies of the environment that are hard to capture with the shorter timescales of the
event stream inputs. For example, the fact that when the opponent’s paddle remains stationary
it disappears from the observation space. The longer-term aggregation of the NatureCNN
approaches may mitigate this.

For the final environment, MountainCar, a solution threshold of −110 is typically set,
which when achieved, the model is considered to have solved the environment. Neither the
NatureCNN running on the rendered image nor the event-based NatureCNN-e on the event
stream were able to breach −200 reward. This means that the car never made it to the goal
through random exploration by the time limit, despite many attempts with different seeds.
In contrast, our CERiL approach achieved an average reward of −97.6, which exceeds the
completion threshold. As with CartPole, the network trained on RGB frames cannot resolve
velocity, impairing exploration. Both the aggregated event images and event stream are not
very informative at episode starts because the car has little momentum and moves slowly.
Nevertheless, utilising a continuous stream enables the environment to be solved.

5 Conclusions
In this paper we have proposed Continuous Event-based Reinforcement Learning. This is a
novel approach to RL where a continuous stream of input observations leads to a continuous
sequence of output actions. As such, the environmental updates and reward feedback may be
asynchronous and at irregular intervals. The resulting system is able to be far more reactive
than traditional visual RL systems. Furthermore, we propose a framework by which any
traditional RL environment can be made continuous through the use of the event camera
simulator. In order to produce an observation stream for CERiL in the real world, we propose
to use an event-camera sensor.

Our results show the promise of event streams in RL, which the proposed system utilises
to outperform previous benchmarks. The code for this framework will be released to the
community in order to verify the results and support further research in this area.

As future work, it would be interesting to explore the implication of continuous time RL
more broadly. The idea could be extended to other RL algorithms besides PPO, such as A3C,
DDPG, or SAC. It may also be useful to explore the implications for related areas such as
inverse RL or imitation learning. Finally, the results on the Pong environment imply that
there may be some benefit from a combined visual-event framework, which can maintain
information about stationary environmental objects. Alternatively the introduction of micro-
saccades may help to ensure a stimulus is produced under all environmental circumstances.
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