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Abstract
Acquiring and annotating suitable datasets for training deep learning models is chal-

lenging. This often results in tedious and time-consuming efforts that can hinder research
progress. Generative models have emerged as a promising solution for generating syn-
thetic datasets that can replace or augment real-world data. However, the effectiveness
of synthetic data is limited by their inability to fully capture the complexity and diversity
of real-world data. In this paper, we explore the use of Generative Adversarial Networks
to generate synthetic datasets for training classifiers that are subsequently evaluated on
real-world images. To improve the quality and diversity of the synthetic dataset, we
propose three novel post-processing techniques: Dynamic Sample Filtering, Dynamic
Dataset Recycle, and Expansion Trick. In addition, we introduce a pipeline called Gap
Filler (GaFi), which applies these techniques in an optimal and coordinated manner to
maximise classification accuracy on real-world data. Our experiments show that GaFi re-
duces the Classification Accuracy Score gap to an error of 2.03%, 1.78%, 3.99%, 3.33%
and 2.04% on the Fashion-MNIST, CIFAR-10, CIFAR-100, CINIC-10 and DermaM-
NIST datasets, respectively. These results represent a new state of the art in Classifi-
cation Accuracy Score and highlight the effectiveness of post-processing techniques in
improving the quality of synthetic datasets.

1 Introduction
Over the last few years, deep generative models have become so powerful that they are able
to produce high-quality samples that are almost indistinguishable from the real ones. With
these recent developments, it is natural to ask whether these models are powerful enough
to generate data that can be effectively used to train a machine learning model to perform
a specific downstream task, thus completely replacing the need for real data. This would
have several advantages, for example it could significantly reduce the cost and effort of data
collection, or it could be helpful in cases where information cannot be shared directly for
privacy or sensitivity reasons, or when the original dataset is too large and the generative
model can be used as a compressed version of the real data.
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In light of these considerations, although the focus of these models has historically been
on the perceptual quality of the data they generate, there have been attempts in recent years to
formalise and quantify the usefulness of synthetic data for training. An essential contribution
was made by Ravuri et al., who pioneered the metric called Classification Accuracy Score
(CAS) [1]. Given a system for generating data, the CAS represents the accuracy performance
that a classifier trained solely on its generated data is able to achieve on a test set consisting
of real data. Surprisingly, despite the high perceptual quality of the data generated by the
latest deep learning models, and despite the ability to generate an almost unlimited number
of samples, training a model on them has been observed to lead to a lower CAS value than
the accuracy of the same model trained on real data.

In this paper, we investigate if and how we can bridge the utility gap between synthetic
data generated by generative models and real-world data as measure via the CAS metric. We
analyse the post-processing techniques available in the literature and propose new ones to
improve synthetic data quality. We then present a new post-processing pipeline, Gap Filler
(GaFi), which can be applied to any generative model. GaFi combines the most effective
post-processing techniques to achieve a significantly better generator, without the need to
modify the model’s architecture or learning technique. The contributions of our work are:

• We propose two improved post-processing techniques, namely Dynamic Sample Fil-
tering and Dynamic Dataset Recycle, and a novel method called Expansion Trick.

• We propose the GaFi pipeline, which consists of a set of post-processing techniques
suitable for any generative model to maximise the CAS achieved with its generated
data.

• We demonstrate the effectiveness of the GaFi pipeline by obtaining empirical CAS
results that approach the upper bound of real accuracy performance. This achievement
sets a new state of the art in generating synthetic data for classification tasks.

2 Related Works
In the past decade, deep learning has seen a surge in the development of generative models
that are capable of producing synthetic data with increasing similarity to real-world training
data. Some of the key architectures that have contributed to this progress include Variational
Autoencoders (VAEs) [2], Generative Adversarial Networks (GANs) [3], and Denoising Dif-
fusion Probabilistic Models (DDPMs) [4]. These models have been predominantly used in
the field of computer vision, particularly for image generation. To measure the perceptual
quality of generated images, various metrics have been proposed, of which the Inception
Score (IS) [5] and the Frécht Inception Distance (FID) [6] are the most widely used and
empirically validated in the field of computer vision and image generation. Both IS and FID
are based on the Inception network architecture and use statistical measures to assess the
similarity between generated images and a reference dataset [7].

In addition, the creation of synthetic datasets, either to replace or to complement real-
world ones, has gained increasing attention in machine learning applications. Synthetic
data can offer significant advantages, such as the possibility to generate large-scale datasets
with known properties, reducing the need for costly data collection and annotation, and
overcoming issues related to data privacy and access. The use of generative models for
synthetic data generation has found applications in several fields, including semantic seg-
mentation [8, 9, 10, 11], optical flow estimation [12, 13, 14], human motion understand-
ing [15, 16, 17, 18], and image classification [1, 19, 20, 21].
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A fundamental contribution to the advancement of this alternative use of generative mod-
els has been made by Ravuri et al., which focused on evaluating the performance of GANs
through a downstream classifier, introducing the Classification Accuracy Score (CAS) met-
ric [1]. The proposed method involves training a classifier with synthetic images and testing
it on a dataset of real images to assess its performance. The challenge is that, if a generative
model captures in an optimal way the real data distribution, performance on the downstream
task should be similar whether using the original data or synthetic ones. Unfortunately,
achieving comparable performance between classifiers trained on real and synthetic data
remains a challenge, despite the efforts made to bridge this gap.

One notable approach is the Sample Filtering technique proposed by Dat et al. [22],
which aims to optimise the quality of the data generated. The technique uses an auxiliary
classifier trained on real data to predict the labels of synthetic samples. Samples with incor-
rect predictions or those with low prediction confidence are discarded. In addition, the same
authors propose the use of multiple generative models to improve the accuracy of synthetic
data by better capturing the real data distribution. Another approach to address the accuracy
gap is the Dataset Smoothing technique proposed by Besnier et al. [20]. This technique
aims to create a diverse but gradually changing dataset by replacing only a portion of the
generated training data with new samples at each epoch. Leveraging these contributions we
propose improved and novel methods to reduce the CAS gap further.

3 Method
The present study proposes a comprehensive post-processing pipeline that can be applied
to a broad range of generative models with the intention of improving their Classification
Accuracy Score (CAS). To this end, we have meticulously surveyed the existing literature
to identify the most effective techniques and subsequently adapted them to enhance their
dynamicity and flexibility. In addition, we have devised and integrated novel methods into
the proposed optimisation pipeline.

3.1 Post-processing Techniques
Dynamic Sample Filtering Following Dat et al. findings, we have re-implemented and
extended their proposed technique using an adaptive approach that takes into account the
dataset and the generative model in use. As demonstrated in their ablation study, varying
the filtering threshold may result in a synthetic dataset of superior quality compared to static
filtering [22]. To this end, we introduce Dynamic Sample Filtering, a two-step technique.
Firstly, we use a classifier to predict the generated samples, thereby discarding all incor-
rectly classified samples. Secondly, we define a range of filtering thresholds, incrementally
increasing from 0 to 0.9, and, for each threshold, we construct a standalone dataset consist-
ing of only the correctly predicted samples with confidence greater or equal to the threshold.
We generate new data until the filtered samples reach the desired amount for each synthetic
dataset. Finally, we train a classifier for each dataset and determine the threshold value of the
one achieving the best CAS. This technique helps eliminate low-quality images that could
negatively impact the performance of the downstream classifier.

Dynamic Dataset Recycle Inspired by Besnier et al., we propose to extend their Dataset
Smoothing technique, which has shown significant benefits in their research. Our approach,
called Dynamic Dataset Recycle, differs from the original in that it replaces the entire syn-
thetic dataset in each iteration, rather than just a portion. Our ablation studies show that
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Figure 1: Overview of the Gap Filler (GaFi) pipeline.

recycling the entire dataset leads to better performance in terms of CAS. Furthermore, to ad-
dress the issue of time complexity, which is proportional to the size of the generated dataset,
we propose to generalise its use by recycling the entire dataset every N epochs of classifier
training.

Expansion Trick We present a new method, the Expansion Trick, which works in contrast
to the Truncation Trick proposed by Brock et al. [23]. Instead of truncating the input noise
space, we expand it by sampling from a normal distribution with a higher standard deviation
than that used in model training. By increasing the diversity of the input noise space, our
method encourages the generative model to explore regions that were less sampled during
training. This leads to more diverse and novel images, a desirable outcome in settings where
diversity is prioritised over visual quality. As expected, the increased standard deviation of
the input noise distribution reduces the quality of individual samples. Therefore, the Expan-
sion Trick is most effective when combined with sample filtering techniques, to mitigate the
negative effects of lower sample quality by selecting only the most relevant samples to train
the classifier.

3.2 Gap Filler Pipeline
In this section, we introduce the Gap Filler (GaFi) pipeline, which combines the post-
processing techniques presented in the previous section in an iterative fashion. We discuss
also the importance of the correct application order and optimal hyperparameters for the
techniques to work effectively and in synergy. The GaFi pipeline, depicted in Figure 1, is
composed of the following sequential steps:

1. Generative Model Training: the initial step of the pipeline entails training a gen-
erative model and saving its checkpoints after every epoch for subsequent use. The
specific type of generative model is not a constraint.

2. Checkpoint Optimization: in order to optimise the performance of downstream clas-
sifiers, it is necessary to choose the best model among the saved checkpoints obtained
during training. To accomplish this step, we propose evaluating each checkpoint by
computing the CAS, and selecting the one that yields the highest performance. At this
stage, we adopt a pipeline with fixed hyperparameters: a standard deviation (stddev)
of 1.0 and a filtering threshold (threshold) of 0.0, meaning only samples predicted as
the wrong class are discarded, without considering the confidence of the prediction.
To balance the training time of the classifier, we set the Dataset Recycle technique
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parameter N to 10, which generates a new synthetic dataset every 10 epochs. This
configuration is referred to as the "Fast Pipeline".

3. Stddev Optimization: after identifying the best model checkpoint to use, we tune
the hyperparameters. We start by determining the optimal standard deviation for the
input noise distribution, which corresponds to the best configuration for the Expansion
Trick. We achieve this by using the "Fast Pipeline" to calculate the CAS while varying
the standard deviation between two predefined values, s0 and s f . In our experiments,
we set s0 = 1.0 and s f = 2.0, with incremental steps of 0.05.

4. Threshold Optimization: once the optimal standard deviation has been determined,
the next step is to find the optimal filtering threshold for the Dynamic Sample Filter-
ing technique. We follow a similar approach as before, using the "Fast Pipeline" to
compute the CAS while varying the filtering threshold between two specified values,
t0 and t f . In our experiments, we set t0 = 0.0 and t f = 0.9, with increments of 0.1.

5. CAS with best hyperparameters: finally, with the optimal hyperparameters selected
so far, we can proceed to train the classifier using the "Accurate Pipeline". Here, the
Dynamic Dataset Recycle technique is set to N = 1, allowing the use of data with a
high degree of diversity to obtain the optimal classifier with respect to the generator
under consideration.

6. Multiple Generators Sampling: the final step of the GaFi pipeline is to create multi-
ple generative models to sample the data and train a single optimal classifier. This is
achieved by repeating all the previous steps of the pipeline K times. According to Dat
et al. [22], it is sufficient to train multiple identical generative models with different
initialisation seeds on the same dataset. In this way, different aspects of the distribu-
tion of the dataset can be captured. A synthetic dataset is then created by sampling
uniformly from these multiple models for each training epoch of the classifier.

4 Experimental Setup
In order to increase the transparency and reproducibility of the study, this section provides
a comprehensive description of the experiments conducted and their setup. We selected the
BigGAN Deep architecture [23] as the generative model for our study. To implement this
architecture, we adopted the StudioGAN library1 [24], which makes slight modifications to
the layer layout of the generator and discriminator residual blocks. Both G and D networks
are initialised using the Orthogonal Initialization [25] technique, and trained using the Adam
optimizer [26] with hyperparameters β1 = 0.5, β2 = 0.999, and a constant learning rate of
2×10−4. We also used the Exponential Moving Average (EMA) technique for the weights
of G with a decay rate of 0.9999, as recommended by Brock et al. [23]. Data augmentation
was limited to random horizontal flipping of the training set. We trained all models using a
batch size of 192 and with 3 D steps per G step.

We have chosen to employ the ResNet-20 architecture [27] as the downstream classifier
due to its well-established performance. ResNet-20’s width was set to 64, and the con-
ventional ResNet training techniques were employed. This includes training it with cross-
entropy loss, using a batch size of 128, training for 100 epochs, and using the SGD optimizer
with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 1× 10−4. The
learning rate was reduced by a factor of 10 at epochs 60 and 80. To augment the synthetic

1https://github.com/POSTECH-CVLab/PyTorch-StudioGAN/

Citation
Citation
{Dat, Dutt, Pellerin, and QuÃ©not} 2019

Citation
Citation
{Brock, Donahue, and Simonyan} 2018

Citation
Citation
{Kang, Shin, and Park} 2022

Citation
Citation
{Saxe, McClelland, and Ganguli} 2013

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Brock, Donahue, and Simonyan} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN/


6 LAMPIS ET AL.: BRIDGING THE GAP

Table 1: The results of the CAS metric obtained using the Dynamic Sample Filtering tech-
nique for each filtering threshold.

No Filtering 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fashion-MNIST 88.70% 89.88% 90.01% 89.59% 89.98% 89.89% 90.05% 90.21% 89.86% 90.12% 89.90%
CIFAR-10 87.11% 88.45% 88.95% 88.75% 88.45% 88.67% 89.06% 88.72% 88.96% 88.09% 88.41%
CIFAR-100 57.74% 59.13% 58.82% 59.39% 59.35% 59.20% 59.06% 58.79% 58.76% 57.28% 55.52%
CINIC-10 75.58% 76.70% 77.10% 77.85% 76.83% 78.08% 77.62% 77.80% 77.94% 78.50% 77.11%
DermaMNIST 67.48% 67.58% 67.38% 67.08% 66.88% 67.18% 67.93% 67.53% 66.48% 67.08% 66.38%

training set, which is a balanced dataset with the same cardinality as the real dataset, a sim-
ple form of data augmentation was used. This involves zero-padding the input image, or its
horizontally flipped version, to a size of 40× 40, extracting a random crop of size 32× 32,
and using it as the final input image.

All experiments have been conducted on five datasets, namely Fashion-MNIST [28],
CIFAR-10 [29], CIFAR-100 [29], CINIC-10 [30] and DermaMNIST [31]. The
Fashion-MNIST dataset contains 60,000 28× 28 greyscale training images divided into
10 classes. CIFAR-10 and CIFAR-100 contain 50,000 32×32 RGB training images di-
vided into 10 and 100 categories respectively. All three datasets have a test set of 10,000
images. CINIC-10 contains 180,000 32× 32 RGB training images divided into 10 cate-
gories. Its test images are 90,000. Finally, the DermaMNIST dataset contains 8,010 RGB
28× 28 training images divided into 7 categories and a test set size of 2,005. To make the
images of the Fashion-MNIST dataset the same size as the other datasets, we resized
them to 32×32 using zero padding. For the DermaMNIST dataset, on the other hand, due
to its RGB nature, a 32× 32 resizing using the Lanczos algorithm was chosen. The exper-
iments have been conducted on a machine equipped with an Intel(R) Xeon(R) Gold 6238R
CPU @ 2.20GHz CPU and an Nvidia Quadro RTX 6000 GPU. Training a single ResNet-20
model takes between 1 and 2.5 hours, depending on which and how many post-processing
techniques are used, while training a BigGAN Deep requires around 48 hours.

5 Results
In this section, we present the results of our experiments. We start by analysing the individual
impact of each proposed post-processing technique. The results of these techniques are
evaluated based on the final checkpoint of the generative model, i.e. without the application
of the Checkpoint Optimization step. Finally, we present the results of the whole GaFi
pipeline.

Dynamic Sample Filtering As we can see from Table 1, the use of the Sample Filtering
technique is beneficial for all the datasets in analysis. However, from this table it can be seen
that the optimal threshold value is highly dependant on the specific dataset. For instance,
the CAS for Fashion-MNIST and CIFAR-10 remains almost constant for any threshold
value, while for the CIFAR-100 it is clearly visible that a higher threshold value degrades
the performance of the classifier. We assume that this behaviour is due to the fact that the
generators trained on the first two datasets, being easier to learn, produce images that are
very faithful to the original dataset. Therefore, the classifiers pretrained on real images will
have high confidence in their predictions and most of the bad images will already be removed
due to incorrect labelling. In contrast, CIFAR-100 is a much more complex dataset as it has
10 times the number of classes, causing the generated images to be more likely rejected by
the pretrained classifier when a high filtering threshold is used. On average, with respect to
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Table 2: The results of the CAS metric obtained using the Dynamic Dataset Recycle tech-
nique for each considered recycle frequency.

No Recycle N=10 N=5 N=1

Fashion-MNIST 88.70% 89.29% 89.88% 90.16%
CIFAR-10 87.11% 89.72% 90.25% 90.42%
CIFAR-100 57.74% 59.68% 60.57% 61.38%
CINIC-10 75.58% 79.37% 80.55% 82.57%
DermaMNIST 67.48% 68.03% 68.33% 68.43%
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Figure 2: The results of the CAS metric obtained using the Expansion Trick technique. The
plots compare unfiltered and filtered datasets (filtering threshold: 0.0).

the baseline CAS achieved, i.e. the "No Filtering" column of the table, the Dynamic Sample
Filtering technique improves the CAS by 1.7%.

Dynamic Dataset Recycle Table 2 shows that the proposed dataset recycling technique sig-
nificantly improves the CAS for all five datasets. The results reveal that even with a relatively
soft recycling period, such as N = 10, there is an increase in accuracy ranging from 0.55% to
3.79%, depending on the dataset. Notably, by reducing the recycling period, i.e. generating
new synthetic data more frequently during training, we can obtain an additional performance
boost. The gain in accuracy is more pronounced with increasing dataset complexity, as ex-
pected, since the generative model may require more attempts before generating meaningful
data, especially for those classes learnt with poor effectiveness.

Expansion Trick Figure 2 displays the impact of the Expansion Trick on the CAS. The
results indicate that when the dataset is unfiltered, there is a small increase in performance
when using a standard deviation slightly higher than 1, with the exception of CINIC-10.
However, as the standard deviation increases, there is a degradation in performance. This
outcome is not unexpected, as a higher standard deviation leads to more diverse images at
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Figure 3: The results of the CAS metric obtained for each checkpoint and dataset.

the cost of image quality. As a result, beyond a certain point, the images become too de-
graded to be useful for training a downstream classifier. On the other hand, when using the
Expansion Trick with a sample filtering technique, we can achieve significantly higher stan-
dard deviation values without compromising performance. This is because only the "good"
images that meet the filtering criteria - in this case, the correctly classified ones - are kept,
ensuring that the dataset is more diverse while still containing higher-quality images than
the unfiltered dataset, leading to a higher classification accuracy. Our novel technique im-
proves the CAS by 3.47%, 2.96%, 5.29%, 1.69% and 0.95% on the Fashion-MNIST,
CIFAR-10, CIFAR-100, CINIC-10 and DermaMNIST datasets, respectively. These
gains demonstrate the efficacy of the Expansion Trick in enhancing the generative model’s
ability to produce informative samples, which in turn improves the downstream classifier’s
performance.

Checkpoint Optimization Figure 3 shows the evolution of the CAS metric as a function of
the generative model checkpoint. Bearing in mind that each point corresponds to the com-
plete training of a ResNet-20 classifier, the aim of this step is to identify the best checkpoint
with respect to the CAS metric, even though it may be computationally expensive. Looking
at the graphs, the best epochs for the datasets Fashion-MINST and DermaMINST are
112 and 80 respectively. On the other hand, for the datasets CIFAR-10, CIFAR-100 and
CINIC-10 we have that the optimum was reached at epochs 460, 443 and 490 respectively.
The first observation is that CAS increases with the number of epochs up to a certain point.
This behaviour is consistent with that of GANs from the point of view of the perceptual
quality of the generated images, which tend to collapse after a certain number of training
iterations. The optimal point clearly varies with the dataset and its complexity. Given the
same image size of the considered datasets, this complexity is to be understood in terms of
the number of classes, image channels and the cardinality of the datasets themselves. This
assertion is confirmed by the CAS convergence points in the first quarter of the available
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Table 3: The optimal hyperparameters configuration and CAS performance obtained using
the Accurate Pipeline.

Checkpoint Standard
Deviation

Filtering
Threshold CAS

Fashion-MNIST 112 2.00 0.0 94.03%
CIFAR-10 460 1.60 0.3 92.60%
CIFAR-100 443 1.70 0.1 68.92%
CINIC-10 490 1.25 0.0 84.37%
DermaMNIST 80 1.30 0.4 73.66%

Table 4: The final results comparing the CAS obtained from the classifiers trained on gener-
ated data. The GaFi pipeline is compared with the previous state of the art, with the Synthetic
Baseline and with the accuracy of the classifiers trained on real data.

Fashion-MNIST CIFAR-10 CIFAR-100 CINIC-10 DermaMNIST

Real Data 96.01% 94.98% 75.64% 89.05% 77.25%
Baseline 88.70% 87.11% 57.74% 75.58% 67.48%

#G
en

er
at

or
s

1 Dat et al. - 88.25% 62.22% - -
GaFi (ours) 94.03% 92.60% (+4.35%) 68.92% (+6.70%) 84.37% 73.66%

2 Dat et al. - 89.68% 64.33% - -
GaFi (ours) 93.98% 92.74% (+3.06%) 70.22% (+5.89%) 85.42% 75.06%

4 Dat et al. - 90.68% 67.22% - -
GaFi (ours) 93.99% 93.02% (+2.34%) 71.75% (+4.53%) 85.62% 74.71%

6 Dat et al. - 91.14% 67.56% - -
GaFi (ours) 93.98% 93.20% (+2.06%) 71.95% (+4.39%) 85.72% 75.21%

epochs for the simplest datasets and in the last quarter for the others. Overall, the Check-
point Optimisation step is critical and allows the subsequent steps in the GaFi pipeline to
start from the optimal generative model.

Accurate Pipeline After determining the optimal configuration, which is summarised in
Table 3, the classifier can be retrained using the "Accurate Pipeline", where the recycling
period N is set to 1, regenerating the dataset at each training epoch to achieve the best pos-
sible CAS through the GaFi pipeline. It is evident that the Expansion Trick in combination
with the Dynamic Sample Filtering technique played a crucial role in achieving the optimal
CAS. This is supported by the shifted values towards the standard deviation of 2 in each of
the configurations compared to the Expansion Trick application alone.

The final results of the experiments are presented in Table 4, which includes the accu-
racy scores obtained from real data (Real Data), the CAS of a single BigGAN Deep with-
out post-processing techniques representing the baseline (Baseline), and for each number of
generators considered, a comparison between our GaFi technique and the previous state-of-
the-art post-processing performed by Dat et al. using the same generative architecture used
in this work. Our approach achieves the best results, with improvements over the baseline
of 5.33% for Fashion-MNIST, 6.09% for CIFAR-10, 14.21% for CIFAR-100, 10.14%
for CINIC-10 and 7.73% for DermaMNIST. Furthermore, our pipeline achieves higher
accuracy even when using only one generator compared to the best configuration of Dat et
al. with six generators. These results demonstrate that our proposed post-processing tech-
niques, and the way they are applied in the GaFi pipeline, lead to superior classifiers trained
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on more generalised and useful data.
It is worth noting that the gap between our synthetic data and the real data has nar-

rowed significantly. Specifically, for the Fashion-MNIST, CIFAR-10, CIFAR-100,
CINIC-10 and DermaMNIST datasets, the gap with respect to the baseline has been re-
duced from 7.31%, 7.87% , 17.9%, 13.47% and 9.77% to 2.03%, 1.78%, 3.99%, 3.33%
and 2.04%, respectively. This remarkable result demonstrates the undeniable effectiveness
of post training techniques. Moreover, it implies that the use of other generative models,
whether existing or forthcoming, can further reduce this gap, and it may even be possible to
achieve classifiers trained on synthetic data that outperform those trained on real data. This
promising prospect illustrates the great potential of our proposed approach for synthesising
high-quality data.

6 Conclusion
In this study, we introduced the Gap Filler pipeline (GaFi) to enhance the Classification
Accuracy Score (CAS) by proposing new and enhanced post-processing techniques for gen-
erative models. These techniques included Dynamic Sample Filtering, Dynamic Dataset
Recycle, and Expansion Trick, which have been shown to be highly beneficial when applied
correctly. Our experimental results demonstrated that the proposed pipeline significantly
increased the CAS, resulting in a new state-of-the-art performance on the five datasets anal-
ysed. Despite our research yielding an accuracy that was slightly lower than that obtained
on real data, we believe that the remaining gap raises a philosophical question about the
very essence of generative modeling: whether it is possible to produce a model that can per-
fectly learn the distribution of real data. However, we remain optimistic that it is achievable.
We acknowledge that there are challenges that need to be addressed to bridge this gap, but
we are confident that once this is achieved, it would open up new avenues for research and
revolutionize several fields.
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