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Abstract

RGB-T semantic segmentation has emerged as a promising solution to handle hard
scenes with poor lighting conditions by fusing a pair of RGB and thermal images. Al-
though various deep-learning-based fusion networks have been proposed with excel-
lent performance, most of them are not suitable for real-time applications due to high
computational overhead and latency. To realize high-accuracy RGB-T real-time seman-
tic segmentation, this paper proposes a novel Label-guided Real-time Fusion Network
which fuses multi-level features of RGB and thermal images extracted from double
two-pathway lightweight backbones based on the proposed Label-guided Fusion Mod-
ule (LFM). The proposed LFM realizes efficient multi-modal feature fusion by spatial
weighted summation, in which a spatial attention map is generated with the guidance of
semantic label in the training phase to accurately indicate the contributions of different
modalities. Exhaustive experiments on the MFNet and PST900 datasets demonstrate that
the proposed method simultaneously achieves higher speed and accuracy compared with
other state-of-the-art methods.

1 Introduction

RGB-T semantic segmentation tries to accurately classify each pixel of a RGB image into a
specific label by using a thermal image as complementary data. This technique has emerged
as a promising solution to address the limitation of RGB-based semantic segmentation mainly
caused by poor lighting conditions. So far, various methods have been proposed for RGB-T
semantic segmentation, among which deep learning methods have drawn widespread atten-
tion with high segmentation accuracy[22]. However, most deep learning methods suffer
from low computational efficiency, i.e., they are not suitable for RGB-T real-time semantic
segmentation which is often necessary for many applications[21].
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To realize high-accuracy RGB-T real-time semantic segmentation, there exist two chal-
lenging problems: First, high-accuracy designs usually rely on heavy backbones such as
ResNet-50, but these heavy backbones usually bring in high computational cost. To solve
this problem, lightweight networks are proposed with a good balance between accuracy and
efficiency for segmentation in recent years, e.g., BiSeNetV1 [17], BiSeNetV2 [18]. These
lightweight networks have already adopted for RGB-based real-time semantic segmentation,
but they are seldom discussed for RGB-T real-time semantic segmentation.

Second, conventional fusion modules based on element-wise addition or concatena-
tion [4, 10] are simple for implementation, but they fail to fully integrate information of
paired RGB and thermal images [22] due to their neglect of modality differences caused by
different imaging mechanisms. To solve this problem, some researchers [1, 19] introduce
attention mechanisms to reduce modality differences laid in features before or after con-
ventional fusion module, while others [7, 21, 22] explore the characteristics of cross-modal
features at different levels and devise different fusion modules to merge multi-modal features
at different level respectively under multi-label supervision. However, most researches on fu-
sion module designs [1, 7, 19, 21, 22] are conducted based on heavy backbones without con-
sideration of computational complexity. Their performance are not validated based on real-
time lightweight backbones which have poorer representation abilities compared with heavy
networks. Therefore, it is necessary to discuss fusion module designs based on lightweight
networks for RGB-T real-time semantic segmentation.

To address the above problems, this paper proposes a novel Label-guided Real-time Fu-
sion Network (LRFNet). Specifically, the proposed LRFNet first introduces double two-
pathway lightweight backbones proposed by BiSeNetV1 [17] to extract features of different
levels (i.e., detail and context) from RGB and thermal images, and then fuses modality fea-
tures at different levels based on the proposed core component named Label-guided Fusion
Module (LFM) respectively to achieve fast and accurate perception. In the proposed LFM,
to realize efficient multi-modal feature fusion, we adopt spatial weighted summation based
on a spatial attention map which is generated with the guidance of semantic label in the
training phase to indicate the contributions of different modalities. Experimental results on
MFNet and PST900 datasets show that the proposed LRFNet outperforms other state-of-the-
art methods in speed and accuracy.

2 Related work

Real-time Semantic Segmentation. Semantic segmentation can easily achieve high accu-
racy using methods based on fully convolutional networks [12]. Unfortunately, most se-
mantic segmentation methods cannot achieve real-time performance due to their high com-
putational overhead and latency. To balance the trade-off between accuracy and efficiency,
researchers try to devise shallow lightweight networks[2, 18]. However, most lightweight
networks do not have sufficient representation ability for accurate segmentation. To over-
come this problem, recent studies focus on two mainstreams. The first mainstream is to
fuse multi-layer features of a lightweight backbone. For example, MSFNet [12] devises a
Multi-features Fusion Module for backbone (ResNet-18) to enlarge the receptive field and
recover the spatial information loss. STDC-Seg [2] introduces Feature Fusion Module [17]
to fuse features from low-level and high-level layers in a designed lightweight backbone
named STDC. The second mainstream is to devise multi-branch architecture. For example,
ICNet [20] devises a multi-branch cascade network which can extract features of multi-
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resolution images to efficiently achieve high segmentation accuracy. BiSeNetV1 [17] and
BiSeNetV?2 [18] devises two-stream architectures to extract both detail and context informa-
tion of an image, and fuse them to enhance segmentation performance. The above network
designs have good speed-accuracy trade-offs. However, these methods cannot be directly
applied for RGB-T semantic segmentation, since RGB and thermal images cannot be simply
regarded as a 4-channel image considering their modality difference [1, 4].

RGB-T semantic Segmentation. Compared with RGB-based semantic segmentation,
The main challenging problem of RGB-T semantic segmentation is how to efficiently fuse
different modality features of RGB and thermal images. Early studies [4, 10, 13, 14] uti-
lize simple feature fusion methods: Specifically, MFNet [4] employs element-wise addi-
tion to fuse different level modality features from two separate symmetric encoders in a
shared decoder. PSTNet [10] employs concatenation to fuses RGB and thermal informa-
tion in a devised dual-stream architecture for real-time segmentation. Similar to MFNet,
RTFNet [13] and FuseSeg [14] employ element-wise addition to fuse modality features,
but they design network architectures based on heavy backbones like ResNet-152s [5] and
DenseNet-161s [6] to further enhance feature representation ability. The above simple fusion
methods achieve good segmentation accuracy. However, their performance are gradually
stuck in a bottleneck, since simple fusion based on element-wise addition or concatenation
does not fully consider modality differences caused by different imaging mechanisms.

To overcome the performance bottleneck, recent studies try to devise more intricate fu-
sion methods. Specifically, some researchers introduce attention mechanisms to refine fea-
tures before or after conventional fusion module so that modality differences laid in features
can be effectively reduced. For example, ABMDRNet [19] devises a Channel Weighted Fu-
sion module based on channel attention. FEANet [1] devises a Feature-Enhanced Attention
module before addition-based simple feature fusion. Other researchers devise different fu-
sion modules to merge multi-modal features at different level respectively under multi-label
supervision so that modality differences at different level can be fully considered. For exam-
ple, EGFNet [22] devises a Multimodal Fusion module, and adopts boundary and semantic
maps to guide shallow and deep feature fusion respectively based on multitask deep super-
vision. GMNet [21] devises a Shallow Feature Fusion module and a Deep Feature Fusion
module to fully integrate cross-modal information, and uses semantic, binary, and boundary
labels to further guide fusion results at different levels. The above mentioned fusion modules
show excellent performance. However, they are designed based on heavy backbones and are
not validated based on real-time lightweight networks.

3 Proposed Method

In this section, we first introduce our Label-guided Fusion Module (LFM) in detail. Then,
based on LFM, we introduce our proposed Label-guided Real-time Fusion Network (LRFNet).
The overall architecture is shown in Fig.1.

3.1 Label-guided Fusion Module

Previous study has pointed out that fusion model can easily achieve sub-optimal performance
if always giving equal importance for features from different modality [3]. However, how
to efficiently generate a confidence map to indicate the contribution of different modality
features for fusion is an intractable problem. Although recent work [3] has provided an
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Figure 1: The overall architecture of Label-guided Real-time Fusion Network, which adopts
spatial path and context path in BiSeNetV1 [17] as backbones.

effective solution, it is designed based on heavy backbone and has high computational com-
plexity, which is not suitable for lightweight networks with poorer representation ability.
To address the above problem, we propose a novel and simple Label-guided Fusion Mod-
ule (LFM) which consists of three parts: Feature Enhancement Module, Spatial Weighted
Features Fusion, and Semantic Label Supervision.

Feature Enhancement Module. The Feature Enhancement Module (FEM) is designed
to refine each coarse feature from lightweight backbones before further processing. Specifi-
cally, we first concatenate RGB and thermal features, and use a convolutional layer to achieve
a deeper feature following [4]:

Fs = or, (BN (Convsys (Cat(Fg, Fr)))) @)

where Convs 3 (*) denotes a 3 x 3 convolutional block, BN denotes a Batch Normalization
layer, and oy, denotes LeakyReLU layer with rate 0.2. Then, we introduce the channel atten-
tion module proposed by [15] to further refine the feature with little computational cost, and
obtain the fine-grained feature J ;. as the following:

Frine = 05 (MLP (GMP (F¢)) +MLP (GAP (F))) x Fr 2)

where GMP and GAP denote global average and max pooling respectively, two MLPs repre-
sent two multi-layer perceptrons with shared parameters, and o denotes Sigmoid function.
Spatial Weighted Features Fusion. Using the fine-grained feature ;,., we generate a
spatial attention map W to indicate the contribution of different modality features at different

position as follows:
W = o5 (Convii (Fine)) 3)

where Conv« (%) denotes two 1 x 1 convolutional blocks. Then, based on the spatial at-
tention map W, we obtain the fusion feature Fp,, by fusing the RGB feature Fz and the
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thermal feature Fr as the following:
Fruse =W X Fr+(1-W) x Fr (@)

However, since the spatial attention map W usually contains too much noise due to the poor
representation ability of lightweight backbones, the above fusion process will easily result in
sub-optimal performance. To suppress noise and generate an accurate spatial attention map,
we introduce semantic label supervision on the spatial attention map during training process.

Semantic Label Supervision. Noting that modality features within the same category
make similar contributions to fusion in a scene, we propose a customized semantic label
supervision method which explicitly clusters the intra-category values of a spatial attention
map to suppress noise without sacrificing inference speed. Specifically, given a spatial at-
tention map W € R”*" and the corresponding semantic label map Y which has k categories,
we first upsample the attention map W to align the corresponding semantic label map, and
obtain the mean weight of each category m € R**! as the following:

1
|Cil

m;

ZWJ’ W:upsample(W), i=0,1...k—1 )]
JEC;

where C; denotes a set of pixel positions with the i-th category in Y, |C;| denotes the number
of elements in C;. Then, we design a regularization term £ for W as the following:

N 151 __ 2
E(W,Y):%Z@ y (W,—m,-) (6)

i=0 jec;

By minimizing the regularization term £ (*,*), we suppress noise laid in a spatial attention
map and enhance fusion performance.

3.2 Network Architecture

Based on the proposed Label-guided Fusion Module (LFM), we design a Label-guided Real-
time Fusion Network as shown in Fig.1. First, we introduce two Spatial Paths and two
Context Paths proposed by BiSeNet [17] to extract both detailed and contextual features
{}' IgP ,f,gp ,]—'%P ,.FTCP } from RGB and thermal images respectively. The context path is a
pretrained ResNet-18 network [5] whereas the spatial path is composed of three convolution
layers. Then, we propose a novel fusion module called Label-guided Fusion Module (LFM)
to integrate features from the RGB and thermal features in both detail and context paths

fuse’” fuse
introduce a Feature Fusion module (FFM) proposed by [17] to further fuse detailed and
contextual fusion features, obtaining the segmentation fusion feature F iy, and upsampling
Ffinal to achieve the segmentation prediction.
Considering the class-imbalance in the datasets [4, 10], we adopt weighted cross entropy
loss function [9] to supervise the output of the whole network, and design the loss function
as the following:

separately, obtaining detailed and contextual fusion features {]-'SP FErP } Finally, we

1 N

Etotal = N Z |:WCE (?haYb) +n (ECP(W}C)’PaYb) +Lsp (ng, Yb))} (N
b=1
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where N denotes the number of samples, WCE(x,*) denotes the average weighted cross-
entropy loss between ground-truth label Y and segmentation prediction Y, Lcp(x,x) and
Egp(* ) denotes two regularization terms based on Eqn.(6) for two spatial attention maps,
WCP and WSP, in spatial path and context path respectively. 7 is a hyper-parameter to
balance the weight between the weighted cross entropy loss and the regularization terms. In
our paper, 7 is set to 0.1.

4 Experiment

In this section, we conduct all experiments based on two public RGB-T semantic segmenta-
tion datasets: MFNet [4] and PST900 [10]. We first introduce two datasets and implemen-
tation details. Then, we use ablation studies to analyze the proposed LFM and the designed
loss function. Finally, we compare the proposed method with other state-of-the-art methods
in accuracy and computational cost.

4.1 Dataset

MFNet. The MFNet dataset is a challenging dataset which collects urban street scenes at
different time. It contains 1569 pairs of RGB and thermal images with the same spatial
size of 480x 640, which can be split into 820 pairs taken at daytime and 749 pairs taken at
nighttime. The dataset has 8 hand-labeled object classes and background. For fairness, we
split the dataset into training, testing, and validation sets following the scheme in [4].
PST900. The PST900 dataset comes from the DARPA Subterranean Challenge. It has 894
pairs of aligned RGB and thermal nighttime image with 4 hand-labeled object classes and
background. For fairness, we split the dataset into training and testing sets following the
scheme in [10], and utilize the approach in [22] to resize each image to 640x 1280 pixels.

4.2 Implementation Details

Experiment Setup. We utilize Ranger optimizer [16] and Cosine Annealing [8] to gradually
reduce the learning rate from 7e-5 to O within 300 epochs as in [22]. Note that our training
process involves two steps: Firstly, we train a model without semantic label supervision to
determine the mean weights {m;} of Eqn.(5). Then, we retrain a new model using these mean
weights under the proposed semantic label supervision without considering the background
class, and introduce OHEM [11] to improve the training process. For data augmentation, we
apply random flipping and cropping as described in previous literature [4, 22]. The batch
size is set to 3 and the weight decay is set to Se-4. We train and evaluate the performance
and the inference speed on a single Tesla V100S.

Evaluation Metrics. We evaluate segmentation performance using mean accuracy (mAcc)
and mean intersection over union (mloU). Additionally, we adopt the number of parameters
(params.), floating point operations (FLOPs), and frames per second (FPS) to evaluate the
computational cost of all comparison methods comprehensively.

4.3 Ablation Study

In this section, we conduct a series of ablation experiments on the MFNet dataset to validate
the effectiveness of the proposed Label-guided Fusion Module (LFM), Feature Enhance-
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Figure 2: Visualization examples of the spatial attention maps W¢p and Wsp in Context Path
and Spatial Path with our proposed Semantic Label Supervision.

L~ [ I A A I I
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Figure 3: Visualization segmentation examples of our method and five representative state-
of-the-art methods on the test set of MFNet.

ment Module (FEM) and loss function. The results are shown in Table.1, in which “w/0”
represents removing a certain component.

Effectiveness of LFM. To validate the effectiveness of the proposed LFM, we compare
LFM with simple fusion methods in the “Simple Fusion Methods™ and “Placement of LFM”
parts in Table.1. In the “Simple Fusion Methods” part of Table.l; “4 Channels” denotes
the result of BiSeNet with input of a 4 channels RGB-T image; “Concatenation” presents
replacing LFM with concatenation in LRFNet; “Addition” presents replacing LFM with ad-
dition in LRFNet. From the results of the Simple Fusion Methods part in Table.1, we can
find that simple fusion methods based on concatenation or addition outperform the method
of “4 Channel” based on BiSeNet, which implies that directly regarding RGB-T images as a
4 channels image will result in sub-optimal performance.

In the “Placement of LFM” part of Table.1, “before FFM” represents fusing features of
different modalities on Spatial Path and Context Path respectively using two LFMs before
FFM; “after FFM” represents fusing features of different modalities using a singe FFM after
FFM. From the results, we can find that adopting two LFMs to fuse the detail and context fea-
tures respectively before FFM can produce better fusion features compared with the fusion
results after FFM. The main reason is that detail/context information of RGB and thermal
images usually makes different contributions to fusion whereas a single LFM can not handle
the mixture of detail and context information accurately.

Effectiveness of FEM. To validate the effectiveness of the proposed FEM in LFM, we
conduct ablation experiments on FEM and show the results in the “Structure of FEM” part of
Table.1. From the results, we can find that FEM can improve the accuracy performance. Ob-
viously, FEM can effectively extract the representative information from the coarse modality
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Simple Fusion Methods (w/o LFM) Placement of LFM

Model | 4 Channels Concatenation Addition before FFM  after FFM
mAcc 64.7 65.7 65.5 68.0 64.5
mloU 524 53.8 53.7 55.1 53.6
Loss Function Structure of FEM

Model CE WCE WCE+L(*,%) | with FEM w/o FEM
mAcc 61.2 66.7 68.0 68.0 67.1
mloU 53.6 543 55.1 55.1 54.2

Table 1: Results from ablation experiments on the MFNet dataset.

Methods Type | Publication Backbone | Params. (M) FLOPs (G) FPS | mAcc mloU
BiSeNet-3c | RGB | ECCV 2018 | ResNetl8 13.3 17.4 241.7| 614 482
BiSeNet-4c | RGB | ECCV 2018 | ResNetl8 13.3 17.9 2373 | 647 524

MFNet RGBT | IROS 2017 No 0.7 8.4 178.1 | 45.1  39.7
RTFNet-152 | RGBT | RAL 2019 | ResNetl52 254.5 290.3 164 | 63.1 532

FuseSeg | RGBT | T-ASE 2021 | DenseNet161 100.1 141.0 20.5 | 70.6  54.5
ABMDRNet | RGBT | CVPR 2021 | ResNet50 64.6 194.3 23.1 | 69.5 5438

EGFNet | RGBT | AAAI2022 | ResNetl01 62.8 201.3 205 | 727 548

Ours RGBT - ResNet18 25.9 32.0 111.3 | 68.0 55.1

Table 2: Comparison results from the MFNet dataset.

features and produce the accurate spatial attention map W to indicate the contribution of
different modality features at different positions.

Effectiveness of Loss Function. To validate the effectiveness of loss function, we com-
pare different loss functions in the “Loss Function” part of Table.1. From the results, we can
find that the weighted cross-entropy loss function (WCE) outperforms the cross-entropy loss
function, since WCE can alleviate the influence of class-imbalance in a dataset [9]. More
importantly, the regularization term £(*,*) of semantic label supervision enhances the per-
formance effectively. To further validate the regularization term L£(x, ) of semantic label
supervision, we visualize the spatial maps of the Context Path and Spatial Path in Fig.2.
Fig.2 shows that the proposed semantic label supervision can effectively suppress the noise
in the spatial attention map, leading to intra-category consistent fusion.

4.4 Comparison with State-of-the-Arts

Comparison on MFNet dataset. For the MFNet dataset, we compare our proposed LRFNet
with six state-of-the-art semantic segmentation methods, including a real-time RGB-based
segmentation method (BiSeNet [17]) and five RGB-T segmentation methods (MFNet [4],
RTFNet [13], FuseSeg [14], ABMDRNet [19], EGFNet [22]). The results are shown in
Table.2 and Fig.3. From the results, we can find that our method requires approximately
60% fewer parameters and 85% fewer FLOPs than those of ABMDRNet or EGFNet, but
it achieves comparable segmentation accuracy under mloU with a high frame rate of 111.3
FPS for paired 480640 RGB and thermal images. Although our method does not have high
values of mAcc, recent work [3] has pointed out that mIoU is a better indicator than mAcc
for the extremely-class-unbalanced MFNet dataset. Overall, our proposed LRFNet reaches
a good balance between accuracy and computational cost.
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Methods Type Params. (M) FLOPs (G) FPS Daytime Nighttime
mAcc  mloU | mAcc mloU
BiSeNet-3¢ RGB 13.3 17.4 241.7 57.1 43.7 56.9 45.8
BiSeNet-4c RGB 133 17.9 237.3 56.2 44.9 61.7 514
MFNet RGBT 0.7 8.4 178.1 42.6 36.1 414 36.8
RTFNet-152 | RGBT 254.5 290.3 16.4 60.0 45.8 60.7 54.8
FuseSeg RGBT 100.1 141.0 20.5 62.1 47.8 67.3 54.6
ABMDRNet | RGBT 64.6 194.3 23.1 58.4 46.7 68.3 55.5
EGFNet RGBT 62.8 201.3 20.5 74.4 473 68.0 55.0
Ours RGBT 25.9 32.0 111.3 60.4 47.9 65.1 54.3

Table 3: Results from daytime and nighttime images on the MFNet dataset.

Methods Type | Publication Backbone Params. (M) FLOPs (G) FPS | mAcc mloU
MEFNet RGBT | IROS 2017 No 0.7 21.4 946 | 63.5 503
RTFNet-152 | RGBT | RAL 2019 ResNet152 254.5 773.3 7.6 | 657 60.5
PSTNet RGBT | ICRA 2020 No - - - - 68.4
FuseSeg RGBT | T-ASE 2021 | DenseNet161 - - - - -
ABMDRNet | RGBT | CVPR 2021 ResNet50 64.6 808.1 7.1 | 791 713
EGFNet RGBT | AAAI2022 | ResNetl01 62.8 536.2 99 | 940 785
Ours RGBT - ResNet18 259 85.2 67.3 | 86.1 784

Table 4: Results from PST900 dataset [10]. ’-’ represents no public data.

We also summarize segmentation evaluations on the daytime and nighttime test sets of

the MFNet dataset in Table 2. Notably, our method performs relatively worse during night-
time. The main reason is that the spatial attention map in Spatial Path tends to indicate
higher contributions of RGB image feature due to the rich detail information laid in RGB
image (see Fig.2). However, RGB image does not contain much useful semantic information
during nighttime, thus, our proposed LRFNet performs worse relatively in this case. In the
future, we will improve the network design to solve this problem.
Comparison on PST900 dataset. We additionally evaluate our proposed LRFNet on the
PST900 dataset. The comparison results are shown in Table 4. It can be found that our pro-
posed method still achieves competitive performance with a high frame rate of 67.3 FPS for
paired 640x 1280 RGB and thermal images compared with other state-of-the-art methods.

5 Conclusion

This paper proposes a novel Label-guided Real-time Fusion Network which fuses detail and
context features of RGB and thermal images extracted from double two-pathway lightweight
backbones respectively based on the proposed Label-guided Fusion Module (LFM) to achieve
fast and accurate perception. The proposed LFM conducts weighted feature fusion based on
a spatial attention map generated with the guidance of semantic label in the training phase to
accurately indicate the contribution of different modalities. Specifically, it achieves 55.1%
mloU with the speed of 111.3FPS on the MFNet dataset, and 78.4% mloU with the speed of
67.3FPS on the PST900 dataset, proving that the proposed method reaches a better balance
between accuracy and computational cost compared with other state-of-the-art methods.
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