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Abstract 
We propose to train trading systems by optimizing financial objec­
tive functions via reinforcement learning. The performance func­
tions that we consider are profit or wealth, the Sharpe ratio and 
our recently proposed differential Sharpe ratio for online learn­
ing. In Moody & Wu (1997), we presented empirical results that 
demonstrate the advantages of reinforcement learning relative to 
supervised learning. Here we extend our previous work to com­
pare Q-Learning to our Recurrent Reinforcement Learning (RRL) 
algorithm. We provide new simulation results that demonstrate 
the presence of predictability in the monthly S&P 500 Stock Index 
for the 25 year period 1970 through 1994, as well as a sensitivity 
analysis that provides economic insight into the trader's structure. 

1 Introduction: Reinforcement Learning for Thading 
The investor's or trader's ultimate goal is to optimize some relevant measure of 
trading system performance , such as profit , economic utility or risk-adjusted re­
turn. In this paper , we propose to use recurrent reinforcement learning to directly 
optimize such trading system performance functions , and we compare two differ­
ent reinforcement learning methods. The first, Recurrent Reinforcement Learning, 
uses immediate rewards to train the trading systems, while the second (Q-Learning 
(Watkins 1989)) approximates discounted future rewards. These methodologies can 
be applied to optimizing systems designed to trade a single security or to trade port­
folios . In addition , we propose a novel value function for risk-adjusted return that 
enables learning to be done online: the differential Sharpe ratio. 

Trading system profits depend upon sequences of interdependent decisions, and are 
thus path-dependent. Optimal trading decisions when the effects of transactions 
costs, market impact and taxes are included require knowledge of the current system 
state. In Moody, Wu, Liao & Saffell (1998), we demonstrate that reinforcement 
learning provides a more elegant and effective means for training trading systems 
when transaction costs are included , than do more standard supervised approaches. 

• The authors are also with Nonlinear Prediction Systems. 
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Though much theoretical progress has been made in recent years in the area of rein­
forcement learning, there have been relatively few successful, practical applications 
of the techniques. Notable examples include Neuro-gammon (Tesauro 1989), the 
asset trader of Neuneier (1996), an elevator scheduler (Crites & Barto 1996) and a 
space-shuttle payload scheduler (Zhang & Dietterich 1996). 

In this paper we present results for reinforcement learning trading systems that 
outperform the S&P 500 Stock Index over a 25-year test period, thus demonstrating 
the presence of predictable structure in US stock prices. The reinforcement learning 
algorithms compared here include our new recurrent reinforcement learning (RRL) 
method (Moody & Wu 1997, Moody et ai. 1998) and Q-Learning (Watkins 1989). 

2 Trading Systems and Financial Performance Functions 
2.1 Structure, Profit and Wealth for Trading Systems 

We consider performance functions for systems that trade a single 1 security with 
price series Zt. The trader is assumed to take only long, neutral or short positions 
Ft E {-I , 0, I} of constant magnitude. The constant magnitude assumption can 
be easily relaxed to enable better risk control. The position Ft is established or 
maintained at the end of each time interval t, and is re-assessed at the end of 
period t + 1. A trade is thus possible at the end of each time period, although 
nonzero trading costs will discourage excessive trading. A trading system return 
Rt is realized at the end of the time interval (t - 1, t] and includes the profit or loss 
resulting from the position F t - 1 held during that interval and any transaction cost 
incurred at time t due to a difference in the positions Ft- 1 and Ft. 

In order to properly incorporate the effects of transactions costs, market impact and 
taxes in a trader's decision making, the trader must have internal state information 
and must therefore be recurrent. An example of a single asset trading system 
that takes into account transactions costs and market impact has following decision 
function: Ft = F((}t; Ft-l. It) with It = {Zt, Zt-1, Zt-2,··.; Yt, Yt-1, Yt-2, ... } where 
(}t denotes the (learned) system parameters at time t and It denotes the information 
set at time t, which includes present and past values of the price series Zt and an 
arbitrary number of other external variables denoted Yt. 

Trading systems can be optimized by maximizing performance functions U 0 such 
as profit, wealth, utility functions of wealth or performance ratios like the Sharpe 
ratio. The simplest and most natural performance function for a risk-insensitive 
trader is profit. The transactions cost rate is denoted 6. 

Additive profits are appropriate to consider if each trade is for a fixed number 
of shares or contracts of security Zt. This is often the case, for example, when 
trading small futures accounts or when trading standard US$ FX contracts in dollar­
denominated foreign currencies. With the definitions rt = Zt - Zt-1 and r{ = 
4 - 4-1 for the price returns of a risky (traded) asset and a risk-free asset (like T­
Bills) respectively, the additive profit accumulated over T time periods with trading 
position size Jl > 0 is then defined as: 

T T 

PT = LRt = Jl L {r{ + Ft- 1(rt - r{) - 61Ft - Ft-11} (1) 
t=l t=l 

1 See Moody et al. (1998) for a detailed discussion of multiple asset portfolios. 
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with Po = 0 and typically FT = Fa = O. Equation (1) holds for continuous quanti­
ties also. The wealth is defined as WT = Wo + PT. 

Multiplicative profits are appropriate when a fixed fraction of accumulated 
wealth v > 0 is invested in each long or short trade. Here, rt = (zt/ Zt-l - I) 
and r{ = (z{ /4-1 - 1). If no short sales are allowed and the leverage factor is set 
fixed at v = 1, the wealth at time Tis: 

T T 

WT = Wo II {I + Rd = Wo II {I + (1- Ft_t}r{ + Ft-1rt} {1- 81Ft - Ft- 11}· (2) 
t=1 t=1 

2.2 The Differential Sharpe Ratio for On-line Learning 

Rather than maximizing profits, most modern fund managers attempt to maximize 
risk-adjusted return as advocated by Modern Portfolio Theory. The Sharpe ratio is 
the most widely-used measure of risk-adjusted return (Sharpe 1966). Denoting as 
before the trading system returns for period t (including transactions costs) as R t , 

the Sharpe ratio is defined to be 

S _ Average(Re) 
T - Standard Deviation(Rt ) 

(3) 

where the average and standard deviation are estimated for periods t = {I, ... , T}. 

Proper on-line learning requires that we compute the influence on the Sharpe ratio 
of the return at time t. To accomplish this, we have derived a new objective func­
tion called the differential Sharpe ratio for on-line optimization of trading system 
performance (Moody et al. 1998). It is obtained by considering exponential moving 
averages of the returns and standard deviation of returns in (3), and expanding to 
first order in the decay rate ".,: St ~ St-1 + ""~ll1=O + 0(".,2) . Noting that only the 
first order term in this expansion depends upon the return R t at time t, we define 
the differential Sharpe ratio as: 

(4) 

where the quantities At and B t are exponential moving estimates of the first and 
second moments of Rt : 

A t- 1 + ".,~At = A t- 1 + ".,(Rt - A t-1) 

Bt- 1 + ".,~Bt = Bt- 1 + TJ(R; - Bt-d (5) 

Treating At - 1 and Bt - 1 as numerical constants, note that"., in the update equations 
controls the magnitude of the influence of the return Rt on the Sharpe ratio St . 
Hence, the differential Sharpe ratio represents the influence of the trading return 
Rt realized at time t on St. 

3 Reinforcement Learning for Trading Systems 

The goal in using reinforcement learning to adjust the parameters of a system is 
to maximize the expected payoff or reward that is generated due to the actions 
of the system. This is accomplished through trial and error exploration of the 
environment. The system receives a reinforcement signal from its environment (a 
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reward) that provides information on whether its actions are good or bad. The 
performance function at time T can be expressed as a function of the sequence of 
trading returns UT = U(R1' R 2 , ... , RT). 

Given a trading system model FtU}), the goal is to adjust the parameters () in 
order to maximize UT. This maximization for a complete sequence of T trades 
can be done off-line using dynamic programming or batch versions of recurrent 
reinforcement learning algorithms. Here we do the optimization on-line using a 
reinforcement learning technique. This reinforcement learning algorithm is based 
on stochastic gradient ascent. The gradient of UT with respect to the parameters () 
of the system after a sequence of T trades is 

T 
dUT(()) = L dUT {dRt dFt + dRt dFt-1} 

d() dRt dFt d() dFt- 1 d() 
t=1 

(6) 

A simple on-line stochastic optimization can be obtained by considering only the 
term in (6) that depends on the most recently realized return Rt during a forward 
pass through the data: 

_dU_t-'..( ()-'-) = _dU_t {_dR_t _dF_t + _d_R_t __ dF_t_-_1} . 
d() dRt dFt d() dFt- 1 d() 

(7) 

The parameters are then updated on-line using /),.()t = pdUt(()t)/d()t. Because of the 
recurrent structure of the problem (necessary when transaction costs are included), 
we use a reinforcement learning algorithm based on real-time recurrent learning 
(Williams & Zipser 1989). This approach, which we call recurrent reinforcement 
learning (RRL), is described in (Moody & Wu 1997, Moody et al. 1998) along with 
extensive simulation results. 

4 Empirical Results: S&P 500 I TBill Asset Allocation 
A long/short trading system is trained on monthly S&P 500 stock index and 3-
month TBill data to maximize the differential Sharpe ratio . The S&P 500 target 
series is the total return index computed by reinvesting dividends. The 84 input 
series used in the trading systems include both financial and macroeconomic data. 
All data are obtained from Citibase, and the macroeconomic series are lagged by 
one month to reflect reporting delays. 

A total of 45 years of monthly data are used, from January 1950 through December 
1994. The first 20 years of data are used only for the initial training of the system. 
The test period is the 25 year period from January 1970 through December 1994. 
The experimental results for the 25 year test period are true ex ante simulated 
trading results. 

For each year during 1970 through 1994, the system is trained on a moving window 
of the previous 20 years of data. For 1970, the system is initialized with random 
parameters. For the 24 subsequent years, the previously learned parameters are 
used to initialize the training. In this way, the system is able to adapt to changing 
market and economic conditions. Within the moving training window, the "RRL" 
systems use the first 10 years for stochastic optimization of system parameters, and 
the subsequent 10 years for validating early stopping of training. The networks 
are linear, and are regularized using quadratic weight decay during training with a 
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regularization parameter of 0.0l. The "Qtrader" systems use a bootstrap sample 
of the 20 year training window for training, and the final 10 years of the training 
window are used for validating early stopping of training. The networks are two­
layer feedforward networks with 30 tanh units in the hidden layer. 

4.1 Experimental Results 

The left panel in Figure 1 shows box plots summarizing the test performance for 
the full 25 year test period of the trading systems with various realizations of the 
initial system parameters over 30 trials for the "RRL" system, and 10 trials for 
the "Qtrader" system2 . The transaction cost is set at 0.5%. Profits are reinvested 
during trading, and multiplicative profits are used when calculating the wealth. The 
notches in the box plots indicate robust estimates of the 95% confidence intervals 
on the hypothesis that the median is equal to the performance of the buy and hold 
strategy. The horizontal lines show the performance of the "RRL" voting, "Qtrader" 
voting and buy and hold strategies for the same test period. The annualized monthly 
Sharpe ratios of the buy and hold strategy, the "Qtrader" voting strategy and the 
"RRL" voting strategy are 0.34, 0.63 and 0.83 respectively. The Sharpe ratios 
calculated here are for the returns in excess of the 3-month treasury bill rate. 

The right panel of Figure 1 shows results for following the strategy of taking posi­
tions based on a majority vote of the ensembles of trading systems compared with 
the buy and hold strategy. We can see that the trading systems go short the S&P 
500 during critical periods, such as the oil price shock of 1974, the tight money 
periods of the early 1980's, the market correction of 1984 and the 1987 crash. This 
ability to take advantage of high treasury bill rates or to avoid periods of substantial 
stock market loss is the major factor in the long term success of these trading mod­
els. One exception is that the "RRL" trading system remains long during the 1991 
stock market correction associated with the Persian Gulf war, though the "Qtrader" 
system does identify the correction. On the whole though, the "Qtrader" system 
trades much more frequently than the "RRL" system, and in the end does not 
perform as well on this data set. 

From these results we find that both trading systems outperform the buy and hold 
strategy, as measured by both accumulated wealth and Sharpe ratio. These dif­
ferences are statistically significant and support the proposition that there is pre­
dictability in the U.S. stock and treasury bill markets during the 25 year period 
1970 through 1994. A more detailed presentation of the "RRL" results appears in 
(Moody et al. 1998). 

4.2 Gaining Economic Insight Through Sensitivity Analysis 

A sensitivity analysis of the "RRL" systems was performed in an attempt to de­
termine on which economic factors the traders are basing their decisions. Figure 2 
shows the absolute normalized sensitivities for 3 of the more salient input series as 
a function of time, averaged over the 30 members of the "RRL" committee. The 
sensitivity of input i is defined as: 

Si = I dF I /max I dF I 
dXi J dXj 

(8) 

where F is the unthresholded trading output and Xi denotes input i. 

2Ten trials were done for the "Qtrader" system due to the amount of computation 
required in training the systems 



922 

F,nal Eqully: OIrador VI RRl 

70 I::....:...:. ""''''''_I . --- ~:vcMI 
ro~====~ ________ ~ __ ~ 

, 

so g 
~40 ...-
.z- _____ g_~ _________________ , _______ _ 

30 , , , , 
20 , 

10 

, 
, -'------ --r- ----- --- -------- --- --, 

-'-

RRL 

I~ 
""' __ I 
Ml_ a.-._ 

J. Moody and M. Saffell 

Figure 1: Test results for ensembles of simulations using the S&P 500 stock in­
dex and 3-month Treasury Bill data over the 1970-1994 time period. The solid 
curves correspond to the "RRL" voting system performance, dashed curves to the 
"Qtrader" voting system and the dashed and dotted curves indicate the buy and 
hold performance. The boxplots in (a) show the performance for the ensembles 
of "RRL" and "Qtrader" trading systems The horizontal lines indicate the per­
formance of the voting systems and the buy and hold strategy. Both systems 
significantly outperform the buy and hold strategy. (b) shows the equity curves 
associated with the voting systems and the buy and hold strategy, as well as the 
voting trading signals produced by the systems. In both cases, the traders avoid 
the dramatic losses that the buy and hold strategy incurred during 1974 and 1987. 

The time-varying sensitivities in Figure 2 emphasize the nonstationarity of economic 
relationships. For example, the yield curve slope (which measures inflation expecta­
tions) is found to be a very important factor in the 1970's, while trends in long term 
interest rates (measured by the 6 month difference in the AAA bond yield) becomes 
more important in the 1980's, and trends in short term interest rates (measured by 
the 6 month difference in the treasury bill yield) dominate in the early 1990's. 

5 Conclusions and Extensions 
In this paper, we have trained trading systems via reinforcement learning to optimize 
financial objective functions including our differential Sharpe ratio for online learn­
ing. We have also provided results that demonstrate the presence of predictability 
in the monthly S&P 500 Stock Index for the 25 year period 1970 through 1994. 

We have previously shown with extensive simulation results (Moody & Wu 
1997, Moody et al. 1998) that the "RRL" trading system significantly outperforms 
systems trained using supervised methods for traders of both single securities and 
portfolios. The superiority of reinforcement learning over supervised learning is 
most striking when state-dependent transaction costs are taken into account. Here, 
we present results for asset allocation systems trained using two different reinforce­
ment learning algorithms on a real, economic dataset. We find that the "Qtrader" 
system does not perform as well as the "RRL" system on the S&P 500 / TBill asset 
allocation problem, possibly due to its more frequent trading. This effect deserves 
further exploration. In general, we find that Q-Iearning can suffer from the curse of 
dimensionality and is more difficult to use than our RRL approach. 

Finally, we apply sensitivity analysis to the trading systems, and find that certain 
interest rate variables have an influential role in making asset allocation decisions. 
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Figure 2: Sensitivity traces for three of the inputs to the "RRL" trading system 
averaged over the ensemble of traders. The nonstationary relationships typical 
among economic variables is evident from the time-varying sensitivities. 

We also find that these influences exhibit nonstationarity over time. 
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