
Learning to Find Pre-Images

Gökhan H. Bakır, Jason Weston and Bernhard Scḧolkopf
Max Planck Institute for Biological Cybernetics
Spemannstraße 38, 72076 Tübingen, Germany

{gb,weston,bs}@tuebingen.mpg.de

Abstract

We consider the problem of reconstructing patterns from a feature map.
Learning algorithms using kernels to operate in a reproducing kernel
Hilbert space (RKHS) express their solutions in terms of input points
mapped into the RKHS. We introduce a technique based on kernel princi-
pal component analysis and regression to reconstruct corresponding pat-
terns in the input space (aka pre-images) and review its performance in
several applications requiring the construction of pre-images. The intro-
duced technique avoids difficult and/or unstable numerical optimization,
is easy to implement and, unlike previous methods, permits the compu-
tation of pre-images in discrete input spaces.

1 Introduction

We denote byHk the RKHS associated with the kernelk(x,y) = φ(x)>φ(y), where
φ(x) : X → Hk is a possible nonlinear mapping from input spaceX (assumed to be a
nonempty set) to the possible infinite dimensional spaceHk. The pre-image problem is
defined as follows: given a pointΨ in Hk, find a corresponding patternx ∈ X such that
Ψ = φ(x). SinceHk is usually a far larger space thanX , this is often not possible (see Fig.
??). In these cases, the (approximate) pre-imagez is chosen such that the squared distance
of Ψ andφ(z) is minimized,

z = arg min
z

‖Ψ − φ(z)‖2. (1)

This has a significant range of applications in kernel methods: forreduced set methods
[1], for denoising and compression using kernel principal components analysis (kPCA),
and for kernel dependency estimation (KDE), where one finds a mapping between paired
sets of objects. The techniques used so far to solve this nonlinear optimization problem
often employ gradient descent [1] or nonlinear iteration methods [2]. Unfortunately, this
suffers from (i) being a difficult nonlinear optimization problem with local minima requir-
ing restarts and other numerical issues, (ii) being computationally inefficient, given that
the problem is solved individually for each testing example, (iii) not being the optimal
approach (e.g., we may be interested in minimizing a classification error rather then a dis-
tance in feature space); and (iv) not being applicable for pre-images which are objects with
discrete variables.

In this paper we propose a method which can resolve all four difficulties: the simple idea is
to estimate the function (1) by learning the mapΨ → z from examples(φ(z), z). Depend-
ing on the learning technique used this can mean, after training, each use of the function

(each pre-image found) can be computed very efficiently, and there are no longer issues
with complex optimization code. Note that this problem is unusual in that it is possible to
produce an infinite amount of training data (and thus expect to get good performance) by
generating points inHk and labeling them using (1). However, often we have knowledge
about the distribution over the pre-images, e.g., when denoising digits with kPCA, one ex-
pects as a pre-image something that looks like a digit, and an estimate of this distribution is
actually given by the original data. Taking this distribution into account, it is conceivable
that a learning method could outperform the naive method, that of equation (1), by produc-
ing pre-images that are subjectively preferable to the minimizers of (1). Finally, learning
to find pre-images can also be applied to objects with discrete variables, such as for string
outputs as in part-of-speech tagging or protein secondary structure prediction.

The remainder of the paper is organized as follows: in Section 2 we review kernel methods
requiring the use of pre-images: kPCA and KDE. Then, in Section 3 we describe our
approach for learning pre-images. In Section 4 we verify our method experimentally in the
above applications, and in Section 5 we conclude with a discussion.

2 Methods Requiring Pre-Images

2.1 Kernel PCA Denoising and Compression

Given data points{xi}
m
i=1 ∈ X , kPCA constructs an orthogonal set of feature extractors

in the RKHS. The constructed orthogonal systemP = {v1, . . . ,vr} lies in the span of
the data points, i.e.,P =

(
∑m

i=1 α1
i φ(xi), . . . ,

∑m
i=1 αr

i φ(xi)
)

. It is obtained by solv-
ing the eigenvalue problemmλαi = Kαi for 1 ≤ i ≤ r whereKij = k(xi,xj)
is the kernel matrix andr ≤ m is the number of nonzero eigenvalues.1 Once built,
the orthogonal systemP can be used for nonlinear feature extraction. Letx denote
a test point, then the nonlinear principal components can be extracted viaPφ(x) =
(
∑m

i=1α
1
i k(xi,x), . . . ,

∑m
i=1 αr

i k(xi,x)
)

wherek(xi,x) is substituted forφ(xi)
>φ(x).

See ([3],[4] chapter 14) for details.

Beside serving as a feature extractor, kPCA has been proposed as a denoising and com-
pression procedure, both of which require the calculation of input patternsx from feature
space pointsPφ(x).

Denoising. Denoising is a technique used to reconstruct patterns corrupted by noise.
Given data points{xi}

m
i=1 and the orthogonal systemP = (v1, . . . ,va, . . . ,vr) obtained

by kPCA. Assume that the orthogonal system is sorted by decreasing variance, we write
φ(x) = Pφ(x) = Paφ(x) + P⊥

a φ(x), wherePa denotes the projection on the span of
(v1, . . . ,va). The hope is thatPaφ(x) retains the main structure ofx, while P⊥

a φ(x) con-
tains noise. If this is the case, then we should be able to construct a denoised input pattern
as the pre-image ofPaφ(x). This denoisedpatternz can be obtained as solution to the
problem

z = arg min
z

‖Paφ(x) − φ(z)‖2. (2)

For an application of kPCA denoising see [2].

Compression. Consider a sender receiver-scenario, where the sender S wants to transmit
information to the receiver R. If S and R have the same projection matrixP serving as a
vocabulary, then S could usePa to encodex and sendPaφ(x) ∈ R

a instead ofx ∈ R
n.

This corresponds to a lossy compression, and is useful ifa ¿ n. R would obtain the

1We assume that theφ(xi) are centered in feature space. This can be achieved by centering the
kernel matrixKc = (I −

1

m
11

>)K(I −
1

m
11

>), where1 ∈ R
m is the vector with every entry

equal 1. Test patterns must be centered with the same center obtained from the training stage.

corresponding patternx by minimizing (2) again. Therefore kPCA would serve as encoder
and the pre-image technique as decoder.

2.2 Kernel Dependency Estimation

Kernel Dependency Estimation (KDE) is a novel algorithm [5] which is able to learn gen-
eral mappings between an input setX and output setY, give definitions of kernelsk and
l (with feature mapsΦk andΦl) which serve as similarity measures onX andY, respec-
tively. To learn the mapping from data{xi,yi}

m
i=1 ∈ X × Y, KDE performs two steps.

1) Decomposition of outputs.First a kPCA is performed inHl associated with kernell.
This results inr principal axesv1, . . . ,vr in Hl. Obtaining the principal axes, one is able
to obtain principal components(φl(y)>v1, . . . , φl(y)>vr) of any objecty.

2) Learning the map. Next, we learn the map fromφk(x) to (φl(y)>v1, . . . , φl(y)>vr).
To this end, for each principal axisvj we solve the problem

arg min
βj

∑m

i=1
(φl(yi)

>vj − g(xi, β
j))2 + γ‖βj‖2, (3)

whereγ‖βj‖2 acts as a regularization term (withγ > 0), g(xi, β
j) =

∑m
s=1 βj

sk(xs,xi),
andβ ∈ R

m×r. Let P ∈ R
m×r with Pij = φl(yi)

>vj , j = 1 . . . r andK ∈ R
m×m the

kernel matrix with entriesKst = k(xs,xt), with s, t = 1 . . . m. Problem (3) can then be
minimized, for example via kernel ridge regression, yielding

β = (K>K + γI)−1KP. (4)

3) Testing Phase.Using the learned map from input patterns to principal components,
predicting an outputy′ for a new patternx′ requires solving the pre-image problem

y′ = arg min
y

‖(φl(y)>v1, . . . , φl(y)>vr) − (k(x1,x
′), . . . , k(xm,x′))β‖2. (5)

Thusy′ is the approximate pre-image of the estimated pointφ(y′) in Hl.

3 Learning Pre-Images

We shall now argue that by mainly being concerned with (1), the methods that have been
used for this task in the past disregard an important piece of information. Let us summarize
the state of the art (for details, see [4]).

Exact pre-images. One can show that if an exact pre-image exists, and if the ker-
nel can be written ask(x,x′) = fk((x>x′)) with an invertible functionfk (e.g.,
k(x,x′) = (x>x′)d with odd d), then one can compute the pre-image analytically as

z =
∑N

i=1 f−1
k

(

∑m
j=1 αjk(xj , ei)

)

ei, where{e1, . . . , eN} is any orthonormal basis of

input space. However, if one tries to apply this method in practice, it usually works less
well than the approximate pre-image methods described below. This is due to the fact that
it usually is not the case that exact pre-images exist.

General approximation methods.These methods are based on the minimization of (1).
Whilst there are certain cases where the minimizer of (1) can be found by solving an eigen-
value problem (fork(x,x′) = (x>x′)2), people in general resort to methods of nonlinear
optimization. For instance, if the kernel is differentiable, one can multiply out (1) to ex-
press it in terms of the kernel, and then perform gradient descent [1]. The drawback of
these methods is that the optimization procedure is expensive and will in general only find
a local optimum. Alternatively one can select the k best input points from some training
set and use them in combination to minimize the distance (1), see [6] for details.

Iteration schemes for particular kernels. For particular types of kernels, such as radial
basis functions, one can devise fixed point iteration schemes which allow faster minimiza-
tion of (1). Again, there is no guarantee that this leads to a global optimum.

One aspect shared by all these methods is that they do not explicitly make use of the fact
that we havelabeled examplesof the unknown pre-image map: specifically, if we consider
any point inx ∈ X , we know that the pre-image ofΦ(x) is simplyx.2 Below, we describe a
method which makes heavy use of this information. Specifically, we use kernel regression
to estimate the pre-image map from data. As a data set, we consider the training data
{xi}

m
i=1 that we are given in our original learning problem (kPCA, KDE, etc.).

3.1 Estimation of the Pre-Image Map

We seek to estimate a functionΓ : Hk → X with the property that, at least approxi-
mately,Γ(Φ(xi)) = xi for i = 1, . . . ,m. If we were to use regression using the ker-
nel k corresponding toHk, then we would simply look for weight vectorswj ∈ Hk,
j = 1, . . . ,dimX such thatΓj(Ψ) = w>

j Ψ, and use the kernel trick to evaluateΓ. How-
ever, in general we may want to use a kernelκ which is different fromk, and thus we cannot
perform our computations implicitly by the use of a kernel. This looks like a problem, but
there is a way to handle it. It is based on the well-known observation that although the
data inHk may live in an infinite-dimensional space, any finite data set spans a subspace
of finite dimension. A convenient way of working in that subspace is to choose a basis and
to work in coordinates, e.g., using a kPCA basis. LetPnΨ =

∑n
i=1(Ψ

>vi)vi denote the
projection that maps a point into its coordinates in the PCA basisv1, . . . ,vn, i.e., into the
subspace where the training set has nonzero variance. We then learn the pre-image map
Γj : R

n → X by solving the learning problem

Γj = arg min
Γj

∑m

i=1
l (xi,Γ(Pnφ(xi))) + λΩ(Γ). (6)

Here,Ω is a regularizer, andλ ≥ 0. If X is the vector spaceRN , we can consider the
problem (6) as a standard regression problem for them training pointsxi and use ker-
nel ridge regression with a kernelκ. This yields a pre-image mappingΓj(Pnφ(x)) =
∑m

r=1 βj
rκ(Pnφ(x), Pnφ(xr)), j = 1, . . . , N, which can be solved like (3).

Note that the general learning setup of (6) allows to use of any suitable loss function, incor-
porating invariances and a-priori knowledge. For example, if the pre-images are (natural)
images, a psychophysically motivated loss function could be used, which would allow the
algorithm to ignore differences that cannot be perceived.

3.2 Pre-Images for Complex Objects

In methods such as KDE one is interested in finding pre-images for general sets of objects,
e.g. one may wish to find a string which is the pre-image of a representation using a string
kernel [7, 8]. Using gradient descent techniques this is not possible as the objects have
discrete variables (elements of the string). However, using function estimation techniques,
as long as it is possible to learn to find pre-images even for such objects, the problem can
be approached by decomposition into several learning subtasks. This should be possible
whenever there is structure in the object one is trying to predict. In the case of strings one
can predict each character of the string independently given the estimateφl(y

′). This is
made particularly tractable in fixed-length string prediction problems such as for part-of-
speech tagging or protein secondary structure prediction because the length is known (it is
the same length as the input). Otherwise the task is more difficult but still one could also

2It may not be the only pre-image, but this does not matter as long as it minimizes the value of
(1).

predict the length of the output string before predicting each element of it. As an example,
we now describe in depth a method for finding pre-images for known-length strings.

The task is to predict a stringy given a stringx and a set of paired examples(xi,yi) ∈
∪∞

p=1(Σx)p ×∪∞
p=1(Σy)p. Note that|xi| = |yi| for all i, i.e., the length of any paired input

and output strings are the same. This is the setting of part-of-speech tagging, whereΣx are
words andΣy are parts of speech, and also secondary structure prediction, whereΣx are
amino acids of a protein sequence andΣy are classes of structure that the sequence folds
into, e.g. helix, sheet or coil.

It is possible to use KDE (Section 2.2) to solve this task directly. One has to define an
appropriate similarity function for both sets of objects using a kernel function, giving two
implicit mapsφk(x) andφl(y) using string kernels. KDE then learns a map between the
two feature spaces, and for a new test stringx one must find the pre-image of the estimate
φl(y

′) as in equation (5). One can find this pre-image by predicting each character of the
string independently given the estimateφl(y

′) as it has known length given the inputx.

One can thus learn a functionbp = f(φl(y
′), αp) wherebp is the pth element of the

output andαp = (a(p−n/2)a(p−n/2+1) . . . a(p+n/2)) is a window of lengthn + 1 with
center at positionp in the input string. One computes the entire output string with
β = (f(φl(y

′), α1) . . . f(φl(y
′), α|x|)); window elements outside of the string can be en-

coded with a special terminal character. The functionf can be trained with any multi-class
classification algorithm to predict one of the elements of the alphabet, the approach can
thus be seen as a generalization of the traditional approach which is learning a function
f given only a window on the input (the second parameter). Our approach first estimates
the output using global information from the input and with respect to the loss function of
interest on the outputs—it only decodes this global prediction in the final step. Note that
problems such as secondary structure prediction often have loss functions dependent on the
complete outputs, not individual elements of the output string [9].

4 Experiments

In the following we demonstrate the pre-image learning technique on the applications we
have introduced.

Gaussian noise PCA kPCA+grad.desc. kPCA+learn-pre.

Figure 1: Denoising USPS digits: linear PCA fails on this task, learning to find pre-images
for kPCA performs at least as well as finding pre-images by gradient descent.

KPCA Denoising. We performed a similar experiment to the one in [2] for demonstration
purposes: we denoised USPS digits using linear and kPCA. We added Gaussian noise with
variance 0.5 and selected 100 randomly chosen non-noisy digits for training and a further
100 noisy digits for testing, 10 from each class. As in [2] we chose a nonlinear map
via a Gaussian kernel withσ = 8. We selected 80 principal components for kPCA. We
found pre-images using the Matlab function fminsearch, and compared this to our pre-

image-learning method (RBF kernelK(x, x′) = exp(−||x − x′||2/2σ2) with σ = 1, and
regularization parameterλ = 1). Figure 1 shows the results: our approach appears to
perform better than the gradient descent approach. As in [2], linear PCA visually fails for
this problem: we show its best results, using 32 components. Note the mean squared error
performance of the algorithms is not precisely in accordance with the loss of interest to the
user. This can be seen as PCA has an MSE (13.8±0.4) versus gradient descent (31.6±1.7)
and learnt pre-images (29.2±1.8). PCA has the lowest MSE but as can be seen in Figure 1
it doesn’t give satisfactorys visual results in terms of denoising.

Note that some of the digits shown are actually denoised incorrectly as the wrong class.
This is of course possible as choosing the correct digit is a problem which is harder than
a standard digit classification problem because the images are noisy. Moreover, kPCA is
not a classifier per se and could not be expected to classify digits as well as Support Vector
Machines. In this experiment, we also took a rather small number of training examples,
because otherwise the fminsearch code for the gradient descent was very slow, and this
allowed us to compare our results more easily.

KPCA Compression. For the compression experiment we use a video sequence consist-
ing of 1000 graylevel images, where every frame has a100 × 100 pixel resolution. The
video sequence shows a famous science fiction figure turning his head 180 degrees. For
training we used every 20th frame resulting in a video sequence of 50 frames with 3.6 de-
gree orientation difference per image. The motivation is to store only these 50 frames and
to reconstruct all frames in between.

We applied a kPCA to all 50 frames with a Gaussian kernel with kernel parameterσ1.
The 50 feature vectorsv1, . . . ,v50 ∈ R

50 are used then to learn the interpolation between
the timeline of the 50 principal componentsvij where i is the time index, j the principal
component number j and1 ≤ i, j ≤ 50. A kernel ridge regression with Gaussian kernel
and kernel parameterσ2 and ridger1 was used for this task. Finally the pre-image mapΓ
was learned from projections ontovi to frames using kernel ridge regression with kernel
parameterσ3 and ridger2. All parametersσ1, σ2, σ3, r1, r2 were selected in a loop such
that new synthesized frames looked subjectively best. This led to the valuesσ1 = 2.5, σ2 =
1, σ3 = 0.15 and for the ridge parametersr1 = 10−13, r2 = 10−7. Figure 2 shows the
original and reconstructed video sequence.

Note that the pre-image mechanism could possibly be adapted to take into account invari-
ances and a-priori knowledge like geometries of standard heads to reduce blending effects,
making it more powerful than gradient descent or plain linear interpolation of frames. For
an application of classical pre-image methods to face modelling, see [10].

String Prediction with Kernel Dependency Estimation. In the following we expose a
simple string mapping problem to show the potential of the approach outlined in Section
3.2. We construct an artificial problem with|Σx| = 3 and |Σy| = 2. Output strings are
generated by the following algorithm: start in a random state (1 or 2) corresponding to one
of the output symbols. The next symbol is either the same or, with probability1

5 , the state
switches (this tends to make neighboring characters the same symbol). The length of the
string is randomly chosen between 10 and 20 symbols. Each input string is generated with
equal probability from one of two models, starting randomly in state a, b or c and using the
following transition matrices, depending on the current output state:

Model 1 Model 2
Output 1 Output 2 Output 1 Output 2

a b c
a 0 0 1
b 0 0 1
c 1 0 0

a b c
a 1/2 1/2 0
b 1/2 1/2 0
c 0 1 0

a b c
a 1/2 1/2 0
b 1/2 1/2 0
c 0 1/2 1/2

a b c
a 1 0 0
b 0 1 0
c 0 1 0

Subsequence of original video sequence. Subsequence of synthesized video sequence.
First and last frame are used in training set.

Figure 2: Kernel PCA compression used to learn intermediate images. The pre-images are
in a100 × 100 dimensional space making gradient-descent based descent impracticable.

As the model of the string can be better predicted from the complete string, a global method
could be better in principle than a window-based method. We use a string kernel called the
spectrum kernel[11] to define strings for inputs. This method builds a representation which
is a frequency count of all possible contiguous subsequences of lengthp. This produces a
mapping with featuresφk(x) = 〈

∑|x|−p+1
i=1 [(xi, . . . ,x(i+p−1)) = α] : α ∈ (Σx)p〉 where

[x = y] is 1 if x = y, and 0 otherwise. To define a feature space for outputs we count
the number of contiguous subsequences of lengthp on theinput that, if starting in position
q, have the same element of the alphabet at positionq + (p − 1)/2 in theoutput, for odd
values ofp. That is,φl(x,y) = 〈

∑|x|−p+1
i=1 [(xi, . . . ,x(i+p−1)) = α][yi+(p−1)/2 = b] :

α ∈ (Σx)p, b ∈ Σy〉. We can then learn pre-images using a window also of sizep as
described in Section 3.2, e.g. usingk-NN as the learner. Note that the output kernel is
defined on both the inputs and outputs: such an approach is also used in [12] and called
“joint kernels”, and in their approach the calculation of pre-images is also required, so they
only consider specific kernels for computational reasons. In fact, our approach could also
be a benefit if used in their algorithm.

We normalized the input and output kernel matrices such that a matrixS is normalized
with S ← D−1SD−1 whereD is a diagonal matrix such thatDii =

∑

i Sii. We also used
a nonlinear map for KDE, via an RBF kernel, i.e.K(x, x′) = exp(−d(x, x′)) where the
distanced is induced by the input string kernel defined above, and we setλ = 1.

We give the results on this toy problem using the classification error (fraction of symbols
misclassified) in the table below, with 50 strings using 10-fold cross validation, we compare
to k-nearest neighbor using a window size of 3, in our method we usedp = 3 to generate
string kernels, andk-NN to learn the pre-image, therefore we quote differentk for both
methods. Results for larger window sizes only made the results worse.

1-NN 3-NN 5-NN 7-NN 9-NN
KDE 0.182±0.03 0.169±0.03 0.162±0.03 0.164±0.03 0.163±0.03
k-NN 0.251±0.03 0.243±0.03 0.249±0.03 0.250±0.03 0.248±0.03

5 Conclusion

We introduced a method to learn the pre-image of a vector in an RKHS. Compared to clas-
sical approaches, the new method has the advantage that it is not numerically unstable, it is
much faster to evaluate, and better suited for high-dimensional input spaces. It is demon-

strated that it is applicable when the input space is discrete and gradients do not exist. How-
ever, as a learning approach, it requires that the patterns used during training reasonably
well represent the points for which we subsequently want to compute pre-images. Oth-
erwise, it can fail, an example being a reduced set (see [1]) application, where one needs
pre-images of linear combinations of mapped points inH, which can be far away from
training points, making generalization of the estimated pre-image map impossible. Indeed,
preliminary experiments (not described in this paper) showed that whilst the method can
be used to compute reduced sets, it seems inferior to classical methods in that domain.

Finally, the learning of the pre-image can probably be augmented with mechanisms for
incorporating a-priori knowledge to enhance performance of pre-image learning, making
it more flexible than just a pure optimization approach. Future research directions include
the inference of pre-images in structures like graphs and incorporating a-priori knowledge
in the pre-image learning stage.

Acknowledgement. The authors would like to thank Kwang In Kim for fruitful discus-
sions, and the anonymous reviewers for their comments.

References

[1] C. J. C. Burges. Simplified support vector decision rules. In L. Saitta, editor,Proceedings of
the 13th International Conference on Machine Learning, pages 71–77, San Mateo, CA, 1996.
Morgan Kaufmann.

[2] S. Mika, B. Scḧolkopf, A. J. Smola, K.-R. M̈uller, M. Scholz, and G. R̈atsch. Kernel PCA and
de-noising in feature spaces. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,Advances in
Neural Information Processing Systems 11, pages 536–542, Cambridge, MA, 1999. MIT Press.

[3] B. Scḧolkopf, A. J. Smola, and K.-R. M̈uller. Nonlinear component analysis as a kernel eigen-
value problem.Neural Computation, 10:1299–1319, 1998.

[4] B. Scḧolkopf and A. J. Smola.Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[5] Jason Weston, Olivier Chapelle, Andre Elisseeff, Bernhard Schölkopf, and Vladimir Vapnik.
Kernel dependency estimation. In S. Becker, S. Thrun, and K. Obermayer, editors,Advances in
Neural Information Processing Systems 15, Cambridge, MA, 2002. MIT Press.

[6] J.T. Kwok and I.W. Tsang. Finding the pre images in kernel principal component analysis. In
NIPS’2002 Workshop on Kernel Machines, 2002.

[7] D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-99-10,
Computer Science Department, University of California at Santa Cruz, 1999.

[8] H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string ker-
nels. Technical Report 2000-79, NeuroCOLT, 2000. Published in: T. K. Leen, T. G. Dietterich
and V. Tresp (eds.),Advances in Neural Information Processing Systems 13, MIT Press, 2001,
as well as in JMLR2:419-444, 2002.

[9] S. Hua and Z. Sun. A novel method of protein secondary structure prediction with high segment
overlap measure: Svm approach.Journal of Molecular Biology, 308:397–407, 2001.

[10] S. Romdhani, S. Gong, and A. Psarrou. A multiview nonlinear active shape model using kernel
PCA. InProceedings of BMVC, pages 483–492, Nottingham, UK, 1999.

[11] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein
classification.Proceedings of the Pacific Symposium on Biocomputing, 2002.

[12] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. In20th
International Conference on Machine Learning (ICML), 2003.

