Rates of convergence for the cluster tree
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Abstract

For a densityf onRR¢, ahigh-density clusteis any connected component of :

f(z) > A}, for some\ > 0. The set of all high-density clusters form a hierarchy
called thecluster treeof f. We present a procedure for estimating the cluster tree
given samples fronf. We give finite-sample convergence rates for our algorithm,
as well as lower bounds on the sample complexity of this edion problem.

1 Introduction

A central preoccupation of learning theory is to understahdt statistical estimation based on a
finite data set reveals about the underlying distributiamfrwhich the data were sampled. For
classificationproblems, there is now a well-developed theory of genextiim. Forclustering
however, this kind of analysis has proved more elusive.

Consider for instancé&-means, possibly the most popular clustering proceduresentaday. If
this procedure is run on poinfs, ..., X,, from distributionf, and is told to findk clusters, what

do these clusters reveal abof® Pollard [8] proved a basic consistency result: if the atgor
always finds the global minimum of tHemeans cost function (which is NP-hard, see Theorem 3
of [3]), then asn — oo, the clustering is the globally optimatmeans solution foif. This result,
however impressive, leaves the fundamental question weaed: is the best-means solution tg

an interesting or desirable quantity, in settings outsidesotor quantization?

In this paper, we are interested in clustering proceduresse/loutput on a finite sample converges
to “natural clusters” of the underlying distributigh There are doubtless many meaningful ways
to define natural clusters. Here we follow some early work lustering (for instance, [5]) by
associating clusters withigh-density connected regianSpecifically, a cluster of densitf is any
connected component ¢f: : f(x) > A}, for any A > 0. The collection of all such clusters forms
an (infinite) hierarchy called theuster tree(Figure 1).

Are there hierarchical clustering algorithms which cogeeto the cluster tree? Previous theory
work [5, 7] has provided weak consistency results for thgleiinkage clustering algorithm, while
other work [13] has suggested ways to overcome the defi@erdfi this algorithm by making it
more robust, but without proofs of convergence. In this paye propose a novel way to make
single-linkage more robust, while retaining most of itsgallece and simplicity (see Figure 3). We
establish its finite-sample rate of convergence (Theorenth@) centerpiece of our argument is a
result on continuum percolation (Theorem 11). We also givewser bound on the problem of
cluster tree estimation (Theorem 12), which matches oueuppund in its dependence on most of
the parameters of interest.

2 Definitions and previous work

Let X be a subset oR?. We exclusively consider Euclidean distance ¥ndenoted| - ||. Let
B(x,r) be the closed ball of radiusaroundz.
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Figure 1: A probability density’ on R, and three of its clusterg’;, Cs, andCs.

2.1 The cluster tree

We start with notions of connectivity. fpath P in S C X is a continuoud — 1 function P :

[0,1] = S. If x = P(0) andy = P(1), we writex 5 y, and we say that andy are connected in
S. This relation — “connected iR” — is an equivalence relation that partitio§snto its connected
componentsWe sayS C X is connectedf it has a single connected component.

The cluster tree is a hierarchy each of whose levels is atipartf a subsetof X', which we will
occasionally call &ubpartitionof X'. Write II(X') = {subpartitions oft'}.

Definition 1 For any f : X — R, thecluster tree off is a functionC; : R — II(X) given by
Cy(X) = connected componentsf € X : f(x) > A}

Any element of (), for any )\, is called aclusterof f.
For any\, Cs()) is a set of disjoint clusters of. They form a hierarchy in the following sense.
Lemma 2 Pick any)\ < . Then:

1. ForanyC € C¢(\), there exist®?” € C;(\’) such thatC' C C".
2. ForanyC € Cs(\) andC’ € C¢(X), eitherC C C"orCNC’ = 0.

We will sometimes deal with the restriction of the clusteretito a finite set of points,, ..., z,.
Formally, the restriction of a subpartitidgh e II(X') to these points is defined to @8z, ..., z,] =
{Cn{zy,...,z,} : C € C}. Likewise, the restriction of the cluster treeG§ [z, ...,z,] : R —
I({x1,...,z,}), whereCylzy, ..., x,](A) = Cr(N)[x1, ..., z,]. See Figure 2 for an example.

2.2 Notion of convergence and previous work

Suppose a samplg,, C X of sizen is used to construct a trég, thatis an estimate @ ;. Hartigan
[5] provided a very natural notion of consistency for thitisg.

Definition 3 Forany setsd, A’ C X, let A,, (resp,A’,) denote the smallest cluster@f, containing
AN X, (resp,A’ N X,,). We sayC, is consistent if, whenevet and A’ are different connected
components ofz : f(x) > A} (for some\ > 0), P(4,, is disjoint fromA/,) — 1 asn — occ.

It is well known that if X, is used to build a uniformly consistent density estim#te(that is,
sup, |fn(xz) — f(x)] — 0), then the cluster tre€, is consistent; see the appendix for details.
The big problem is thaC, is not easy to compute for typical density estimafgsimagine, for
instance, how one might go about trying to find level sets ofieture of Gaussians! Wong and
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Figure 2: A probability density’, and the restriction of ; to a finite set of eight points.

Lane [14] have an efficient procedure that tries to approtéfia, whenf,, is ak-nearest neighbor
density estimate, but they have not shown that it preseheesdnsistency property @, .

There is a simple and elegant algorithm that is a plausikiienator of the cluster treesingle
linkage(or Kruskal's algorithn); see the appendix for pseudocode. Hartigan [5] has shoatrit fls
consistent in one dimensiod & 1). But he also demonstrates, by a lovely reduction to contimu
percolation, that this consistency fails in higher dimensgi > 2. The problem is the requirement
that AN X,, C A,: by the time the clusters are large enough that one of therraicnall of 4,
there is a reasonable chance that this cluster will be soshig also contain part of’.

With this insight, Hartigan defines a weaker notiorfrattional consistencyunder which4,, (resp,

A’ ) need not contaiall of AN X, (resp,A’ N X,,), but merely a sizeable chunk of it —and ought to
be very close (at distance 0 asn — oo) to the remainder. He then shows that single linkage has
this weaker consistency property for any pairA’ for which the ratio ofinf{f(x) : x € AUA’} to
sup{inf{f(x) : € P} : pathsP from A to A’} is sufficiently large. More recent work by Penrose
[7] closes the gap and shows fractional consistency wheitleigeratio is> 1.

A more robust version of single linkage has been proposedibiakt [13]: when connecting points
at distance- from each other, only consider points that have at Iéastighbors within distance
(for somek > 2). Thus initially, whenr is small, only the regions of highest density are availabite f
linkage, while the rest of the data set is ignored.rAgets larger, more and more of the data points
become candidates for linkage. This scheme is intuitivehsgle, but Wishart does not provide a
proof of convergence. Thus it is unclear how to&sgfior instance.

Stuetzle and Nugent [12] have an appealing top-down schemesfimating the cluster tree, along
with a post-processing step (callaght pruning that helps identify modes of the distribution. The
consistency of this method has not yet been established.

Several recent papers [6, 10, 9, 11] have considered théepnadf recovering the connected com-
ponents of{z : f(x) > A} for a user-specified: theflat version of our problem. In particular,
the algorithm of [6] is intuitively similar to ours, thoughey use a single graph in which each point
is connected to it nearest neighbors, whereas we have a hierarchy of graphsidh wach point

is connected to other points at distance- (for variousr). Interestingly,k-nn graphs are valuable
for flat clustering because they can adapt to clusters ofréift scales (different average interpoint
distances). But they are challenging to analyze and seepqtore various regularity assumptions
on the data. A pleasant feature of the hierarchical settirigdt different scales appear at different
levels of the tree, rather than being collapsed togethes altows the use of-neighbor graphs, and
makes possible an analysis that has minimal assumptiorieatata.

3 Algorithm and results

In this paper, we consider a generalization of Wishart'ssesod and of single linkage, shown in
Figure 3. It has two free parameteksand«. For practical reasons, it is of interest to keep these as



1. For eachy; setry(x;) = inf{r : B(z;,r) containsk data points.
2. Asr grows from0 to oo:
(a) Construct a grapty,. with nodes{z; : r(z;) < r}.
Include edg€z;, x;) if ||z, — z;| < ar.
(b) LetC(r) be the connected componentsaf.

Figure 3: Algorithm for hierarchical clustering. The ingsta sampleX,, = {z1,...,2,} from
density f on X. Parameter& and« need to be set. Single linkage(s = 1,k = 2). Wishart
suggestedv = 1 and largerk.

small as possible. We provide finite-sample convergenes fat alll < « < 2 and we can achieve
k ~ dlogn, which we conjecture to be the best possible it /2. Our rates forv = 1 forcek to
be much larger, exponential ih It is a fascinating open problem to determine whether tltinge
(o =1,k ~ dlogn) yields consistency.

3.1 A notion of cluster salience

Suppose density is supported on some subskiof R?. We will show that the hierarchical cluster-
ing procedure is consistent in the sense of Definition 3. Betrhore interesting question is, what
clusters will be identified from &inite sample? To answer this, we introduce a notion of salience.

The first consideration is that a cluster is hard to idenfify contains a thin “bridge” that would
make it look disconnected in a small sample. To control thiesconsider a “buffer zone” of width
o around the clusters.

Definition 4 For Z ¢ R ando > 0, write Z, = Z + B(0,0) = {y € R? s inf,cz ||y — 2|| < o}.

An important technical point is th&f, is a full-dimensional set, even ¥ itself is not.

Second, the ease of distinguishing two clustérand A’ depends inevitably upon the separation
between them. To keep things simple, we’ll use the saras a separation parameter.

Definition 5 Let f be a density o' ¢ R?. We say thatd, A’ C X are (o, ¢)-separated if there
existsS C X (separator set) such that:

e Any path inX from A to A’ intersectsS.
o sup,cs f(x) < (1 —e¢)infren,ua, ().

Under this definition A, and AZ, must lie withinX’, otherwise the right-hand side of the inequality
is zero. HoweverS, need not be contained ik.

3.2 Consistency and finite-sample rate of convergence

Here we state the result fer > /2 andk ~ dlogn. The analysis section also has results for
1 <a<2andk ~ (2/a)ldlogn.

Theorem 6 There is an absolute consta@tsuch that the following holds. Pick anye > 0, and
run the algorithm on a sampl&,, of sizen drawn fromf, with settings

2
\/§<1—|—€) <a<2 and k::C-legn~log21

Vd €2 5
Then there is a mapping: [0, c0) — [0, o0) such that with probability at least— ¢, the following
holds uniformly for all pairs of connected subsetsA’ C X: If A, A" are (o, ¢)-separated (for
and somer > 0), and if

\ = inf f(x)Z# E(1+E) *)

zEzLIXEUA;, va(c/2)4 n 2

whereuv, is the volume of the unit ball iR<, then:



1. SeparationA N X, is disconnected from’ N X, in Grn-

2. Connectednesst N X,, and A’ N X, are each individually connected @, ).

The two parts of this theorem — separation and connectedrm®sproved in Sections 3.3 and 3.4.

We mention in passing that this finite-sample result impdi@ssistency (Definition 3): as — oc,
takek, = (dlogn)/e? with any schedule ofe,, : n = 1,2,...) such thak,, — 0 andk,,/n — 0.
Under mild conditions, any two connected componeditst’ of {f > A} are(o, ¢)-separated for
someo, € > 0 (see appendix); thus they will get distinguished for sugfitly largen.

3.3 Analysis: separation

The cluster tree algorithm depends heavily on the radit): the distance within which’s nearest

k neighbors lie (including: itself). Thus the empirical probability mass Bf(z, 7 (x)) is k/n. To
show thatr (x) is meaningful, we need to establish that the mass of thisibaker density is also,
very approximatelyk /n. The uniform convergence of these empirical counts follinem the fact
that balls inR¢ have finite VC dimension/ + 1. Using uniform Bernstein-type bounds, we get a
set of basic inequalities that we use repeatedly.

Lemma 7 Assumé: > dlogn, and fix som@ > 0. Then there exists a constafif such that with
probability > 1 — §, every ballB c R? satisfies the following conditions:

7(B) > Gdoen fa(B) >0
k Cs k
L R N A A
1B <t dogn = fum) <X

Here f,,(B) = |X,, N B|/n is the empirical mass a8, while f(B) = [}, f(z)dz is its true mass.
PROOF See appendix’s = 2C, log(2/4), whereC, is the absolute constant from Lemma I6.
We will henceforth think ob as fixed, so that we do not have to repeatedly quantify over it.

Lemma 8 Pick0 < r < 20/(« + 2) such that

k
varin > 7+§\/kdlogn
noon
d k. Cs
varA(1—¢€) < ———+/kdlogn
noon

(recall thatv, is the volume of the unit ball iR?). Then with probability> 1 — 4:
1. G, contains all points i A,_, U A,_,) N X,, and no points inS,_, N X,,.
2. AN X, is disconnected from’ N X,, in G,.
PROOF For (1), any point: € (A,_,UA’ ) hasf(B(z,r)) > vgr?); and thus, by Lemma 7, has

at leastk neighbors within radius. Likewise, any point: € S,_, hasf(B(xz,r)) < vgr¢A(1 —e);
and thus, by Lemma 7, has strictly fewer thianeighbors within distance.

For (2), since points ith,,_,. are absent frond7,., any path fromA to A’ in that graph must have an
edge acrosS,,_,.. But any such edge has length at lez(gt — r) > «r and is thus not ir7,.. O

Definition 9 Definer(\) to be the value of for whichvgrd = £ + %\/kdlog n.

To satisfy the conditions of Lemma 8, it suffices to take 4C%(d/€?) log n; this is what we use.



Figure 4:Left: P is a path fromz to 2/, andn(z;) is the point furthest along the path that is within
distancer of z,;. Right: The next point;+1 € X, is chosen from a slab dB(w(x;),r) that is

perpendicular ta:;; — w(x;) and has widtmg/\/&.

3.4 Analysis: connectedness

We need to show that points i (and similarlyA’) are connected iGr,. (. First we state a simple
bound (proved in the appendix) that worksvif= 2 andk ~ dlog n; later we consider smaller.

Lemma 10 Supposel < a < 2. Then with probability> 1 — §, A N X,, is connected irG,
whenever < 20/(2 4 «) and the conditions of Lemma 8 hold, and

d
2 1
orin > () Csd ogn
a n

Comparing this to the definition af )\), we see that choosing = 1 would entailk > 2¢, which is
undesirable. We can get a more reasonable settikg~ofl log n by choosingy = 2, but we'd like
o to be as small as possible. A more refined argument showa that/2 is enough.

Theorem 11 Supposey®> > 2(1 + ¢/+/d), for somed < ¢ < 1. Then, with probability> 1 — 4,
AN X, is connected iz, whenever < ¢/2 and the conditions of Lemma 8 hold, and
8 Csdlogn

d
vgreA > —
d = o

PROOF. We have already made heavy use of uniform convergence allsr bVe now also require
a more complicated class, each element of which is thatersectionof an open ball and a slab
defined by two parallel hyperplanes. Formally, each of thiesetions is defined by a centgrand
a unit directionu, and is the indicator function of the set

{ € RY: [z — ull < 1|z — ) - ul < Gr/Vd}.

We will describe any such set as “the slab®fu, r) in directionu”. A simple calculation (see
Lemma 4 of [4]) shows that the volume of this slab is at l€gdgtthat of B(x, ). Thus, if the slab lies
entirely in A,, its probability mass is at leag/4)vqr? . By uniform convergence ovél (which
has VC dimensiofd), we can then conclude (as in Lemma 7) thatjf4) v r?\ > (2Csdlogn)/n,
then with probability at least — §, every such slab withial contains at least one data point.

Pick anyz, 2’ € ANX,,; thereis a pattP in A with z Lo well identify a sequence of data points
X9 = x,1, 22, ..., endingin’, such that for every, pointz; is active inG,. and||x; —x; 1 || < ar.
This will confirm thatz is connected ta’ in G,..

To begin with, recall thaP is a continuoud — 1 function from|0, 1] into A. We are also interested
in the inverseP~!, which sends a point on the path back to its parametrizatidf,il]. For any
pointy € X, defineN (y) to be the portion of0, 1] whose image undeP lies in B(y, r): that is,
N(y) ={0 <z <1:P(z2) € B(y,r)}. If yis within distance of P, thenN(y) is nonempty.
Definer(y) = P(sup N(y)), the furthest point along the path within distamaaf y (Figure 4, left).

The sequencey, x1, x2, . . . IS defined iterativelyxy = z, and fori = 0,1, 2, ... :

o If ||z; — 2’| < ar, setz;;1 = 2’ and stop.



e By constructiong; is within distance- of path P and henceV(x;) is nonempty.

e Let B be the open ball of radius aroundr(x;). The slab ofB in directiona; — m(x;)
must contain a data point; thisis,, (Figure 4, right).

The process eventually stops because egah,) is strictly further along pathP than w(x;);
formally, P~(n(x;31)) > P~ 1(n(x;)). Thisis becauséz;,; — w(z;)|| < r, S0 by continuity of
the functionP, there are points further along the path (beyad,)) whose distance to, ; is still

< r. Thusz;, 1 is distinct fromzg, 21, . . ., ;. Since there are finitely many data points, the process
must terminate, so the sequer{ag} does constitute a path fromto =’

Eachz; lies in A, C A,_, and is thus active iz, (Lemma 8). Finally, the distance between
successive points is:
lzi — zia? = o — 7(@:) + w(@i) — ziga |
@i — (@) |? + |7 (2:) — ziga |* + 2(2; — 7 (24)) - (w(@s) — 2ig1)
2 2
qr < o2

\/& — i

where the second-last inequality comes from the definitfcsiat. (I

< 2r? +

To complete the proof of Theorem 6, take= 4C%(d/€?) log n, which satisfies the requirements
of Lemma 8 as well as those of Theorem 11, usjng: 2¢2. The relationship that defineg\)
(Definition 9) then translates into

k
vdrd)\ = — (1 + E) .
n 2
This shows that clusters at density leveemerge when the growing radiusof the cluster tree

algorithm reaches roughly:/(Avgn))/?. In order for(o, ¢)-separated clusters to be distinguished,
we need this radius to be at mest2; this is what yields the final lower bound on

4 Lower bound

We have shown that the algorithm of Figure 3 distinguishés péclusters that argr, ¢)-separated.
The number of samples it requires to capture clusters aitgiens\ is, by Theorem 6,

d d
© (vd(o/Q)d)\GQ log vd(J/Q)d)\ez) ’

We'll now show that this dependence en )\, ande is optimal. The only room for improvement,
therefore, is in constants involvind

Theorem 12 Pick anye in (0,1/2), anyd > 1, and anyo, A > 0 such that\v,_;0? < 1/50. Then
there exist: an input spac®€ C R¢; a finite family of densitie® = {6,} onX’; subsetsA;, A}, S; C
X such thatd; and A, are (o, €)-separated bys; for densityd;, andinf,ca, ,ua’ 0;(x) > A, with
the following additional property. '

Consider any algorithm that is givem > 100 i.i.d. samplesX,, from somed; € © and, with

probability at leastl /2, outputs a tree in which the smallest cluster containiig X, is disjoint
from the smallest cluster containing N X,,. Then

n = Q ! lo 1
n vgode2dt/? gvdad)\ '

PROOF. We start by constructing the various spaces and densifies made up of two disjoint
regions: a cylindeft;, and an additional regiof’; whose sole purpose is as a repository for excess
probability mass. LeB3;_; be the unit ball ifR?~*, and letr B4_; be this same ball scaled to have
radiusc. The cylinderX stretches along the;-axis; its cross-section i8B,_; and its length is
4(c+ 1)o for somec > 1 to be specifiedXy = [0,4(c + 1)o] x 0 B4—1. Here is a picture of it:
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We will construct a family of densitie® = {6,} on X', and then argue that any cluster tree algorithm
that is able to distinguisto, ¢)-separated clusters must be able, when given samples fromtso

to determine the identity of. The sample complexity of this latter task can be lower-l@ausing
Fano’s inequality (typically stated as in [2], but easilyriten in the convenient form of [15], see
appendix): it is2((log |©])/3), for § = max,+; K(0;,0;), whereK (-, -) is KL divergence.

The family© containsc — 1 densitied, ..., 0._1, wheref; is defined as follows:

e DensityA on|0, 40i+ o] x 0 B4—1 and on[doi + 30, 4(c+ 1)o] x 0 B4—1. Since the cross-
sectional area of the cylinderig_;0?~!, the total mass here dvg_10%(4(c + 1) — 2).

e Density\(1 —€) on(4doi + 0,40i + 30) X 0 Bg_1.

e Point masses/(2c¢) at locationsto, 80, . . ., 4co along thex;-axis (use arbitrarily narrow
spikes to avoid discontinuities).

e The remaining mass,/2 — \vg_10%(4(c+1) — 2¢), is placed on; in some fixed manner
(that does not vary between different densitie®)n

Here is a sketch of;. The low-density region of widtBo is centered atoi + 20 on thex;-axis.

densityA(1 —€)

ATEEAY. \
VARNY.D P,

For any: # j, the densitieg; and6; differ only on the cylindrical sectiongloi + o, 40 + 30) x
oBy_1 and(40j +o,40j +30) x 0 B4_1, Which are disjoint and each have volute,_;c?. Thus

+A(1—¢€)log )\(1)\_ €)>

A
K(QL,GJ) = 2’Ud_10'd <>\10g)\(1_6)

4
= 2ug_10%\(—€log(l —¢)) < mvd_lad)\g

(usingln(1 — z) > —2x for 0 < « < 1/2). This is an upper bound on tiiein the Fano bound.
Now define the clusters and separators as follows: for ¢éach < ¢ — 1,
e A; isthe line segmerit, 407] along thez; -axis,
o Al isthe line segmeritio (i + 1), 4(c + 1)o — o] along thez; -axis, and
e S; ={40i+ 20} x 0B, is the cross-section of the cylinder at locatiar + 20.
Thus A; and A’ are one-dimensional sets whitg is a(d — 1)-dimensional set. It can be checked
that A, and A} are(o, €)-separated by; in densityd;.

With the various structures defined, what remains is to atigaieif an algorithm is given a sample
X,, from somef; (whereI is unknown), and is able to separaten X,, from A7 N X,,, then it can
effectively inferl. This has sample complexify((log ¢)//3). Details are in the appendik]

There remains a discrepancy ot between the upper and lower bounds; it is an interesting open
problem to close this gap. Does the = 1, k ~ dlogn) setting (yet to be analyzed) do the job?
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