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Abstract

For a densityf onR
d, ahigh-density clusteris any connected component of{x :

f(x) ≥ λ}, for someλ > 0. The set of all high-density clusters form a hierarchy
called thecluster treeof f . We present a procedure for estimating the cluster tree
given samples fromf . We give finite-sample convergence rates for our algorithm,
as well as lower bounds on the sample complexity of this estimation problem.

1 Introduction

A central preoccupation of learning theory is to understandwhat statistical estimation based on a
finite data set reveals about the underlying distribution from which the data were sampled. For
classificationproblems, there is now a well-developed theory of generalization. Forclustering,
however, this kind of analysis has proved more elusive.

Consider for instancek-means, possibly the most popular clustering procedure in use today. If
this procedure is run on pointsX1, . . . , Xn from distributionf , and is told to findk clusters, what
do these clusters reveal aboutf? Pollard [8] proved a basic consistency result: if the algorithm
always finds the global minimum of thek-means cost function (which is NP-hard, see Theorem 3
of [3]), then asn → ∞, the clustering is the globally optimalk-means solution forf . This result,
however impressive, leaves the fundamental question unanswered: is the bestk-means solution tof
an interesting or desirable quantity, in settings outside of vector quantization?

In this paper, we are interested in clustering procedures whose output on a finite sample converges
to “natural clusters” of the underlying distributionf . There are doubtless many meaningful ways
to define natural clusters. Here we follow some early work on clustering (for instance, [5]) by
associating clusters withhigh-density connected regions. Specifically, a cluster of densityf is any
connected component of{x : f(x) ≥ λ}, for anyλ > 0. The collection of all such clusters forms
an (infinite) hierarchy called thecluster tree(Figure 1).

Are there hierarchical clustering algorithms which converge to the cluster tree? Previous theory
work [5, 7] has provided weak consistency results for the single-linkage clustering algorithm, while
other work [13] has suggested ways to overcome the deficiencies of this algorithm by making it
more robust, but without proofs of convergence. In this paper, we propose a novel way to make
single-linkage more robust, while retaining most of its elegance and simplicity (see Figure 3). We
establish its finite-sample rate of convergence (Theorem 6); the centerpiece of our argument is a
result on continuum percolation (Theorem 11). We also give alower bound on the problem of
cluster tree estimation (Theorem 12), which matches our upper bound in its dependence on most of
the parameters of interest.

2 Definitions and previous work

Let X be a subset ofRd. We exclusively consider Euclidean distance onX , denoted‖ · ‖. Let
B(x, r) be the closed ball of radiusr aroundx.
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Figure 1: A probability densityf onR, and three of its clusters:C1, C2, andC3.

2.1 The cluster tree

We start with notions of connectivity. ApathP in S ⊂ X is a continuous1 − 1 functionP :

[0, 1] → S. If x = P (0) andy = P (1), we writex
P
 y, and we say thatx andy are connected in

S. This relation – “connected inS” – is an equivalence relation that partitionsS into its connected
components. We sayS ⊂ X is connectedif it has a single connected component.

The cluster tree is a hierarchy each of whose levels is a partition of a subsetof X , which we will
occasionally call asubpartitionof X . WriteΠ(X ) = {subpartitions ofX}.

Definition 1 For anyf : X → R, thecluster tree off is a functionCf : R → Π(X ) given by

Cf (λ) = connected components of{x ∈ X : f(x) ≥ λ}.
Any element ofCf (λ), for anyλ, is called aclusterof f .

For anyλ, Cf (λ) is a set of disjoint clusters ofX . They form a hierarchy in the following sense.

Lemma 2 Pick anyλ′ ≤ λ. Then:

1. For anyC ∈ Cf (λ), there existsC ′ ∈ Cf (λ
′) such thatC ⊆ C ′.

2. For anyC ∈ Cf (λ) andC ′ ∈ Cf (λ
′), eitherC ⊆ C ′ or C ∩ C ′ = ∅.

We will sometimes deal with the restriction of the cluster tree to a finite set of pointsx1, . . . , xn.
Formally, the restriction of a subpartitionC ∈ Π(X ) to these points is defined to beC[x1, . . . , xn] =
{C ∩ {x1, . . . , xn} : C ∈ C}. Likewise, the restriction of the cluster tree isCf [x1, . . . , xn] : R →
Π({x1, . . . , xn}), whereCf [x1, . . . , xn](λ) = Cf (λ)[x1, . . . , xn]. See Figure 2 for an example.

2.2 Notion of convergence and previous work

Suppose a sampleXn ⊂ X of sizen is used to construct a treeCn that is an estimate ofCf . Hartigan
[5] provided a very natural notion of consistency for this setting.

Definition 3 For any setsA,A′ ⊂ X , letAn (resp,A′
n) denote the smallest cluster ofCn containing

A ∩ Xn (resp,A′ ∩ Xn). We sayCn is consistent if, wheneverA andA′ are different connected
components of{x : f(x) ≥ λ} (for someλ > 0), P(An is disjoint fromA′

n) → 1 asn → ∞.

It is well known that ifXn is used to build a uniformly consistent density estimatefn (that is,
supx |fn(x) − f(x)| → 0), then the cluster treeCfn is consistent; see the appendix for details.
The big problem is thatCfn is not easy to compute for typical density estimatesfn: imagine, for
instance, how one might go about trying to find level sets of a mixture of Gaussians! Wong and
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Figure 2: A probability densityf , and the restriction ofCf to a finite set of eight points.

Lane [14] have an efficient procedure that tries to approximateCfn whenfn is ak-nearest neighbor
density estimate, but they have not shown that it preserves the consistency property ofCfn .

There is a simple and elegant algorithm that is a plausible estimator of the cluster tree:single
linkage(or Kruskal’s algorithm); see the appendix for pseudocode. Hartigan [5] has shown that it is
consistent in one dimension (d = 1). But he also demonstrates, by a lovely reduction to continuum
percolation, that this consistency fails in higher dimension d ≥ 2. The problem is the requirement
thatA ∩ Xn ⊂ An: by the time the clusters are large enough that one of them contains all ofA,
there is a reasonable chance that this cluster will be so big as to also contain part ofA′.

With this insight, Hartigan defines a weaker notion offractional consistency, under whichAn (resp,
A′

n) need not containall of A∩Xn (resp,A′∩Xn), but merely a sizeable chunk of it – and ought to
be very close (at distance→ 0 asn → ∞) to the remainder. He then shows that single linkage has
this weaker consistency property for any pairA,A′ for which the ratio ofinf{f(x) : x ∈ A∪A′} to
sup{inf{f(x) : x ∈ P} : pathsP fromA toA′} is sufficiently large. More recent work by Penrose
[7] closes the gap and shows fractional consistency whenever this ratio is> 1.

A more robust version of single linkage has been proposed by Wishart [13]: when connecting points
at distancer from each other, only consider points that have at leastk neighbors within distancer
(for somek > 2). Thus initially, whenr is small, only the regions of highest density are available for
linkage, while the rest of the data set is ignored. Asr gets larger, more and more of the data points
become candidates for linkage. This scheme is intuitively sensible, but Wishart does not provide a
proof of convergence. Thus it is unclear how to setk, for instance.

Stuetzle and Nugent [12] have an appealing top-down scheme for estimating the cluster tree, along
with a post-processing step (calledrunt pruning) that helps identify modes of the distribution. The
consistency of this method has not yet been established.

Several recent papers [6, 10, 9, 11] have considered the problem of recovering the connected com-
ponents of{x : f(x) ≥ λ} for a user-specifiedλ: the flat version of our problem. In particular,
the algorithm of [6] is intuitively similar to ours, though they use a single graph in which each point
is connected to itsk nearest neighbors, whereas we have a hierarchy of graphs in which each point
is connected to other points at distance≤ r (for variousr). Interestingly,k-nn graphs are valuable
for flat clustering because they can adapt to clusters of different scales (different average interpoint
distances). But they are challenging to analyze and seem to require various regularity assumptions
on the data. A pleasant feature of the hierarchical setting is that different scales appear at different
levels of the tree, rather than being collapsed together. This allows the use ofr-neighbor graphs, and
makes possible an analysis that has minimal assumptions on the data.

3 Algorithm and results

In this paper, we consider a generalization of Wishart’s scheme and of single linkage, shown in
Figure 3. It has two free parameters:k andα. For practical reasons, it is of interest to keep these as
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1. For eachxi setrk(xi) = inf{r : B(xi, r) containsk data points}.

2. Asr grows from0 to∞:

(a) Construct a graphGr with nodes{xi : rk(xi) ≤ r}.
Include edge(xi, xj) if ‖xi − xj‖ ≤ αr.

(b) Let Ĉ(r) be the connected components ofGr.

Figure 3: Algorithm for hierarchical clustering. The inputis a sampleXn = {x1, . . . , xn} from
densityf on X . Parametersk andα need to be set. Single linkage is(α = 1, k = 2). Wishart
suggestedα = 1 and largerk.

small as possible. We provide finite-sample convergence rates for all1 ≤ α ≤ 2 and we can achieve
k ∼ d log n, which we conjecture to be the best possible, ifα >

√
2. Our rates forα = 1 forcek to

be much larger, exponential ind. It is a fascinating open problem to determine whether the setting
(α = 1, k ∼ d log n) yields consistency.

3.1 A notion of cluster salience

Suppose densityf is supported on some subsetX of Rd. We will show that the hierarchical cluster-
ing procedure is consistent in the sense of Definition 3. But the more interesting question is, what
clusters will be identified from afinitesample? To answer this, we introduce a notion of salience.

The first consideration is that a cluster is hard to identify if it contains a thin “bridge” that would
make it look disconnected in a small sample. To control this,we consider a “buffer zone” of width
σ around the clusters.

Definition 4 For Z ⊂ R
d andσ > 0, writeZσ = Z +B(0, σ) = {y ∈ R

d : infz∈Z ‖y − z‖ ≤ σ}.

An important technical point is thatZσ is a full-dimensional set, even ifZ itself is not.

Second, the ease of distinguishing two clustersA andA′ depends inevitably upon the separation
between them. To keep things simple, we’ll use the sameσ as a separation parameter.

Definition 5 Let f be a density onX ⊂ R
d. We say thatA,A′ ⊂ X are (σ, ǫ)-separated if there

existsS ⊂ X (separator set) such that:

• Any path inX fromA toA′ intersectsS.

• supx∈Sσ
f(x) < (1− ǫ) infx∈Aσ∪A′

σ
f(x).

Under this definition,Aσ andA′
σ must lie withinX , otherwise the right-hand side of the inequality

is zero. However,Sσ need not be contained inX .

3.2 Consistency and finite-sample rate of convergence

Here we state the result forα >
√
2 andk ∼ d log n. The analysis section also has results for

1 ≤ α ≤ 2 andk ∼ (2/α)dd log n.

Theorem 6 There is an absolute constantC such that the following holds. Pick anyδ, ǫ > 0, and
run the algorithm on a sampleXn of sizen drawn fromf , with settings

√
2

(
1 +

ǫ2√
d

)
≤ α ≤ 2 and k = C · d log n

ǫ2
· log2 1

δ
.

Then there is a mappingr : [0,∞) → [0,∞) such that with probability at least1− δ, the following
holds uniformly for all pairs of connected subsetsA,A′ ⊂ X : If A,A′ are (σ, ǫ)-separated (forǫ
and someσ > 0), and if

λ := inf
x∈Aσ∪A′

σ

f(x) ≥ 1

vd(σ/2)d
· k
n
·
(
1 +

ǫ

2

)
(*)

wherevd is the volume of the unit ball inRd, then:
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1. Separation.A ∩Xn is disconnected fromA′ ∩Xn in Gr(λ).

2. Connectedness.A ∩Xn andA′ ∩Xn are each individually connected inGr(λ).

The two parts of this theorem – separation and connectedness– are proved in Sections 3.3 and 3.4.

We mention in passing that this finite-sample result impliesconsistency (Definition 3): asn → ∞,
takekn = (d log n)/ǫ2n with any schedule of(ǫn : n = 1, 2, . . .) such thatǫn → 0 andkn/n → 0.
Under mild conditions, any two connected componentsA,A′ of {f ≥ λ} are(σ, ǫ)-separated for
someσ, ǫ > 0 (see appendix); thus they will get distinguished for sufficiently largen.

3.3 Analysis: separation

The cluster tree algorithm depends heavily on the radiirk(x): the distance within whichx’s nearest
k neighbors lie (includingx itself). Thus the empirical probability mass ofB(x, rk(x)) is k/n. To
show thatrk(x) is meaningful, we need to establish that the mass of this ballunder densityf is also,
very approximately,k/n. The uniform convergence of these empirical counts followsfrom the fact
that balls inRd have finite VC dimension,d + 1. Using uniform Bernstein-type bounds, we get a
set of basic inequalities that we use repeatedly.

Lemma 7 Assumek ≥ d log n, and fix someδ > 0. Then there exists a constantCδ such that with
probability> 1− δ, every ballB ⊂ R

d satisfies the following conditions:

f(B) ≥ Cδd log n

n
=⇒ fn(B) > 0

f(B) ≥ k

n
+

Cδ

n

√
kd log n =⇒ fn(B) ≥ k

n

f(B) ≤ k

n
− Cδ

n

√
kd log n =⇒ fn(B) <

k

n

Herefn(B) = |Xn ∩B|/n is the empirical mass ofB, whilef(B) =
∫
B
f(x)dx is its true mass.

PROOF: See appendix.Cδ = 2Co log(2/δ), whereCo is the absolute constant from Lemma 16.�

We will henceforth think ofδ as fixed, so that we do not have to repeatedly quantify over it.

Lemma 8 Pick0 < r < 2σ/(α+ 2) such that

vdr
dλ ≥ k

n
+

Cδ

n

√
kd log n

vdr
dλ(1− ǫ) <

k

n
− Cδ

n

√
kd log n

(recall thatvd is the volume of the unit ball inRd). Then with probability> 1− δ:

1. Gr contains all points in(Aσ−r ∪A′
σ−r) ∩Xn and no points inSσ−r ∩Xn.

2. A ∩Xn is disconnected fromA′ ∩Xn in Gr.

PROOF: For (1), any pointx ∈ (Aσ−r∪A′
σ−r) hasf(B(x, r)) ≥ vdr

dλ; and thus, by Lemma 7, has
at leastk neighbors within radiusr. Likewise, any pointx ∈ Sσ−r hasf(B(x, r)) < vdr

dλ(1− ǫ);
and thus, by Lemma 7, has strictly fewer thank neighbors within distancer.

For (2), since points inSσ−r are absent fromGr, any path fromA to A′ in that graph must have an
edge acrossSσ−r. But any such edge has length at least2(σ − r) > αr and is thus not inGr. �

Definition 9 Definer(λ) to be the value ofr for whichvdrdλ = k
n + Cδ

n

√
kd log n.

To satisfy the conditions of Lemma 8, it suffices to takek ≥ 4C2
δ (d/ǫ

2) log n; this is what we use.
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Figure 4:Left: P is a path fromx to x′, andπ(xi) is the point furthest along the path that is within
distancer of xi. Right: The next point,xi+1 ∈ Xn, is chosen from a slab ofB(π(xi), r) that is
perpendicular toxi − π(xi) and has width2ζ/

√
d.

3.4 Analysis: connectedness

We need to show that points inA (and similarlyA′) are connected inGr(λ). First we state a simple
bound (proved in the appendix) that works ifα = 2 andk ∼ d log n; later we consider smallerα.

Lemma 10 Suppose1 ≤ α ≤ 2. Then with probability≥ 1 − δ, A ∩ Xn is connected inGr

wheneverr ≤ 2σ/(2 + α) and the conditions of Lemma 8 hold, and

vdr
dλ ≥

(
2

α

)d
Cδd log n

n
.

Comparing this to the definition ofr(λ), we see that choosingα = 1 would entailk ≥ 2d, which is
undesirable. We can get a more reasonable setting ofk ∼ d log n by choosingα = 2, but we’d like
α to be as small as possible. A more refined argument shows thatα ≈

√
2 is enough.

Theorem 11 Supposeα2 ≥ 2(1 + ζ/
√
d), for some0 < ζ ≤ 1. Then, with probability> 1 − δ,

A ∩Xn is connected inGr wheneverr ≤ σ/2 and the conditions of Lemma 8 hold, and

vdr
dλ ≥ 8

ζ
· Cδd log n

n
.

PROOF: We have already made heavy use of uniform convergence over balls. We now also require
a more complicated classG, each element of which is theintersectionof an open ball and a slab
defined by two parallel hyperplanes. Formally, each of thesefunctions is defined by a centerµ and
a unit directionu, and is the indicator function of the set

{z ∈ R
d : ‖z − µ‖ < r, |(z − µ) · u| ≤ ζr/

√
d}.

We will describe any such set as “the slab ofB(µ, r) in directionu”. A simple calculation (see
Lemma 4 of [4]) shows that the volume of this slab is at leastζ/4 that ofB(x, r). Thus, if the slab lies
entirely inAσ, its probability mass is at least(ζ/4)vdrdλ. By uniform convergence overG (which
has VC dimension2d), we can then conclude (as in Lemma 7) that if(ζ/4)vdr

dλ ≥ (2Cδd log n)/n,
then with probability at least1− δ, every such slab withinA contains at least one data point.

Pick anyx, x′ ∈ A∩Xn; there is a pathP in A with x
P
 x′. We’ll identify a sequence of data points

x0 = x, x1, x2, . . ., ending inx′, such that for everyi, pointxi is active inGr and‖xi−xi+1‖ ≤ αr.
This will confirm thatx is connected tox′ in Gr.

To begin with, recall thatP is a continuous1− 1 function from[0, 1] intoA. We are also interested
in the inverseP−1, which sends a point on the path back to its parametrization in [0, 1]. For any
point y ∈ X , defineN(y) to be the portion of[0, 1] whose image underP lies inB(y, r): that is,
N(y) = {0 ≤ z ≤ 1 : P (z) ∈ B(y, r)}. If y is within distancer of P , thenN(y) is nonempty.
Defineπ(y) = P (supN(y)), the furthest point along the path within distancer of y (Figure 4, left).

The sequencex0, x1, x2, . . . is defined iteratively;x0 = x, and fori = 0, 1, 2, . . . :

• If ‖xi − x′‖ ≤ αr, setxi+1 = x′ and stop.
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• By construction,xi is within distancer of pathP and henceN(xi) is nonempty.

• Let B be the open ball of radiusr aroundπ(xi). The slab ofB in directionxi − π(xi)
must contain a data point; this isxi+1 (Figure 4, right).

The process eventually stops because eachπ(xi+1) is strictly further along pathP than π(xi);
formally, P−1(π(xi+1)) > P−1(π(xi)). This is because‖xi+1 − π(xi)‖ < r, so by continuity of
the functionP , there are points further along the path (beyondπ(xi)) whose distance toxi+1 is still
< r. Thusxi+1 is distinct fromx0, x1, . . . , xi. Since there are finitely many data points, the process
must terminate, so the sequence{xi} does constitute a path fromx to x′.

Eachxi lies in Ar ⊆ Aσ−r and is thus active inGr (Lemma 8). Finally, the distance between
successive points is:

‖xi − xi+1‖2 = ‖xi − π(xi) + π(xi)− xi+1‖2
= ‖xi − π(xi)‖2 + ‖π(xi)− xi+1‖2 + 2(xi − π(xi)) · (π(xi)− xi+1)

≤ 2r2 +
2ζr2√

d
≤ α2r2,

where the second-last inequality comes from the definition of slab.�

To complete the proof of Theorem 6, takek = 4C2
δ (d/ǫ

2) log n, which satisfies the requirements
of Lemma 8 as well as those of Theorem 11, usingζ = 2ǫ2. The relationship that definesr(λ)
(Definition 9) then translates into

vdr
dλ =

k

n

(
1 +

ǫ

2

)
.

This shows that clusters at density levelλ emerge when the growing radiusr of the cluster tree
algorithm reaches roughly(k/(λvdn))1/d. In order for(σ, ǫ)-separated clusters to be distinguished,
we need this radius to be at mostσ/2; this is what yields the final lower bound onλ.

4 Lower bound

We have shown that the algorithm of Figure 3 distinguishes pairs of clusters that are(σ, ǫ)-separated.
The number of samples it requires to capture clusters at density ≥ λ is, by Theorem 6,

O

(
d

vd(σ/2)dλǫ2
log

d

vd(σ/2)dλǫ2

)
,

We’ll now show that this dependence onσ, λ, andǫ is optimal. The only room for improvement,
therefore, is in constants involvingd.

Theorem 12 Pick anyǫ in (0, 1/2), anyd > 1, and anyσ, λ > 0 such thatλvd−1σ
d < 1/50. Then

there exist: an input spaceX ⊂ R
d; a finite family of densitiesΘ = {θi} onX ; subsetsAi, A

′
i, Si ⊂

X such thatAi andA′
i are (σ, ǫ)-separated bySi for densityθi, andinfx∈Ai,σ∪A′

i,σ
θi(x) ≥ λ, with

the following additional property.

Consider any algorithm that is givenn ≥ 100 i.i.d. samplesXn from someθi ∈ Θ and, with
probability at least1/2, outputs a tree in which the smallest cluster containingAi ∩Xn is disjoint
from the smallest cluster containingA′

i ∩Xn. Then

n = Ω

(
1

vdσdλǫ2d1/2
log

1

vdσdλ

)
.

PROOF: We start by constructing the various spaces and densities.X is made up of two disjoint
regions: a cylinderX0, and an additional regionX1 whose sole purpose is as a repository for excess
probability mass. LetBd−1 be the unit ball inRd−1, and letσBd−1 be this same ball scaled to have
radiusσ. The cylinderX0 stretches along thex1-axis; its cross-section isσBd−1 and its length is
4(c+ 1)σ for somec > 1 to be specified:X0 = [0, 4(c+ 1)σ]× σBd−1. Here is a picture of it:
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We will construct a family of densitiesΘ = {θi} onX , and then argue that any cluster tree algorithm
that is able to distinguish(σ, ǫ)-separated clusters must be able, when given samples from someθI ,
to determine the identity ofI. The sample complexity of this latter task can be lower-bounded using
Fano’s inequality (typically stated as in [2], but easily rewritten in the convenient form of [15], see
appendix): it isΩ((log |Θ|)/β), for β = maxi6=j K(θi, θj), whereK(·, ·) is KL divergence.

The familyΘ containsc− 1 densitiesθ1, . . . , θc−1, whereθi is defined as follows:

• Densityλ on [0, 4σi+σ]×σBd−1 and on[4σi+3σ, 4(c+1)σ]×σBd−1. Since the cross-
sectional area of the cylinder isvd−1σ

d−1, the total mass here isλvd−1σ
d(4(c+ 1)− 2).

• Densityλ(1− ǫ) on (4σi+ σ, 4σi+ 3σ)× σBd−1.

• Point masses1/(2c) at locations4σ, 8σ, . . . , 4cσ along thex1-axis (use arbitrarily narrow
spikes to avoid discontinuities).

• The remaining mass,1/2−λvd−1σ
d(4(c+1)−2ǫ), is placed onX1 in some fixed manner

(that does not vary between different densities inΘ).

Here is a sketch ofθi. The low-density region of width2σ is centered at4σi+ 2σ on thex1-axis.

point mass1/2c

densityλ(1− ǫ)

densityλ

2σ

For anyi 6= j, the densitiesθi andθj differ only on the cylindrical sections(4σi + σ, 4σi + 3σ)×
σBd−1 and(4σj+σ, 4σj+3σ)×σBd−1, which are disjoint and each have volume2vd−1σ

d. Thus

K(θi, θj) = 2vd−1σ
d

(
λ log

λ

λ(1− ǫ)
+ λ(1− ǫ) log

λ(1− ǫ)

λ

)

= 2vd−1σ
dλ(−ǫ log(1− ǫ)) ≤ 4

ln 2
vd−1σ

dλǫ2

(usingln(1− x) ≥ −2x for 0 < x ≤ 1/2). This is an upper bound on theβ in the Fano bound.

Now define the clusters and separators as follows: for each1 ≤ i ≤ c− 1,

• Ai is the line segment[σ, 4σi] along thex1-axis,

• A′
i is the line segment[4σ(i+ 1), 4(c+ 1)σ − σ] along thex1-axis, and

• Si = {4σi+ 2σ} × σBd−1 is the cross-section of the cylinder at location4σi+ 2σ.

ThusAi andA′
i are one-dimensional sets whileSi is a(d − 1)-dimensional set. It can be checked

thatAi andA′
i are(σ, ǫ)-separated bySi in densityθi.

With the various structures defined, what remains is to arguethat if an algorithm is given a sample
Xn from someθI (whereI is unknown), and is able to separateAI ∩Xn fromA′

I ∩Xn, then it can
effectively inferI. This has sample complexityΩ((log c)/β). Details are in the appendix.�

There remains a discrepancy of2d between the upper and lower bounds; it is an interesting open
problem to close this gap. Does the(α = 1, k ∼ d log n) setting (yet to be analyzed) do the job?
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