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Abstract

Longitudinal network data are increasingly available, allowing researchers to
model how networks evolve over time and to make inference on their dependence
structure. In this paper, a dynamic latent space approach is used to model di-
rected networks of monthly interbank exposures. In this model, each node has an
unobserved temporal trajectory in a low-dimensional Euclidean space. Model pa-
rameters and latent banks’ positions are estimated within a Bayesian framework.
We apply this methodology to analyze two different datasets: the unsecured and
the secured (repo) interbank lending networks. We show that the model that
incorporates a latent space performs much better than the model in which the
probability of a tie depends only on observed characteristics; the latent space
model is able to capture some features of the dyadic data such as transitivity
that the model without a latent space is not able to.
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1 Introduction

There has been a growing interest in the study of networks in economics over the last

years. Specifically in finance the accelerated loss of confidence in financial markets

following the failure of Lehman Brothers in 2008 has shown the importance of under-

standing the network of linkages between financial institutions. The lack of knowledge

of counterparty exposures and how the contagion would spread throughout the system

during the crisis have led policy makers to adopt a large set of financial reforms to

address these and other vulnerabilities, both at the international and domestic level

(Claessens and Kodres, 2014).

Since financial institutions are highly interconnected, network theory provides a

useful framework for the analysis of the financial system. Interconnections may be

directed due to banks’ claims on each other or may arise indirectly when banks hold

similar portfolios or share a common pool of investors or depositors. The role of these

interconnections in the propagation of shocks in financial networks has been analyzed

by a growing literature. Allen and Gale (2000) and Freixas et al. (2000) have shown

how contagion depends on the structure of the interbank network. In more recent work,

Acemoglu et al. (2015) show that for a small shock hitting the system a more connected

financial network enhances financial stability. On the other hand, a less connected

financial network is preferable in the case of a large shock since interconnections serve

as a mechanism for shock propagation. Many other theoretical or simulation-based

works have studied the relevance of the various possible channels of contagion in the

propagation of shocks and the implications for financial stability1. The work in this

area usually corroborates with the “robust-yet-fragile” tendency of financial systems

described by Gai and Kapadia (2010) in which the probability of contagion may be low

but, when problems occur, the effects can be widespread

The statistical challenge in analyzing network data is to describe the potential

dependence among nodes. For instance, in social network data the probability of a tie

between two individuals increases as the characteristics of them become more similar

(homophily). Equally important is the individual level heterogeneity, reflected in differ-

ences in observed characteristics, which plays an important role in the creation of new

links. However, a main concern is the unobserved heterogeneity (see, e.g., Fafchamps

et al., 2010).

In this paper, we present a model to handle dynamic network data with directed

1See Hüser (2015) and Glasserman and Young (2016) for recent reviews of the extensive literature
on channels of contagion in financial networks.
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binary edges based on the latent space approach2. The model was originally introduced

by Hoff et al. (2002) for static networks and later extended by Krivitsky et al. (2009) to

account for clustering and homophily which is often observed in network data. Then,

Sarkar and Moore (2005), Durante and Dunson (2014) and Sewell and Chen (2015)

have proposed latent space models for dynamic networks.

In this model, the latent space refers to a space of unobserved characteristics

that affect link formation. The model assumes that the presence of a link between two

banks is independent of all other links in the system, given the unobserved positions in

the latent space and observed characteristics of the nodes. Each node has a position

in this low dimensional Euclidean space and the closer two nodes are, the more likely

they will form a link. Although the interdependence between dyads is not explicitly

parameterized, in the latent space model they are represented by latent variables. For

this reason, the model can account for higher-order dependencies such as reciprocity

and transitivity which are usually present in network data. So, the observation of i→ j

and j → k suggests that the nodes i, j and k are not too far apart making the existence

of ties j → i (reciprocity) and i → k (transitivity) more probable. Estimation of the

latent positions and the parameters of the model is done within a Bayesian framework.

A contribution of the paper is to use the dynamic latent space approach of Sewell

and Chen (2015) to model monthly networks of directed interbank linkages. The la-

tent space model has been mostly used for modeling social networks but it has not

been applied to the study of financial networks so far. Although financial exposures

are naturally represented by a weighted network, the choice of using a directed net-

work representation is motivated by our aim to evaluate the ability of the model to

characterize the basic structure of the network, which is the presence or absence of a

link.

In this dynamic model each node has a temporal trajectory in the latent space.

Hence, we expect to have a better understanding of how the network evolves over

time and the behavior of individual banks instead of conducting separate analyses for

each network or averaging graph statistics. We extended the model to include in the

observation equation covariates that measures characteristics of the pair of banks and

we are able to investigate how these pair-specific measures as size, liquidity, etc., affect

the probability of forming a lending connection.

2The “latent space” has been used in economics to account for the unobserved homophily that
might affect the formation and behavior of social networks (Goldsmith-Pinkham and Imbens, 2013
and Graham, 2014). Iijima and Kamada (2016) develop a network formation model in which the
benefit and the cost of link formation depend on the social distance between agents.
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The motivation to use a dynamic network model is that papers usually consider the

network structure of banks’ exposures as fixed. They do not consider strategic actions

that other banks may take to reduce the exposure to a bank in distress or liquidity

hoarding in moments of increased uncertainty about the health of the financial system.

For example, Afonso et al. (2011) examine the impact of the financial crisis of 2008 on

the US interbank market and show how banks have become more restrictive in their

lending operations after the Lehman Brothers’ bankruptcy. Squartini et al. (2013)

show the changes in the topology of the Dutch interbank network over the period

1998-2008. Despite the importance of contributions, a limited number of empirical

papers explore the dynamics of financial networks. Most of them measure certain graph

statistics over time instead of modeling the network dynamics in order to understand

the changes in the network topology (Giraitis et al., 2016)3. The reason for this is the

greater complexity in modeling dynamic network data given the dependence structures

of networks observed over discrete time intervals. Further motivation is that currently

central bank authorities collect a huge amount of data on bilateral exposures of financial

institutions or they are able to derive them from payment system records4. Using the

increasing availability of longitudinal data, researchers can model how the network

evolves over time to make inference on its dependence structure.

We apply this methodology to analyze two different datasets: the unsecured and

the secured interbank lending networks. We analyze these two networks separately since

banks face distinct risks when lending in these markets. In unsecured lending, loans are

not collateralised so lenders are directly exposed to loss in the case of borrowers default.

In secured lending, which in our case is represented by repurchase agreements (repo)

collateralized with government bonds, the loss is limited by the collateral value. In the

former, counterparty risk plays a key role (see, e.g., Afonso et al., 2011) while in the

latter the quality of collateral is an issue in moments of distress (see, e.g., Krishnamurthy

et al., 2014). Despite the differences in risk assessment, graph statistics of the two

networks are quite similar.

We estimate the model with the latent space but an important question is whether

it improves the model’s goodness-of-fit. The latent space is expected to account for the

unobserved bank attributes that affect the link formation and improve the model’s fit.

3For instance, Craig and von Peter (2014) track the number and composition of banks in the core
and periphery on a quarterly basis as an evidence of tiering in the German banking system. They use
the blockmodeling approach.

4The algorithms to extract the information from large value payment systems are usually based on
the work of Furfine (1999) and later refinements.
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Hence, we run a model in which the probability of a tie depends only on observed

covariates xijt and a second one in which the latent space is included. The former

model is simply a logistic regression model in which directed ties are the dependent

variables. We assess the in-sample and the out-of-sample link predictions of the two

models. In addition, we evaluate the adequacy of them by comparing some selected

graph statistics calculated for the observed data with their distributions obtained from

a large number of networks simulated according to the fitted model (see, e.g., Hunter

et al., 2008; Durante et al., 2017). If the simulated network does not resemble the

observed network for a particular statistic, it is an indication of the model’s lack of

fit. We use this procedure to assess the model’s fit considering a set of graph statistics

which are believed to represent important structural properties of interbank networks

such as degree distribution, reciprocity and assortativity.

Our main results show that the model which incorporates observed bank’s char-

acteristics and a latent space to account for the unobserved ones is able to capture

some features of the dyadic data such as transitivity. We show that the inclusion of a

low dimensional latent space is essential to account for dependencies that exist among

nodes. Further, the distribution of graph statistics for the simulated networks based on

the model with a latent space are much closer to the observed values when compared

to the model without a latent space. On the other hand, the model in which the proba-

bility of forming a tie depends only on observed characteristics of banks has a poor fit.

Link predictions are much worse and the distribution of most graph statistics for the

simulated networks are far from the observed values. Therefore, models that do not in-

corporate dependencies in the analysis of network data will suffer from misspecification

which may lead to invalid conclusions.

Lastly, the latent space approach is related to other statistical models for the anal-

ysis of network data. The methodology for dynamic network analysis is less developed

since most of the models are for modeling static networks5. However, given the impor-

tance of the subject, statistical models for the analysis of longitudinal network data are

emerging. Examples of dynamic network models are the stochastic actor-based model

(Snijders and Steglich, 2015) and the extension of the Exponential Random Graph

Model (ERGM) for modeling dynamic networks (Hanneke et al., 2010). The former

assumes that the objective function depends on preferences for certain types of so-

cial structures, such as reciprocated dyads or transitive triads while the latter depends

5Some models are intended for static networks but the processes for link creation or modification
are dynamic. Examples are the Erdos-Renyi random graphs, preferential attachment and small-world
models. See Goldenberg et al. (2009) for a survey of static and dynamic network models.
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on counts of specific network structures such as edges, triangles, k-stars, etc. Other

methodology related to the latent space approach is the mixed membership stochastic

blockmodel (Xing et al., 2010) which allows each node to belong to multiple blocks

with fractional membership. In general, the models assume a continuous or a discrete

Markov process to represent the network dynamics. However, the first two modeling

approaches assume a homogeneous representation of the network behavior while the last

ones allow for nodal heterogeneity in model parameters. Finally, a different approach

combines agent-based modeling and the literature on strategic network formation to

gain some economic intuition on the network formation process. Banks’ utility func-

tions are defined at the start and network formation follows a game theoretical approach

(see e.g. Blasques et al., 2015).

The rest of the paper is organized as follows. Section 2 describes the latent space

model for dynamic networks. Section 3 provides an explanation of the Bayesian es-

timation of model parameters. Section 4 describes the data on unsecured interbank

exposures, repo transactions and bank variables. In Section 5 we analyze the two dy-

namic networks and report the main results and in Section 6 we discuss the importance

of the latent space. Finally, in Section 7 we present a brief conclusion.

2 The model

In this section we describe the dynamic latent space approach (Sewell and Chen, 2015)

for modeling the interbank network. The borrowing and lending relationships of the

interbank market can be represented by a graph Gt = (N , Et) where N is the set of all

nodes and Et is the set of edges at time t ∈ T = {1, 2, ..., T}. The number of nodes

which represent financial institutions is n = |N |. It will be assumed that Et consists of

directed edges representing whether or not a lending or a borrowing relationship exists

between two banks at time t.

Each node i has an unobserved position in a p-dimensional Euclidean latent space

Rp. Let zit represent the p-dimensional vector of the ith node’s latent position at time t

and Zt is the n× p matrix whose ith row is zit. The n× n square matrix Yt = {yijt} is

the adjacency matrix of the directed network observed at time t where yijt = 1 if bank

i has a credit exposure to bank j at time t and 0 otherwise. There are also a vector

xijt and a n× n× d array Xt of observed characteristics of the dyads.

It is assumed that the latent node positions follow a Markov process. It is also

assumed that the observed graph at time t is conditionally independent of all other
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Figure 1: Graphical representation the Markovian dependencies between states Zt and observations
Yt.

graphs, given the latent positions and dyadic-level covariate information at time t.

These assumptions lead to the representation of the temporal series of graphs as a state

space model given in terms of densities by:

Yt ∼ f (Yt|Zt,Xt,β) (1)

Zt ∼ g (Zt|Zt−1,ψ) (2)

for t = 1, 2, . . . , T , where ψ and β are sets of model parameters. Equation (1) is the

observation equation that relates the observed graphs Yt to the latent state variable

Zt representing the positions of nodes in a low dimensional Euclidean space. Equation

(2) is the state transition equation that governs the time evolution of the unobserved

latent state. A graphical representation of the dependencies between different states

and observations is shown in Figure 1.

Xing et al. (2010) and Sewell and Chen (2015) assume that the evolution of the

latent node positions follows a random walk. They show that even this simple model

provides a better representation of the data than a static model that ignores time

dependence between networks. Therefore, the initial distribution of the latent node
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positions and transition equation for t = 2, 3, ..., T are given by

π(Z1|ψ) =
n∏
i=1

MVNp(zi1|0, τ 2Ip) (3)

π(Zt|Zt−1,ψ) =
n∏
i=1

MVNp(zit|zi(t−1), σ2Ip), (4)

where Ip is the p × p identity matrix, MVNp(z|µ,Σ) denotes the p-dimensional mul-

tivariate normal probability density function with mean µ and covariance matrix Σ

evaluated at z.

The logistic regression model is a convenient parameterization for the link prob-

ability (Hoff et al., 2002). The authors take a conditional independence approach to

modeling by assuming that the probability of a link between two nodes is conditionally

independent of all other links, given the latent positions and the observed characteristics

of the dyad:

P(yijt = 1|zit, zjt,xijt,β) =
exp(yijtηijt)

1 + exp(ηijt)
. (5)

In general, the logit6 of the link probability in latent space models is written as

a linear function of covariates and a function of the distance of latent positions. Using

the original parameterization of Hoff et al. (2002) for the dynamic network case, we

have:

ηijt = logit(P(yijt = 1|·)) = β0 + β
′
xijt − dijt, (6)

where the constant controls the overall density of the network, β is a vector of unknown

parameters, xijt is a d -length vector of dyad specific covariates and dijt =‖ zit − zjt ‖
is the Euclidean distance between nodes i and j within the latent space at time t. Hoff

et al. (2002) call this formulation the distance model.

The distance model (equation 6) has a simple interpretation. The likelihood of a

tie between i and j is a function of banks’ observed and unobserved characteristics that

might affect network formation. Examples of observed bank characteristics can be asset

size, deposits or available liquidity. Unobserved latent characteristics can be for example

private information about counterparty risk or the existence of a relationship between

two banks in other markets which affects the probability of a link in the observed

network. In this setting, the latent space can be interpreted as a characteristic space

where banks that are closer together have a higher probability of forming lending or

6logit(p) = log(p/(1-p)).
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borrowing relationships. Banks’ positions in this space can help identify groups of

banks that are similar to each other in terms of lending and borrowing behavior, after

controlling for the explanatory variables.

In equation 6 we included only observed variables of the pair of banks and their

positions in latent space to account for the unobserved characteristics that affect link

formation. As we show in Sections 4 and 5 the links between banks are quite stable

over the period of analysis, and macroeconomic variables such as GDP do not seem to

affect the link formation process. One explanation could be the different frequency of

observation of the variables. The networks are based on monthly data that are end-

of-month exposures or aggregation of daily data; to capture the effect of low frequency

data on the formation of links we may need to analyze longer periods.

Finally, the likelihood of the conditional independence model is:

P(Y1:T |Z1:T ,X1:T ,β) =
T∏
t=1

∏
i 6=j

P(yijt|zit, zjt,xijt,β) =
T∏
t=1

∏
i 6=j

exp(yijtηijt)

1 + exp(ηijt)
. (7)

3 Estimation

A Bayesian approach is used to obtain estimates of the latent space positions and of

the unknown parameters simultaneously. The posterior distribution

π (Z1:T ,ψ,β|Y1:T ,X1:T ) , (8)

where ψ = (τ 2, σ2), is sampled using the Metropolis-Hastings algorithm within Gibbs

sampling.

One problem of the model is that the likelihood is a function of the latent posi-

tions only through their distances. However, the distance is invariant under reflection,

rotation and translation of the latent positions and, consequently, for each n × p ma-

trix of latent positions Zt there is an infinite number of other positions given the same

log-likelihood, i.e., log P(Yt|Zt, ...) = log P(Yt|Z∗t , ...) for any Z∗t that is equivalent to

Zt under the operations of reflection, rotation and translation.

To resolve the problem of the non-uniqueness of the estimates, Hoff et al. (2002)

perform a Procrustean transformation on Zt. The goal is to transform a given matrix

to be as close as possible to the target matrix by any combination of reflection, rotation
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and translation7. First, we choose the initial latent positions to be the (nd)× T target

matrix Z0. Then, after each iteration of the MCMC algorithm the coordinates of Z̃ =

(Z
′
1, ...,Z

′
T )

′
are transformed to be as close as possible to the corresponding coordinates

of Z0. The transformation does not change the distances nor the likelihood but it

approximately fixes the location of Z̃ and makes MCMC iterations comparable.

We use standard prior distributions and the values of the prior hyperparame-

ters are set to make the priors weakly informative. The prior distributions for the

parameters are set as follows: τ 2 ∼ IG(ντ/2, ντξ
2
τ/2), σ2 ∼ IG(νσ/2, νσξ

2
σ/2) and

β ∼ MVN(µβ,Σβ), where IG and MVN are the inverse gamma and the multivari-

ate normal distributions, respectively. The inverse gamma distribution was chosen as

it is a conjugate prior for the unknown parameters τ 2 and σ2.

The values of prior hyperparameters (ντ , ξ
2
τ , νσ, ξ

2
σ,µβ,Σβ) are set based on the

suggestions of Sewell and Chen (2015). In general, we use relatively diffuse prior dis-

tributions. The shape and scale parameters for τ 2 were set to low values in order to

have a weakly informative prior. The same procedure was used for σ2. In addition, the

value of ξ2τ was set to be equal to the initial estimate of τ 2 (equation 19). The prior

for β has zero mean and large variance. Nonetheless, we found that the estimation is

robust to changes in the values of prior hyperparameters and the convergence of the

parameters is not affect.

3.1 Posterior sampling and the MCMC algorithm

We implement a Markov Chain Monte Carlo (MCMC) algorithm to sample from the

posterior to obtain estimates of the latent positions and other unknown parameters

of the model. The model parameters τ 2 and σ2 are sampled directly from their full

conditional distributions using the Gibbs sampler while conditional distributions which

do not have closed forms are sampled using a standard Metropolis-Hastings (MH) al-

gorithm. The conditional distributions used in the MH steps are given in Appendix A

where we derive in detail the conditional distribution of Zt as well as the conditional

distributions of the latent position zit and parameters (τ 2, σ2,β).

In order to reduce the time for the Markov chain to get to stationarity, we seek

reasonable estimates for the initial values of the latent positions Z1:T and the parameters

7Formally, the Procrustean transformation of Z̃ using Z0 as the target matrix solves the problem:

argminT Z̃ tr(Z0 − T Z̃)
′
(Z0 − T Z̃)

where T is a set of reflections, rotations and translations.
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τ 2, σ2, and β. The procedure to obtain the starting values is detailed in Appendix B.

Given the starting values of Z1:T , τ 2, σ2 and β and current values at scan s of the

Markov chain, the MH algorithm generates a new set of parameter values as follows:

1. For t = 1, ..., T and for i = 1, ..., n, sample z
(s+1)
it using a MH step with a normal

random walk proposal distribution.

2. Sample β(s+1) using a MH step with a multivariate normal random walk proposal

distribution.

3. Sample τ 2(s+1) from its full conditional distribution.

4. Sample σ2(s+1) from its full conditional distribution.

Finally, the variance of the proposal distributions are tuned automatically to

achieve acceptance rates of 35% based on the algorithm proposed by Haario et al.

(2005).

4 Data

The Central Bank of Brazil collects and processes data of exposures between financial

institutions from different sources as credit register, securities custody and settlement

systems and shares and derivatives central counterparties. The dataset built by the

central bank includes exposures of banks, credit unions, securities dealers and other

financial institutions.

We restrict our analyses to exposures between banks. Using this sample the

number of financial institutions decrease from more than 1,500 to approximately 135

without losing relevance, since financial institutions other than banks account for only

2.7% of the financial system’s total assets as of December 2014. Besides, the Brazilian

financial system is highly concentrated. Among more than one hundred domestic and

foreign banks, six large institutions account for 78.4% of the financial system’s total as-

sets. As a consequence of banking concentration, interfinancial assets of banks account

for 98.0% of the interfinancial asset of the financial system. It is worth noting that

exposures are measured on a consolidated basis thus the term bank refers indistinctly

to an individual bank or to a banking group.

In our study we analyze the networks of unsecured interbank exposures and repo

transactions from July 2012 to June 2013 (12 months). The unsecured interbank data
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are available on a monthly basis and consist of short and long term exposures between

banks. Exposures are measured as end-of-month gross values. There is no netting

between exposures of banks i and j. These exposures arise mainly from interbank

deposits, credit, loan purchase agreements and interbank onlending8. A smaller fraction

of exposures are due to certificates of deposit, OTC derivatives such as swaps, and

holdings of securities issued by other financial institutions.

The data on repurchase agreements (repo) with government bonds as collateral is

from Selic, the system for settlement and custody of government bonds managed by the

Central Bank of Brazil. Excluding transactions with the central bank, overnight repos

account for almost all operations between financial institutions. There is no netting

between exposures of banks i and j or between the amount lent and the collateral value.

Data are available on a daily basis but we have chosen to analyze monthly aggregated

networks. To do so, for each month we summed the daily exposures of each pair of

banks. The data aggregation is necessary since the MCMC algorithm cannot handle

daily network data due to the computational burden associated with the estimation of

so many parameters. Besides, aggregated networks are expect to provide a better view

of the interbank market structures as the randomness of daily networks may result in

misleading inferences (Finger et al., 2013).

Figure 2 shows the number of links between banks and the traded volumes9 in

the unsecured and the repo interbank markets. We can see that traded volumes and

number of links for both networks have increased over the year. The difference in

volumes traded in unsecured and secured markets is explained by the fact that most

of repo transactions have the central bank as counterparty while repos between banks

account for a small fraction of the market.

4.1 The topology of the Brazilian interbank networks

Some characteristics of the Brazilian interbank network are analyzed in other works

(Cajueiro and Tabak, 2008; Cont et al., 2013; Tabak et al., 2014; Silva et al., 2015).

The papers differ in the financial instruments used to build the networks and the sample

time span. Even so, they have found that the Brazilian interbank networks are quite

similar to networks from other countries. For instance, the networks are sparse and

show a core periphery structure while the degree distribution seems to follow a power

8Onlending refers to loans of borrowed funds from other banks. In our database large onlending
exposures arise mainly when banks lend money borrowed from the Brazilian development bank.

9The volumes traded were deflated by the Brazilian consumer price index IPCA.
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Figure 2: Traded volume (black solid line) and number of links between banks (red dashed line) from
July, 2012 to June, 2013.

law.

Table 1 presents the evolution of some network statistics of the unsecured and

the repo interbank networks. In Appendix C we provide an explanation of the network

statistics used in the table. Our sample is from July 2012 to June 2013 but since the

variation between months is low, we present the results for only six different months.

The in-degree of a node i is the number of edges terminating at it and out-degree

is the number of edges originating in node i. In our interbank network they represent

respectively the number of creditors and debtors of a bank. It is possible to see by the

coefficient of variation (standard deviation of degree/mean degree) that the out-degree

distribution of the unsecured network is more dispersed than the in-degree distribution

while for the repo network it is the contrary. The maximum in/out-degrees of the

unsecured network are 68 and 107, respectively, and 82 and 42 for the repo network.

The density of a network is the ratio of the number of existing edges to the

number of possible edges. Both networks are sparse as the mean density is 0.10 or lower.

Transitivity or clustering coefficient is the probability that adjacent nodes of a node are

also connected. Reciprocity is the proportion of the total number of reciprocated edges

to the total number of edges. Transitivity and reciprocity are high in both networks

and almost constant.

The average path length is the average length of the shortest paths between nodes

while the diameter is the length of the longest path in a graph. It is possible to see that

the unsecured network exhibits smaller distances between nodes. Assortativity is the

correlation of degrees in adjacent nodes. The degree correlations are negative in both

13



Table 1: Summary of graph statistics for the unsecured and the repo interbank networks.

Jul 2012 Sep 2012 Nov 2012 Jan 2013 Mar 2013 May 2013 Mean

Unsecured network

In-degree Mean 12.23 13.18 12.96 12.76 12.90 12.81 12.81

In-degree Coef. var. 0.95 0.94 0.94 0.95 0.96 0.94 0.95

Out-degree Mean 12.23 13.18 12.96 12.76 12.90 12.81 12.81

Out-degree Coef. var. 1.47 1.41 1.44 1.45 1.44 1.44 1.44

Density 0.10 0.11 0.11 0.10 0.11 0.11 0.11

Transitivity 0.35 0.37 0.36 0.37 0.36 0.36 0.36

Reciprocity 0.50 0.53 0.51 0.51 0.52 0.51 0.51

Average path length 2.08 2.08 2.07 2.09 2.06 2.08 2.08

Diameter 4 4 4 4 4 4 4

Assortativity -0.37 -0.37 -0.37 -0.37 -0.37 -0.36 -0.37

Repo network

In-degree Mean 7.96 7.71 7.61 8.39 8.38 8.36 8.07

In-degree Coef. var. 1.62 1.58 1.51 1.56 1.61 1.48 1.56

Out-degree Mean 7.96 7.71 7.61 8.39 8.38 8.36 8.07

Out-degree Coef. var. 0.82 0.85 0.87 0.85 0.76 0.82 0.83

Density 0.07 0.07 0.07 0.07 0.07 0.07 0.07

Transitivity 0.31 0.31 0.32 0.34 0.31 0.31 0.32

Reciprocity 0.48 0.49 0.45 0.46 0.45 0.50 0.47

Average path length 2.32 2.34 2.35 2.24 2.26 2.25 2.29

Diameter 5 5 5 5 5 5 5

Assortativity -0.33 -0.32 -0.34 -0.35 -0.33 -0.35 -0.34
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networks, showing that low degree nodes have a higher tendency to be connected to

high degree nodes. Finally, it can be seen from the tables that the networks are quite

stable since network statistics show little variation over the period of analysis.

4.2 Banks’ observed characteristics

We select a set of covariates that may have an effect on the link formation process. Some

of these covariates were used by Cocco et al. (2009), Affinito (2012) and Afonso et al.

(2014) to investigate the existence of lending relationships in the interbank market. As

found by these papers we expect that some observable characteristics of banks which

we use as similarity or dissimilarity measures or a complementarity measure on each

pair of institutions will have an effect on the formation of ties.

We use monthly balance sheet information which are published by the Central

Bank of Brazil10 to construct the covariates of bank characteristics. In particular, we

include bank size defined as the natural logarithm (log) of total assets. Bank size is

expected to explain much of the connections in the data since large institutions are

usually in the core of the network acting as money center banks (Craig and von Peter,

2014). In addition, the analysis of the data shows that large banks have more connec-

tions than smaller banks and they lend more than they borrow from other institutions.

We use credit to total assets and securities and derivatives to total assets as measures

of asset structure which reflects banks’ business models. We also include the ratio of

non performing loans (loans that are overdue for more than 90 days) to outstanding

loans and deposits to total assets. The former could be an indication of asset quality

and the latter of funding stability.

Table 2 shows the descriptive statistics of the variables. The mean, standard

deviation and minimum, maximum, 25% and 75% values were computed considering

the whole sample. The heterogeneity in banks’ characteristics is huge. For instance,

the largest bank is 100,000 times bigger than the smallest one in terms of total assets.

In the sample there are a few retail banks with a large base of depositors and many

small banks which serve mainly small business.

As a measure of similarity or complementarity on observed characteristics of banks

i and j, we use the absolute value of the difference between the nodal covariates xit

and xjt, i.e., the vector of covariates xijt is a function of xijt = |xit − xjt|. Hence, this

model is symmetric, i.e., P(yijt = 1|·) = P(yjit = 1|·), which we expect that it can

account for the high reciprocity observed in the network data. We have tested other

10http://www4.bcb.gov.br/top50/port/top50.asp
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Table 2: Summary statistics of covariates from July, 2012 to June, 2013.

Name Definition Obs. Mean St. dev. Min 25% 75% Max

Size log(total assets) 1476 14.675 2.371 9.871 12.903 16.114 21.407

Credit credit/total
assets

1476 0.374 0.281 0 0.102 0.579 0.967

Securities securities and
derivatives/total
assets

1476 0.198 0.213 0 0.057 0.249 0.969

NPL non performing
loans/outstanding
loans

1476 0.022 0.025 0 0.002 0.032 0.292

Deposits deposits/total as-
sets

1476 0.326 0.230 0 0.119 0.502 0.831

functional forms for the dyad covariates as the difference between nodal variables or

the log(xit/xjt), however these models do not fit the data well.

5 Results

5.1 Unsecured network

We analyze the Brazilian unsecured interbank market from July 2012 to June 2013. We

have T = 12 time periods and n = 123 banks which accessed the market during this

period. The networks are constructed based on end-of-month gross exposures which

arise from bank i claims on bank j. Thus, we have twelve 123× 123 binary adjacency

matrices where the edge yijt of the matrix Yt represents a exposure of bank i to bank

j at time t.

We estimate the distance model (Eq. 6) and initialize the latent positions and

parameters of the model as described in Appendix B. The initial values of τ 20 and σ2
0

were set to 0.1906 and 1, respectively. Prior hyperparameters were set to ντ = νσ = 2,

ξ2τ = τ 20 , ξ2σ = 0.001 and (µβ,Σβ) = (0, 2 · I).

One issue in the latent space approach is the selection of the dimension of latent

variables zit. There is not an automatic procedure for learning the dimension of the

latent space but we would like to have a simple graphical representation of it. As visu-

alization of the network is one possible motivation for using the latent space approach

to modeling networks, p is usually set to 2 but higher dimensions may be needed to rep-
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resent the network adequately. Hoff (2011) uses the Deviance Information Criterion11

(Spiegelhalter et al., 2002), which can be computed from the output of the MCMC,

to find the rank for reduced-rank decomposition of an array. Following the same pro-

cedure, we evaluate models having dimensions of p = {2, 3, 4} and select the optimal

dimension based on the computation of the DIC.

The model with 4 dimensions achieved the minimum DIC. We examined the fit

of models having higher dimensions but the results had roughly the same performance

at a cost of estimating n more parameters per additional dimension.

Initially, we fit the model with p = 4 without covariate information on the banks’

characteristics. We run 100,000 iterations of the MCMC algorithm with a burn-in of

20,000 iterations. Visual inspection of the trace-plots shows that the length of the

burn-in is sufficient for convergence. The Geweke (1992)’s convergence diagnostic for

the equality of the means of the first and last part of the chain yielded Z-scores of -1.49,

-1.26, 0.83 for τ 2, σ2 and β0, which indicate convergence. Posterior values of model

parameters τ 2, σ2 and β0 are kept every 20 iterations to reduce autocorrelation of the

samples. The MCMC trace plots, auto-correlation functions and marginal posterior

distributions of τ 2, σ2 and β0 are plotted in Figure 3. The thinning of the Markov

chain was able to reduce the autocorrelation of the τ 2 and the β0 samples. Although

the auto-correlation of σ2 is still high, we initialized the chain from different values and

the results show that it converges.

Next, we investigate how bank characteristics as size, credit, deposits, etc., affect

the probability of a pair of banks forming a connection. We estimate seven different

specifications of the model including the following dyadic covariates: Size, Credit, Se-

curities, NPL and Deposits. The fit of the model’s different specifications is compared

in three ways. First, we assess how well the model explains the data used to estimate

the model. We obtain in-sample link predictions of Y1:T using the posterior means of

model’s parameters and latent positions as inputs for the observation equation and then

we compute the area under receiver operating characteristic curve (AUC). The ROC

curve plots the true positive rate (sensitivity) as a function of the false positive rate

(specificity); the closer AUC is to 1 the better is the fit, whereas random predictions

imply an AUC of 0.5. In addition, we compute the AUC of the out-of-sample predic-

tions of the model. To this end, we compute one step ahead predicted probabilities

11The DIC is intended as a generalization of Akaike’s Information Criterion (AIC) for comparing
complex models in which the number of free parameters is not clearly defined. It is defined as DIC =
D̄ + pD, where D̄ = −2E(log p(y|θ)), pD = D̄ + 2 log p(y|θ̄) is the effective number of parameters and
θ̄ is the posterior mean of parameters.
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Figure 3: MCMC trace plots, auto-correlation functions and posterior distributions of τ2, σ2 and β0
for the unsecured network data. Vertical dashed lines show the mean of the posterior distributions of
the parameters.

and compare the results to the observed network at time T + 1. The out-of-sample

predictions are based on the model estimate using networks observed from July 2012

to June 2013 and compared to the network observed at July 2013. Finally, the fit of

each different specification is assessed based on the computation of the DIC.

In Table 3 we show the coefficients and AUC and DIC values for the model

estimated including a different set of variables. The AUC values for the in-sample

predictions show that with the exception of the models without covariates (AUC value

of 0.8672) and without the covariate Size (AUC value of 0.8729) the models fit the

data quite well. The AUC values are on average 0.92. The AUC values of the out-of-

sample predictions are also high, showing that the model provides good one step ahead

predicted probabilities as well. It is important to note that the improvement of the

model’s fit with the inclusion of other variables in addition to Size is not significant.

The AUC values of the in-sample and out-of-sample predictions for specification 2

which includes only the variable Size and specification 6 which includes all variables

are almost the same. When we compare the DIC values of the models we see that the

model without covariates has the worst fit (the highest DIC value). The difference of the

DIC values are not high, nonetheless the model with all covariates included excepting

Deposits has the lowest DIC.

The estimate for the coefficient of Size in specification 2 is 0.82 (0.02). The

positive value implies that it is more probable for banks to have ties when the difference
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in their sizes is large compared to ties between banks of similar sizes. The coefficients

of other variables (Securities, NPL and Deposits) are negative implying that there is a

preference for ties between banks of similar characteristics. The coefficient of Credit is

negative with the exception of the coefficient estimated in specification 6 although the

highest posterior density interval is between zero. The inclusion of other variables does

not improve the fit of the model significantly so we proceed our analyses based on the

model that uses only covariate information on the size of the banks.

In order to allow the visualization of banks’ positions we show in Figure 4 the

posterior means of banks’ latent positions for the first two dimensions. The figure shows

the positions in two different dates: July 2012 (circles) and June 2013 (triangles). The

six large institutions, which are considered domestic systemically important banks, are

positioned near to each other and close to the center of the figure (green symbols), while

small banks with few connections are on the border.

In Figure 5 we show boxplots of the distances each bank traveled in the latent

space during the eleven month transitions. Sewell and Chen (2015) use the boxplots

of the distance to evaluate the stability of the network. It can be seen that the moves

of banks corresponding to each transition fall in a similar range implying that the

dynamics of the network are nearly constant throughout the twelve months. Transitions

to December 2012 and to January 2013 implied larger alterations in banks’ positions,

which can be explained by changes in the amount lent. The set outlier banks changes

over the transitions but four small foreign banks are outliers in six or more months.

5.2 Repo network

We analyze the data on repo agreements collateralized with government bonds in this

section. The daily data of overnight repo transactions from July 2012 to June 2013 are

aggregated by months resulting in twelve networks (T = 12). We have the same sample

of n = 123 banks which accessed the market during this period resulting in a 123× 123

binary adjacency matrix Yt. Each edge yijt of Yt represents the amount lent by bank

i to bank j during month t.

We follow the same procedure of Section 5.1 to estimate the model. The latent

positions and parameters of the model are initialized as described in Appendix B. The

initial values of τ 20 and σ2
0 were set to 0.3552 and 1, respectively. Prior hyperparameters

were set to ντ = νσ = 2, ξ2τ = τ 20 , ξ2σ = 0.001 and (µβ,Σβ) = (0, 2 · I).

We evaluate models having dimensions of p = {2, 3, 4} and the model with 4

dimensions achieved the minimum DIC. We run 100,000 iterations of the MCMC al-
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Figure 4: Posterior means of latent banks’ positions for unsecured network data. Circles are positions
in July, 2012 and triangles are the positions in June, 2013. Green symbols are the positions of the six
largest banks.

20



Figure 5: Boxplots of the distances traveled by banks in the latent space during twelve months for the
unsecured network data.

gorithm with a burn-in of 20,000 iterations. The Geweke (1992)’s convergence test

for τ 2, σ2 and β0 indicated convergence (Z-scores of 0.02, -0.45, -0.46, respectively).

The MCMC trace plots of posterior values of τ 2, σ2 and β0 after the burn-in and

keeping values at every 20 iterations are given in Figure 6. The figure also shows the

auto-correlation functions and marginal posterior distributions of the parameters. The

thinning was able to reduce the autocorrelation of the samples of the Markov chain.

In order to investigate how bank characteristics affect the probability of a pair

of banks forming a connection, we estimate seven different specifications of the model

including the following dyadic covariates: Size, Credit, Securities, NPL and Deposits.

We compare the AUC of the in-sample and out-of-sample predictions and the DIC of

the model’s different specifications. The out-of-sample predictions are based on the

model estimated using networks observed from July 2012 to June 2013 and compared

to the network observed at July, 2013. In Table 4 we show the coefficients and AUC

and DIC values for the model estimated including different set of variables.

The AUC values for the in-sample predictions of all specifications are high, show-

ing that the models fit the data quite well. The AUC values are approximately 0.94.

The AUC values of the out-of-sample predictions are also high showing that the model

provides good one step ahead predicted probabilities as well. The inclusion of the vari-

able Size has the highest impact on AUC values whereas the model with all variables

but Size has the lowest AUC. The model with only a constant has higher AUC values
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Figure 6: MCMC trace plots, auto-correlation functions and posterior distributions of τ2, σ2 and β0
for the repo network data. Vertical dashed lines show the mean of the posterior distributions of the
parameters.

than this model. The model without covariates and the model with all variables with

the exception of Size have the worst fit (the highest DIC values). The difference of the

DIC values are not high, nonetheless the specification 3 has the lowest DIC.

Similar conclusions about the importance of Size are drawn for the repo network

model. The improvement of the model’s fit with the inclusion of other variables in

addition to Size is not significant. Size coefficients are positive which imply that it is

more probable for banks to have ties when the difference in their sizes is large compared

to ties between banks of similar sizes. The coefficients of the other variables (Credit,

Securities and Deposits) are negative implying that there is a preference for ties between

banks of similar characteristics while the coefficients of NPL are positive.

6 The latent space and model’s goodness-of-fit

We expect that the latent space can account for the unobserved bank attributes that

affect the link formation and improve the model’s fit. Hence, it is important to assess

the fit of the model in which the probability of a tie depends only on observed covariates

xijt and the model in which the latent space is included.

In Table 5 we present the coefficients of the model estimated without the latent
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space. It is a logistic regression model in which the dyads are independent to each other

and dependencies among nodes in the network are not represented. Since the unsecured

and the repo networks have similar characteristics, we present the results only for the

model estimated using the unsecured network data.

The relations between banks are reciprocal and transitive. The average reciprocity

and transitivity of the observed networks are 0.51 and 0.36, respectively. However,

the model without the latent space assumes that a link between a pair of banks is

independent to other links. The estimated coefficients of both models have same signs

with the exception of the constant that controls the overall density of the network.

However, they are very different indicating that it is important to take the latent space

into account. For instance, the coefficients of the model with a constant and variable

Size are -2.95 and 0.25 for the model without the latent space while the coefficients for

the model with the latent space are 0.57 and 0.82.

The model’s goodness of fit is evaluated computing the AUC of the in-sample and

out-of-sample link predictions. To obtain the out-of-sample link predictions we estimate

the model and compute the one step ahead predicted probabilities that are compared

to the network observed in July 2013. The results show that the AUC of the in-sample

and out-of-sample link predictions of the model without the latent space are on average

just 0.70 compared to an AUC of 0.92 for the model with the latent space. Another

fact is that the inclusion of other variables improved the fit of the model without the

latent space.

In Figure 7 we show the ROC curve for the out-sample predictions of the models

with and without the latent space and including only size of the banks as covariate. Al-

though the predictions of the model with the latent space has a high AUC and performs

better than the model without the latent space, it could not outperform the predictions

of the simple method based on YT to predict YT+1. Due to the persistence of the

network links, this naive prediction method obtained higher true positive (sensitivity)

and false positive (1 − specificity) rates than the latent space model.

Then, we evaluate model adequacy by comparing selected network statistics com-

puted for the observed data with distributions induced by the statistical model (see,

e.g., Durante et al., 2017). To perform this graphical test of goodness-of-fit we proceed

as follows: first, we simulate a large number of networks from the estimated model.

For each simulated network we compute a set of graph statistics of interest. Then, the

distributions of graph statistics of the simulated data are compared to the values of the

observed network. If they fall in the tails of the distributions, it is an indication of the
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Figure 7: ROC curve showing the TPR (True Positive Rate) and the FPR (False Positive Rate) of
the models with the latent space (solid line) and without the latent space (dashed line).

lack of fit.

In order to compare simulated networks and the observed one it is important to

choose an appropriate set of graph statistics. Although it may not be immediately clear

what kinds of network properties are relevant, these statistics should match the purpose

of the estimation (Hunter et al., 2008). We chose the following set of statistics which

we believe represent important aspects of the interbank networks’ structure examined

by empirical works: mean and coefficient of variation of the degree distribution, den-

sity, transitivity, reciprocity, avarege path length, assortativity and mean eigenvector

centrality. For instance, we included the mean degree and its coefficient of variation

because degree is a fundamental characteristic of the network. We included density to

check if the model is able to reproduce the fact that interbank networks are sparse.

We added assortativity as an indication of the core-periphery structure in which banks

with few connections are generally connected to highly connected banks (Craig and

von Peter, 2014). Reciprocal transactions (reciprocity) have a significant effect on the

establishment of lending relationships (see, e.g., Affinito, 2012; Bräuning and Fecht,

2016). Transitivity was included because high clustering in financial networks may

make banks more vulnerable to contagion effects (Georg, 2013). Average path length

is related to the closeness and betweenness measures of centrality and has an effect on

the propagation of shocks in the network. Finally, eigenvector centrality has inspired

measures of systemic risk as DebtRank (see, e.g., Battiston et al., 2012).

Figure 8 shows kernel density estimates of selected graph statistics for the sim-
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Figure 8: Kernel density estimates of selected graph statistics based on simulated networks under the
unsecured network model with the latent space (black line) and without the latent space (gray line).
Dashed lines represent the true graph statistics in December, 2016.

ulated data from the model estimated using the unsecured network data. The figure

shows simulated data of the model estimated with the latent space (black lines) and

without it (gray lines) alongside the observed graph statistics (dashed lines). The fig-

ure displays the distributions of graph statistics only for December 2012, although the

model accurately replicates graph statistics of the observed networks for the twelve

months of data.

According to the density distributions, the inclusion of the latent space improves

the model’s fit compared to the model incorporating only information on banks’ ob-

served characteristics. It is possible to see that the model with the latent space generates

datasets Ỹ that resemble the observed dataset in terms of different graph statistics of

interest such as degree distribution, transitivity and average path length. The model

without the latent space is able to generate networks with mean degree similar to the

observed data, however the dispersion of the degree distribution is much smaller than

the true data. Although for some graph statistics like reciprocity and assortativity

the simulated data do not match the observed values, the model which incorporates a

latent space fits the data better than the model without the latent space for all graph

statistics evaluated, especially for transitivity.
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7 Conclusion

In this paper, we have used the dynamic latent space approach of Sewell and Chen

(2015) to model directed networks of monthly interbank exposures. In this model,

the probability of a tie depends on observed characteristics of a pair of banks and

unobserved positions in a low dimension latent space. The model can account for

similarity or dissimilarity on observed characteristics as well as interdependence among

nodes generally present in network data such as reciprocity and transitivity through the

latent space. To model the dynamics of the network it is assumed that the latent node

positions follow a Markov process and the observed graph at time t is conditionally

independent of all other graphs, given the latent positions and dyadic-level covariate

information. Model parameters and latent banks’ positions are estimated within a

Bayesian framework using a standard Metropolis-Hastings algorithm.

We applied this methodology to analyze two different datasets: the unsecured

and the secured (repo) interbank lending networks. Then, we evaluated the fit of a

model in which the probability of a tie depends only on observed covariates and a

second one in which the latent space is included. This was done by comparing some

selected graph statistics calculated for the observed data with distributions obtained

from networks simulated under the fitted model. We showed that the model which

incorporates a latent space is able to capture some features of the dyadic data such as

transitivity. On the other hand, the model in which the probability of forming a tie

depends only on observed characteristics of banks has a poor fit. This model is not able

to represent the dependencies among ties observed in the network and although the

estimated coefficients of both models have same signs, they are very different. Lastly,

the inclusion of other covariates in addition to bank’s asset size had a small impact on

the fit of the model.
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A Appendix: Posterior distributions

We derive the posterior density of Zt for the Bayesian estimation of state-space models

using Gibbs sampler and MH algorithm. See Geweke and Tanizaki (2001) and Sewell

and Chen (2015) for more details. Considering the state-space model of Section 2, the

density of Z1:T and Y1:T given ψ = (τ 2, σ2), β and X1:T is written as:

π (Z1:T ,Y1:T |X1:T ,ψ,β) = π (Z1:T |ψ) π (Y1:T |Z1:T ,X1:T ,β) (9)

where the two densities in the right hand side are represented by:

π (Z1:T |ψ) =
T∏
t=1

π
(
Zt|Z(t−1),ψ

)
(10)
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π (Y1:T |Z1:T ,X1:T ,β) =
T∏
t=1

π (Yt|Zt,X1:T ,β) (11)

The conditional distribution of Z1:T is

π (Z1:T |Y1:T ,X1:T ,ψ,β) =
π (Z1:T ,Y1:T |X1:T ,ψ,β)∫

π (Z1:T ,Y1:T |X1:T ,ψ,β) dZ1:t

(12)

The conditional density function of Zt given Z1:t−1, Zt+1:T , X1:T , ψ and β is

derived from the previous equations and is shown below:

π (Zt|Z1:t−1,Zt+1:T ,Y1:T ,X1:T ,ψ,β) =
π (Z1:T |Y1:T ,X1:T ,ψ,β)∫
π (Z1:T |Y1:T ,X1:T ,ψ,β) dZt

(13)

∝

{
π (Yt|Zt,X1:T ,β)π (Zt|Zt−1,ψ) π (Zt+1|Zt,ψ) if t = 1, . . .T− 1

π (Yt|Zt,X1:T ,β) π (Zt|Zt−1,ψ) if t = T
(14)

Equation 14 gives the conditional distribution of Zt. The conditional distribution

of the row zit is proportional to:

π (zit|Y1:t,Z1:t,X1:t,ψ,β) ∝


(∏

j:j 6=i pijtpjit

)
N (zit|0, τ 2Ip) N

(
zi(t+1)|zit, σ2Ip

)
if t = 1(∏

j:j 6=i pijtpjit

)
N
(
zi(t+1)|zit, σ2Ip

)
N
(
zit|zi(t−1), σ2Ip

)
if 1 < t < T(∏

j:j 6=i pijtpjit

)
N
(
zit|zi(t−1), σ2Ip

)
if t = T

(15)

where pijt
.
= P(yijt = 1|Zt,Xt,β) and ψ = (τ 2, σ2). The posterior density of the model

parameters β
′

follows the form:

π (β|Y1:T ,Z1:T ,X1:T ) ∝

[
T∏
t=1

∏
i 6=j

pijt

]
·MVNd(β|µβ,Σβ). (16)

The parameters τ 2 and σ2 can be Gibbs-sampled and their full conditional distri-

butions are as follows:

π
(
τ 2|Z1

)
∼ IG

(
(ντ + np)/2, ντξ

2
τ/2 +

1

2

n∑
i=1

‖zi1‖2
)

(17)

π
(
σ2|Z1:T

)
∼ IG

(
(νσ + np(T − 1))/2, νσξ

2
σ/2 +

1

2

T∑
t=2

n∑
i=1

∥∥zit − zi(t−1)
∥∥2) (18)
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B Appendix: Initialization

The starting values of the Markov chain are obtained as follows:

1. Latent positions Z1:T : Hoff et al. (2002) use multidimensional scaling (MDS) to

get the initial estimates of the latent positions. The MDS takes the n× n matrix

of distances between objects and returns their positions in a lower dimensional

space for visualization while preserving the distances as well as possible. Sarkar

and Moore (2005) extend the MDS by using it to get the initial estimates of

Z
(1)
1 . Then, for t = 2, . . . , T , they perform the MDS along with the objective of

minimizing
∣∣∣Z(1)

t − Z
(1)
t−1

∣∣∣
F

, where |·|F denotes the Frobenius norm, to avoid that

the node positions change drastically from one time step to another. For the

matrices of distances, Sewell and Chen (2015) suggest the use of the length of the

shortest path from i to j at time t scaled by 1/n. We use to different methods to

obtain a set of dissimilarity measures between pairs of banks: the shortest path

length and the absolute value of the difference of the log of bank assets.

2. Parameters τ 2 and σ2: The initial value for τ 2 was set using the initial estimates

of Z1 and is given by:
1

np

n∑
i=1

‖zi1‖2 . (19)

It is possible to obtain initial estimate of σ2 using the same procedure, but Sewell

and Chen (2015) recommend to set a large initial value for it to allow large

movements of the latent positions at the beginning of iterations and increase the

speed of convergence.

3. Parameter β: Using the initial estimates of the latent positions, starting value of

β is found by numerical maximization of the observation equation (optim function

of the R environment).

C Appendix: Network statistics

In this appendix we describe the network statistics that are used in the paper. The

density of a network is the ratio of the number of existing edges to the number of

possible edges. It is given by:

Den(Gt) =
∑
i,j

yijt
n(n− 1)

.
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Transitivity or clustering coefficient is the probability that adjacent nodes of a

node are also connected:

Cl(Gt) =

∑
i,j 6=i,k 6=j,k 6=i ỹijtỹiktỹjkt∑
i,j 6=i,k 6=j,k 6=i ỹijtỹikt

,

where ỹijt = max {yijt, yjit}. In this case, transitivity is computed ignoring the direction

of the edges. Reciprocity is the proportion of the total number of reciprocated edges to

the total number of edges:

Re(Gt) =

∑
i,j yijtyjit∑
i,j yijt

.

Transitivity can also be calculated for each node, and then averaging across all

nodes. Reciprocity can also be computed as the number of reciprocated dyads divided

by the number of not connected or single connected dyads.

The (geodesic) distance between nodes i and j in a network is the length of the

shortest path between them. This distance, which will be denoted by d(i, j;Gt), is

used to compute the average path length and the diameter. These two measures are

computed considering only directed paths. The average path length is the average

length of the shortest paths between nodes:

d(Gt) =

∑
i,j d(i, j;Gt)
n(n− 1)

,

while the diameter is the length of the longest geodesic in a graph:

D(Gt) = max
i,j

d(i, j;Gt).
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