
Supplementary Material for COFS: COntrollable Furniture layout
Synthesis

Wamiq Reyaz Para

KAUST

Saudi Arabia

Paul Guerrero

Adobe Research

UK

Niloy J. Mitra

University College London and Adobe Research

UK

Peter Wonka

KAUST

Saudi Arabia

ABSTRACT

In this supplementary document accompanying our main submis-

sion, we first include a discussion contextualizing COFS in relation

to concurrent and previous scene generation methods. We then

present some generation results. Following that, we describe our

architecture and experimental setups in greater detail. In particular,

we describe each of the components of our architecture, including

the training protocol, our metrics, and the design of the user study.

Then we provide more details on the sampling strategy that we

employ, followed by a comparison of layout generation times and

parameter counts to existing methods. Additionally, we perform

an ablation study justifying our design choices. We conclude with

additional qualitative results and a table of key notation used in the

main paper.

CCS CONCEPTS

• Computing methodologies→ Shape modeling.

KEYWORDS

Furniture layout, transformers, conditional generation

ACM Reference Format:

Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka. 2023.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis.

In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Conference Proceedings (SIGGRAPH ’23 Conference Proceedings),
August 6–10, 2023, Los Angeles, CA, USA.ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3588432.3591561

1 DISCUSSION

Q:What exactly is the advantage of the proposed method over ATISS?
A: ATISS permutes whole objects during training which makes it

invariant to the order of objects. However, by design, ATISS has a

specific sampling order of attributes (cf. Section 7 and Equation 5).

This leads to certain undesirable attributes:

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference Proceedings
(SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA, USA,
https://doi.org/10.1145/3588432.3591561.

(1) One does not get all conditional distributions of attributes, but

only a few. As an example, one cannot get the probability of an

object given a location - 𝑝 (𝜏 |𝑡) but one can only compute the

probability of a given class being at some location - 𝑝 (𝑡 |𝜏).

(2) A lack of these probabilities means one cannot perform usable

conditioning. During sampling, one cannot ask a single trained

model to perform both these tasks - ‘Given a location, what is

the most likely class here?’ and ‘Given this class, where is the

most likely location?’.

The kinds of conditioning described in (2) regularly arise in the

course of game development. One often needs a large amount

quickly generated layouts with some control over the generated

layout - in some layouts, one might only need to specify the class

of an object. For example, a lever or an item that triggers an action.

In others, we might need to specify more attributes - if one wants

to generate office scenes on a large scale, there would be a lot of

constraints on the angles of chairs and desks (with chairs facing

desks), and chairs in offices often facing the door. While designers

can generate a few examples in reasonable time, generating a few

dozen or so exploratory layouts can often be tedious.

ATISS is incapable of performing this form of conditioning. In COFS,

on the other hand, any subset of the attributes may be masked,

which lets the network infer that attribute, or unmasked which

makes the attribute a constraint.

This also allows to us train only a single model for all modes of

conditioning. Furthermore, our network has fewer parameters and

is faster to sample from (cf. Table 1 main submission).

Q: But ATISS shows results on Object Suggestion at a given location.
A: It is true that ATISS shows results showing generation of objects

at a given location. However, they perform the task in the following

way [Paschalidou et al. 2021]:

... We now test the ability of our model to provide object

suggestions given a scene and user specified location con-

straints. To perform this task we sample objects from our

generative model and accept the ones that fullfill the con-

straints provided by the user...

In practice, this means ATISS performs rejection sampling hoping

that randomly some object lies withing the provided constraints.

https://doi.org/10.1145/3588432.3591561
https://doi.org/10.1145/3588432.3591561

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

In their code, this means they sample a 100 samples before giving

up. Based on our timing results (cf. Table 1, main paper), this is

significantly slower than our method by a few orders of magnitude.

For our COFS results with constrained locations, we simply set

location/translation attribute to the desired value (𝑡 = 𝑡0) on the en-

coder side and keep it unmasked. Then we only have to sample once,

as the distribution being sampled from on the decoder-side is the

distribution 𝑝 (𝑐, 𝑡 = 𝑡0, 𝑒, 𝑟). This makes fine-grained conditioning

more practical.

Q:What is the practical use-case for having complex constraints?
A: As answered in the first question, one practical use is in the

game-development industry where one needs a large number of

layouts with a few constraints on the classes, locations, or their

combinations.

Another scenario is interior-design where clients often want some-
thing to put in a location (implying constraints on location, and

inferring object type and other attributes). Clients oftentimes also

want an object somewhere so that it does not block some other ob-

ject. This implies a constraint on both location and spatial extent.

Rotation constraints might also be required, when clients want a

dominating direction - for example constraining the rotation of a

dining table or couch/sofa, which in turn sets constraints on how

the other furniture can be placed.

Q:What are the different types of position tokens?
A: In our early experiments, we tried a MaskGit [Chang et al. 2022]

style decoder-only architecture. However, MaskGit is trained with

absolute position tokens, a design decision, whichmakes sense in an

image generation setting - when generating faces, one expects eyes

to always be above the nose. But using absolute position encodings

breaks permutation invariance.

So we trained a model with no positional tokens at all. However,

this model performed very poorly on both conditional and uncon-

ditional generation. There are two reasons:

• Without some additional tokens specifying which attributes

belong to and define a single object, the normal attention mech-

anism treats all tokens as the same. While what we want is that

attributes of an object influence its other attributes more. This

problem is present even during training as there is no way of

letting the network know that the ‘next 5’ tokens belong to a

single object as there is no concept of the next or previous.

• Without absolute position encodings, sampling is incredibly

difficult. This has been shown in multiple examples in NLP

literature [Lewis et al. 2020; Radford et al. 2019; Vaswani et al.

2017; Wang and Cho 2019].

We then added tokens which let us specify a single object - the Ob-

ject Index Token, O𝑖 which is added to embeddings of all attributes

that define a single object. This helps the model disambiguate be-

tween tokens that belong to different objects. This model worked

well for tasks like outlier detection but still performed poorly in

tasks which needed inference/generation of more tokens like un-

conditional or unconditional generation. This makes intuitive sense

as for outlier detection, the network, with Object Index Token can

disambiguate between different objects and can tell when an object

is wrong.

However, the tokens within an object are still treated the same, so

we added the Relative Position TokenR𝑖 . This token is shared across
similar attribute types. Within each object, the Relative Position

Token demarcates what the token represents. We have one token

corresponding to each attribute type - 𝜏, 𝑡, 𝑒, 𝑟 (cf. Table 1).

With these two additional tokens, the performance was better

but still not the same quality as ATISS, especially in uncondi-

tional generation. We hypothesized that is in part because Non-

Autoregressive Sampling still does not achieve the same quality as

Autoregressive Sampling.

Hence, we came up with the architecture described in the main

paper - where the encoder has only O𝑖 and R𝑖 . This makes the

encoding a set-based encoding as there is no notion of order. And

we can still get very high quality samples, as the decoder side which

produces the samples is still autoregressive, with the usual Absolute

Posiition Token P𝑖 .

This final model separates the duties of conditioning and generation

between the encoder and the decoder, with the encoder performing

the conditioning and the decoder the generation. The encoding is

set-like, which allows for many forms of fine-grained conditioning.

The decoding is the usual sequence decoding which leads to high-

quality samples.

See also the ablation and discussion in Sec. 5.1 about how using

both encodings on the encoder-side helps the decoder decide where

the attributes must be sampled.

2 ADDITIONAL GENERATION RESULTS

2.1 Qualitative Conditional Generation

Location-conditioned generation: In this section, we show some

qualitative results from our model that other methods cannot gen-

erate. In particular, we show in Fig. 1 how to perform location-

conditioned generation. In order to perform this, we use an empty

scene and encode its boundary representation I with our image

encoder. Then, we fix the locations in the sequence 𝐶 and allow

the model to sample the distribution for the classes. This is useful

as a suggestion module which can be used to provide suggestions

to a user using the system. The results show that COFS learns the

distribution of layouts with nightstands being close to the room

edges on either sides of the beds. Additionally, we see tv-stands
close to the center of the rooms aligned with the locations of beds.

For ease of visualization, instead of showing the whole distribution

over the possible classes, we choose to show the most-likely class.

Distributions under fine-grained conditioning: We now show

how the encoder allows COFS to look-ahead. In Fig. 2, we show the

distributions for two classes - nightstand and tv-stand. In gen-

eral, nightstand are to either sides of the beds. And the tv-stand
opposite the bed. To generate the distributions in COFS, we start

with an empty layout and set the constraint sequence𝐶 , as follows -

object 2 class is set to be bed and it’s location is given. We then sam-

ple from the model autoregressively but setting the object 1 class

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

armchair ceiling lamp double bed nightstand
pendant lamp table tv stand wardrobe

Figure 1: Attribute-level conditioning: For different layouts, we use the location as a constraint, and let the model infer the classes. This is only possible because

of our encoder based architecture. Our model predicts classes that suit the location. ATISS on the other hand, cannot be conditioned in such a manner.

to be either nightstand or tv-stand. This shows the idea behind
having an encoder. With the encoder, we can introduce conditions

that occur in the future. This form of conditioning is otherwise im-

possible in autoregressive models, as they need to respect causality.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

Figure 2: Look-ahead: ATISS cannot condition on tokens yet not generated, hence it has distributions that are flat (uncertain) about the positions of the classes.

In contrast, COFS can look-ahead, hence the probabilities are much sharper as the locations of the generated classes are more constrained by the location of the bed
- shown by the blue circle.

We see this uncertainity particularly in the tv-stand class where
the ATISS model is certain that the class is towards the edges - as

seen by two peaks near the floorplan boundary, but the model is

not sure exactly which boundary. On the other hand, COFS, which

is conditioned on the future location of the bed can ignore the edge

where the bed itself is, as a tv-stand exists opposite to the bed.

However, while this form of conditioning works well in general,

there is no guarantee that the constraints will be satisfied. For exam-

ple, in the L-shaped floorplan (highlighted in red), the distributions

are already very sharp. This is in part because the 3D-FRONT

dataset lays out L-shaped floorplans in a very specific manner -

mostly the bed lying on the same side as the L. This also leads

to failure cases where the model ignores the provided condition,

because of the strong prior from the floorplan boundary.

2.2 Qualitative Unconditional Generation

We show some qualitative examples of unconditional generation in

greater detail in Fig. 4.

3 DETAILS ON ARCHITECTURE AND

EXPERIMENT SETUPS

We base our architecture on ATISS [Paschalidou et al. 2021] in order

to ensure a fair comparison to our closest competitor, using the

same underlying library [Katharopoulos et al. 2020]. Consequently,

most of the building blocks are shared. However, we would like to

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Figure 3: Detailed Embedding Scheme: During training, objects are permuted. The complete sequence is generated by concatenating each object’s attributes. The

pipeline then proceeds embedding each attribute, masking a random ratio of the embeddings and then adding the relative position embeddings. The decoder side

uses the same object permutation and absolute position tokens.

GT ATISS Ours GT ATISS Ours

Figure 4: Unconditional generation. We compare generated scenes from GT, ATISS, and COFS. Both ATISS and COFS are conditioned on the floorplan boundary

(GT). In contrast to ATISS, we can see that our model consistently creates plausible layouts within the floorplan boundary while avoiding unnatural object

intersections. These are results on the challenging Living (column 1) and Dining (column 2) categories. (Best viewed zoomed in, on a computer display)

describe our architecture in greater detail in this section for the

purposes of reproducibility.

Hyperparameters:We implement ourmodels in PyTorch 1.7.0 [Paszke

et al. 2019]. We use standard transformer blocks for the encoder and

decoder except that the ReLU activation is replacedwithGeLU [Hendrycks

and Gimpel 2016]. We use 4 encoder layers and 4 decoder layers,

with a hidden dimension of 256 and 4 attention heads yielding a

query vector of dimension 64. We use a batch size of 128 sequences

and train on a single nVIDIAA100GPUwith theAdamW[Loshchilov

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

and Hutter 2019] optimizer which we found to be more stable than

Adam [Kingma and Ba 2015]. We use weight decay of 0.001 and

clip the gradient norm to be a maximium of 30. We found that the

networks begins to overfit very early, especially for classes other

than Bedroom, because of the scarcity of data. Thus, for training

networks on other classes, we pre-train on the Bedroom class, and

then reuse those weights as initialization. We do not use any form

of learning rate scheduling as our experiments did not suggest sig-

nificant performance gains. We train for 1000 epochs and use early

stopping.

Layout sequence: During training, we construct the sequence 𝑆

corresponding to the layout by arranging the object bounding boxes

in a random order with a permutation 𝜋 and concatenating their

bounding box attributes as individual tokens.

𝑠2 = 𝜏𝜋1 , 𝑠3 = (𝑡𝜋1)𝑥 , 𝑠4 = (𝑡𝜋1)𝑦, 𝑠5 = (𝑡𝜋1)𝑧 , 𝑠6 = (𝑒𝜋1)𝑥 , · · ·
𝑠9 = 𝜏𝜋2 · · ·
𝑠1 = SOS, 𝑠𝑘 = EOS

(1)

where 𝜏𝜋1 and (𝑡𝜋1)𝑥 represent the class and 𝑥−translation of the

first object after permutation, 𝜏𝜋2 represents the class of the second

object after permutation and so on.

Object attributes are always flattened the same way in our imple-

mentation, although in principle the attribute order can itself be

permuted. We use the same attribute order for ease of implementa-

tion.

Embeddings: We described how we generate embeddings for the

tokens in 𝐶 and 𝑆 . We use a learnable matrix 𝐸𝑐𝑙𝑎𝑠𝑠 of dimension

𝑛𝜏 × 256 to encode the type 𝜏𝑖 , with each row corresponding to one

class. We use an additional [MASK] class. For the other attributes
of translation (𝑡𝑖), size (𝑒𝑖) and rotation (𝑟𝑖), we use sinuosoidal

positional encodings [Paschalidou et al. 2021; Vaswani et al. 2017]

with 128 levels (𝐿 = 128). We call these embeddings 𝛾 :

𝛾 (𝑏) =

{
(sin(20𝜋𝑏), cos(20𝜋𝑏), . . . ,
sin(2𝐿−1𝜋𝑏), cos(2𝐿−1𝜋𝑏))

if 𝑏 ∈ {𝑡, 𝑒, 𝑟 }

𝐸𝑐𝑙𝑎𝑠𝑠 [𝜏, :] if 𝑏 ∈ {𝜏}
(2)

For the encoder, the embeddings of R𝑖 are a learned matrix 𝐸𝑟 of

dimension 8 × 256. Each row corresponds to a different type of

attribute - one for type, 3 each for translation and size, and one for

the rotation. The embedding of O𝑖 are again a learned matrix 𝐸𝑜 of

dimension 𝑘 × 256, where 𝑘 is the maximum number of objects. For

the decoder, the embeddings of P𝑖 are also a learned matrix 𝐸𝑝 of

size 𝑛×256. The final embeddings are the sum of the corresponding

embeddings:

𝛾𝑒 (𝑏𝑖) = 𝛾 (𝑏𝑖) + 𝐸𝑟 [R𝑖 , :] + 𝐸𝑜 [O𝑖 , :]
𝛾𝑑 (𝑏𝑖) = 𝛾 (𝑏𝑖) + 𝐸𝑝 [P𝑖 , :]

(3)

where 𝛾𝑒 and 𝛾𝑑 are the encoder and decoder embeddings respec-

tively.

An overview of this process is summarized in Fig. 3.

Optimizer: We use the PyTorch implementation of the AdamW

optimizer with the default parameters for our model with a constant

learning rate of 10
−4

and weight decay set to 10
−3
. We linearly

warmup the learning rate for 2000 steps. In addition, we found

gradient clipping
1
to be necessary to ensure convergence. We set

the maximum gradient norm to be 30. Empirically, we found that

setting the gradient norm to be low led to slower convergence.

We train with a batch size of 128, and train for 1000 epochs. We

perform validation every 5 epochs. We save the model with the

best performance on the validation set. We use random rotation

augmentation by randomly rotating each scene between 0 and 360

degrees.

We wish to clarify that while we used the AdamW optimizer for our

model, we used the vanilla Adam optimizer for ATISS, as described

in [Paschalidou et al. 2021].

Parameter Probability Distributions: We need to predict object at-

tributes from the final transformer decoder outputs. To this end, we

use use MLPs to go from the embedding dimension to the parame-

ters of the distribution describing the attributes. For the class 𝜏 , we

use a linear layer from the embedding dimension to the number of

classes. For the other attributes, we use MLPs with one-input layer

(256, 512), one hidden-layer (512, 256), and one output-layer (256, 30)

and ReLU activations. The output size reflects that we use a mixture

distribution with 10 components, and each component-distribution

is parameterized by 3 values.

Transfer Learning: The datasets Living, Dining, Library are much

smaller compared to the Bedroom dataset. Thus, we use a transfer

learning approach, where we first train on the Bedroom dataset,

and use those weights as an initialization, when training on the

smaller datasets. This reduces the training time significantly, as

well as combats overfitting on the smaller datasets.

We note that the datasets have a slightly different number of classes,

thus any weights associated with the number of classes are not

transferred, but instead sampled from a Normal Distribution, with

mean 0 and standard deviation 0.01.

3.1 Metrics for Unconditional Generation

The evaluation protocol follows ATISS closely, but we describe it

here for the sake of completeness.

To compute the KL-divergence, we simply create a histogram of

object categories in the generated layouts 𝑔𝑖 and the ground-truth

𝑔𝑡𝑖 , where 1 ≤ 𝑖 ≤ 𝑛𝑐𝑙𝑎𝑠𝑠 and use the the formula for the categorical

KL-Divergence:

𝐾𝐿(𝑔𝑡𝑖 ∥𝑔𝑖) =
∑︁
𝑖

𝑔𝑡𝑖 log

(
𝑔𝑡𝑖 + 𝜖
𝑔𝑖 + 𝜖

)
(4)

where 𝜖 = 10
−6

is a small constant for numerical stability.

To compute theClassifier Accuracy Score (CAS), we use anAlexNet [Krizhevsky
2014]

2
model pretrained on ImageNet [Deng et al. 2009] to classify

the orthographic renderings as real or fake.

To compute the FID, we render both the ground-truth and gener-

ated layouts from a top-down view into a 256 × 256 images with

an orthographic camera using Blender v3.1.0 [Community 2018].

1
We use torch.nn.utils.clip_grad_norm_
2torchvision.models.alexnet Weights

https://download.pytorch.org/models/alexnet-owt-7be5be79.pth

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Following ATISS, the FID is computed using the code from Parmar

et al. [Parmar et al. 2022]
3
We will release the .blend-file used for

rendering upon acceptance.

3.2 Additional Details on the Perceptual Study

We conducted a user study to establish the quality improvement

provided by our method over ATISS [Paschalidou et al. 2021]. For

this, we used all the 224 scenes from the test set of Bedroom and

sampled layouts for the ground-truth floorplan boundary, with

both ATISS and COFS. The samples were generated with no post-

processing except object-retrieval.

Each user was presented the layouts generated by both methods in

a side-by-side comparison. The viewer was completely interactive

allowing the user to pan, scroll and zoom. Following ATISS, we

added specific instructions to the user to ignore the texture of the

furniture in the layout and instead focus on the arrangement of

objects. The location (left/right) where the ATISS/COFS layout was

displayed was randomized to avoid bias.

This setup was created to mimic the user study conducted in ATISS

with the added availability of an interactive interface where users

could rotate the scene, pand, and zoom in/out, instead of merely

having a rotating GIF. This interface was repeated for both the

unconditional generation and the attribute-conditioned generation

settings. We received a total of 326 responses.

We reported the results in the main submission, for both realism -

“amongst the two methods, which produced more realistic furniture
layouts?" and error - “for each of the methods, which method had
errors?". Instead of error, we plot (1 − 𝑒𝑟𝑟𝑜𝑟) so that small values

become clearer. We found that users overwhelmingly preferred

COFS generated layouts to ATISS layouts in both the unconditional

and the attribute-conditioned settings, with stronger preference

(about 3% higher) in the attribute-conditioned setting showcasing

the strength of our method in fine-grained conditioning. Further-

more, COFS had a very low error rate of approximately 4% in the

attribute-conditioned setting while the error rate for ATISS was 4×
higher at roughly 16%, again highlighting that our method produces

realistic layouts that can satisfy the input constraints/conditions.

There was no worker compensation involved for the participants

of the study.

4 3D-FRONT DATASET

To the best of our knowledge, the 3D-Front [Fu et al. 2021] dataset

is the largest collection of indoor furniture layouts in the public

domain. Its large scale is obtained, in part, by employing a semi-

automatic pipeline, where a machine-learning system places the

objects roughly, and an optimization step [Weiss et al. 2019] refines

the layouts further to conform to design standards. The only hu-

man involvement is verification that the layouts are valid - do not

have object intersections, objects that block doors, etc. However, in

our exploration, we find several inconsistencies still remain in the

dataset. We mention a few - nightstands intersecting their nearest

beds, nightstands obstructing wardrobes, chairs intersecting their

3
https://github.com/GaParmar/clean-fids, commit fca6718

closest tables, and chairs that face in the wrong directions. We point

out a few of these examples in Fig. 6.

Our method, like other data-driven methods, learns the placement

of objects from data. Thus, any errors in the ground-truth data itself

would also show up in the sampled layouts. This is true, especially

for Bedroom dataset, where the sampled nightstands often end up

intersecting with beds.

5 ABLATIONS

In this section, we justify our design choices by conducting an

ablation study. We train our model under different settings on the

Bedroom dataset, unless specified otherwise, and use the validation

loss, the Negative Log-Likelihood (NLL) as the metric to judge per-

formance. This is because we empirically found the loss to correlate

directly with sample quality. In particular, we ablate the choice of

our position encodings, the number of layers and training with gra-

dient clipping. We also include a discussion of the masking strategy

and transfer learning.

5.1 Position Encodings

We consider the input conditioning to be a set. In contrast, the

output is a sequence. Thus, the model needs additional information

to align the input and the output . We use object index tokens O𝑖 and
the relative position tokens R𝑖 to provide this additional information.

During training, the objects themselves are permuted. The intuition

is that O𝑖 injects information about how early or late each object

must appear in the output sequence. However, this information

alone is not enough to disambiguate where each of the attributes of

the object must appear. Hence, we also addR𝑖 to the object attribute
embeddings. Together, these embeddings localize the position of

the attribute in the output sequence, given the current permutation.

In Fig. 7a, we progressively add our embeddings to the Baseline
model which is the model without any positional encodings on

the encoder. It is clear that using our embeddings helps the model

better align the set-input and the sequence-output. While each of

O𝑖 and R𝑖 roughly align the input and the output, it is only when

using both the embeddings that the model can precisely locate the

actual position of tokens in the output sequence.

5.2 Number of Layers

For all the experiments in the main paper, we used 4 transformer

layers in both the encoder and the decoder. In Fig. 7a, we show how

the model performance scales with scaling the number of layers.

We see that the performance correlates strongly with the number

of layers. However, the performance gains become marginal when

going from 4 to 8 layers or 8 to 16 layers. These larger models take

longer to train and sample from. We believe our 4 layer models

provide a good compromise between performance and speed.

Note that the values in Fig. 7a (Right) are smoothed by an interpo-

lating spline to highlight the general trend.

5.3 Gradient Clipping

We found that the validation loss oscillated considerably during

training. Upon further investigation, we noticed that the gradients

https://github.com/GaParmar/clean-fid

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

Figure 5: User-study interface: We presented participants with a browser based interface that allowed interactivity with the generated layouts.

norms tended to be unusually large, especially for the last layers in

the parameter generating MLPs. Thus, we train the final networks

with gradient clipping. Surprisingly, we found that even without

gradient clipping, if we retain the model with the best NLL on the

validation set, the performance is the same. However, with gradi-

ent clipping, we found the training curves to be much smoother

(Fig. 7c). Consequently, we were able to perform validation at less

frequent intervals to select the best performing model, which sped

up training.

5.4 Masking Strategy

MaskGIT [Chang et al. 2022] find that using a robust masking strat-

egy is important, as the usual 15% masking leads to a distribution

shift between training and sampling. We see in Fig. 7d that masking

with a uniform ratio of 15% leads to better NLL as the network is

more confident in it’s predictions.

But we found out that the we could not sample from such a trained

network, as it would output a stop token after only generating a

few objects, which intuitively makes sense, as the network would

only see a few mask tokens during training.

5.5 Transfer Learning:

We plot the validation loss in Fig. 7b on the Library and Living

datasets under two configurations - No Transfer, where the models

are trained from scratch and Transfer, where the model is first

trained on the Bedroom dataset and these weights are used as

initialization for training on the target dataset. We make a few

observations: 1. The models begin to overfit fairly early. For the

Bedroom dataset, the loss contiues to fall until epoch 1200, but

in the No Transfer configuration for the Library dataset, we see

overfitting at epoch 150 and for the Living dataset, at epoch 600.

We hypothesize that this is due to the small size of these datasets

compared to the Bedroom dataset. 2. TheNo Transfer configuration
has a higher (worse) NLL as compared to the Transfer configuration,
even when trained for longer.

These observations led us to use the Transfer configuration for the

Library, Living and Dining datasets.

6 SAMPLING DETAILS

We highlight the difference between our sampling algorithm and

the standard conditional sampling algorithm in this section. These

differences are highlighted in blue in Alg. 2. The primary difference

is that in our sampling algorithm, a forward pass is made through

the decoder every time a new token is sampled. This token then

replaces the corresponding [MASK] token in both 𝐶 and 𝑆 .

In addition, our algorithm runs for a fixed number of iterations

(until all [MASK] tokens are replaced) compared to the standard

algorithm which terminates when an EOS token is generated. This

is both an advantage and a drawback - it is an advantage in the

sense that a user can implicitly specify the number of objects by

specifying the number of [MASK] tokens. It is a drawback in that

the number of objects must be known before sampling can proceed.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Figure 6: We show a few examples of inconsistencies in the 3D-FRONT dataset. Top: Camera placement in 3D-Front layouts.

Center: The corresponding regions show errors in the ground-truth data. Left: Chairs facing and intersecting a shelf. Right:
Chairs in the correct orientation, but intersecting with a table. Bottom: Some more ground-truth errors. (From Left to Right:)
Intersection. Blocking. Wrong Orientation and Intersection. Wrong Orientation.

6.1 A Sampling Trick

For our outlier detection examples, we use a simple trick - if there is

only a single object to be sampled, we can create a permutation so

that the [MASK] tokens of the object to be sampled are toward the

end of the sequence in𝐶 and 𝑆 . With this permutation we only have

to make forward passes beginning from the first masked token. All

the tokens before the first masked token can simply be copied. This

leads to faster sampling.

In all our experiments, we set the number of objects to be sampled

to be the same as the number of objects in the ground-truth layout

associated with the particular floorplan boundary.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

0 200 400 600 800 1000 1200
Epoch

10

15

20

25

30

35

V
al

lo
ss

Baseline

Ri

Oi

Ri + Oi

0 100 200 300 400 500 600
Epoch

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

V
al

lo
ss

2× 2

4× 4

8× 8

16× 16

(a) Left: Adding additional tokens helps the decoder to better align

the input and the output. Right: Smaller models perform worse, but

addingmore layers does not yield large correspondingly larger gains.

0 20 40 60 80 100
Epoch

10

15

20

25

30

35

V
al

lo
ss

No Transfer

Transfer

0 200 400 600 800 1000 1200
Epoch

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

30.0

V
al

lo
ss

No Transfer

Transfer

(b) Left: Transfering weights on the Library dataset. Right: Trans-

ferring weights on the Living dataset.

0 200 400 600 800 1000 1200
Epoch

8

10

12

14

16

18

20

22

24

V
al

lo
ss

No Clipping

Clipping

0 200 400 600 800 1000 1200
Epoch

8

10

12

14

16

18

20

22

24

V
al

lo
ss

No Clipping

Clipping

(c) Left: Gradient clipping applied on the Dining dataset. Right:

Gradient clipping applied on the Living dataset.

0 200 400 600 800 1000 1200
Epoch

5

10

15

20

25

30

35

V
al

lo
ss

Uniform Masking

Random Masking

(d) Using a uniform masking ratio of 0.15 shows good performance

in terms of NLL, but is unable to sample owing to large distribution

shift between training and inference.

Figure 7: Ablation Studies We show the validation losses for

the different architectural choices we make.

7 ATTRIBUTE-LEVEL CONDITIONING

We first recap the sampling strategy of ATISS.

𝑐\ : R64 → R𝐶 q̂ ↦→ ĉ
(5)

𝑡\ : R64 × R𝐿𝑐 → R3×3×𝐾 (q̂, _(c)) ↦→ t̂
(6)

𝑟\ : R64 × R𝐿𝑐 × R𝐿𝑡 → R1×3×𝐾 (q̂, _(c), 𝛾 (t)) ↦→ r̂
(7)

𝑠\ : R64 × R𝐿𝑐 × R𝐿𝑡 × R𝐿𝑟 → R3×3×𝐾 (q̂, _(c), 𝛾 (t), 𝛾 (r)) ↦→ ŝ
(8)

These equations say the following: From a query vector q̂, the model
predicts a class. From the query and class, the model predicts the
translation. From the query, class, and translation, the model predicts
a rotation, and so on. This means that in ATISS, future attributes
cannot affect the distribution of previous attributes. When condi-

tioning, we can specify the class and then sample a translation, but

we cannot specify a translation and let the model infer the most

likely class for that given translation.

In contrast, COFS has bidirectional attention on the encoder side,

enabling us to specify any subset of object attributes. This is done

by replacing the [MASK] token corresponding to the object attribute
by its actual value in 𝐶 . The copy-paste objective ensures that the

same attribute will be sampled at the desired location by the decoder.

The mask-predict objective trains the model to get the most-likely

attributes for the unspecified tokens.

We describe the process using the following example: We start out

with a layout, shown in Fig. 9a. If we mask out the table in cyan

(Fig. 9b, and sample unconditionally, we get another similar table

(Fig. 9c). We now wish to have some control over the generation

process.

We now mask out a different object - stool in the upper left corner.

We have masked out a single object, thus we have 8 [MASK] tokens.

Our sequences 𝐶 and 𝑆 look like Fig. 9d. If we want to specify the

position of the next object, we simply set the token corresponding

to position-attribute of the next object in 𝐶 - 𝑐𝑖 to the value we

want. We show a few examples of this type of conditioning in Fig. 9f

and Fig. 9g. In the rest of the figures, before beginning sampling,

we set the class tokens. We see that the generated layouts follow

the condition, while also generating plausible layouts, even if the

classes of conditioning objects never occur together. As an example,

there are only 5 examples of bedrooms with two beds, yet our model

is able to reason about the placement of such challenging layouts

in Row 5.

We further see that the model is able to place other objects in

such a manner that the constrained objects can still satisfy their

constraints. In Row 4, we see that when we constrain the angle

of the bed, the other objects move in tandem to create a plausible

layout.

7.1 An illustrative example

In this section, continue the discussion from the main paper and

show how our attribute-level conditioningmight be used in practice.

In Fig. 8 we show some edits that a user might be interested in that

can be performed by our system. We start out with a GT layout

and show the unconditional ATISS generated layout. ATISS does

not offer control over the angles of the generated objects, as it

requires the user to specify the location before generating the angle

attribute.

On the other hand, COFS offers such control. In the following

examples, we retain the class and sizes of the objects, and change

the angles so that the layout is changed. We show that COFS can

target individual attributes and generate the remaining attributes

so that the generated layout is realistic.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Algorithm 1 Standard Conditional Sampling

Require: 𝐶 = (𝑐𝑖)𝑘𝑖=1, 𝑆 = (SOS), 𝑠 = 𝜙
1: 𝐶𝑔 = 𝑔𝜙 ([I,𝐶]) ⊲ Only performed once

2: while 𝑠 ≠ EOS do

3: 𝑠 = SAMPLE(𝑓\ (𝑆<𝑖 ,𝐶𝑔))
4: 𝑆 .append(𝑠) ⊲𝐶 not updated

5: end while

6: return 𝑆

Algorithm 2 Our Sampling

Require: I,𝐶 = ([MASK])𝑘
𝑖=1

, 𝑆 = (SOS)
1: for 𝑖 ← 1 to 𝑘 do

2: 𝐶𝑔 = 𝑔𝜙 ([I,𝐶])
3: 𝑠 = SAMPLE(𝑓\ (𝑆<𝑖 ,𝐶𝑔))
4: 𝐶 [𝑖] = 𝑠, 𝑆 .append(𝑠)
5: end for

6: return 𝑆

(a) This is an unconditional sample

from COFS.

(b) Conditional COFS sample where

we change the orientation of the bed,
nightstands and wardrobe.

(c) Conditional COFS sample where

we change the orientation of the bed
and nightstands, but retain the ori-

entation of the wardrobe.

(d) The GT layout. (e) Layout generated by ATISS,

which does not provide fine-

grained attribute-level control.

Figure 8: We show how COFS can be used to selectively edit parts of a scene. In all attribute-conditioned COFS samples, the

method automatically determines the most realistic translations conditioned on future tokens/attributes/parameters of size

and angle.

8 ADDITIONAL RESULTS

We show additional results on unconditional sampling from our

model in the concluding figures. Our synthesised layouts are novel

and do not merely copy the ground-truth layout. In addition, we

see that our layouts respect the floorplan boundary and mimic

the underlying style of the datasets, in terms of object-object co-

occurrence.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

(a) Perspective view of the par-

tial floorplan

(b) Simplified Orthographic

view

(c) Unconditionally sampled ta-

ble (cyan).

(d) Left: Unconditional Sampling Right: Conditioning by specifying attributes in𝐶 .

(e) We constrain the location of

the object to be sampled. Shown

by the white circle.

(f) Conditionally generated

sample. (Purple)

(g) We now condition the size

to be large. The class automati-

cally changes to satisfy the con-

ditioning input.

(h) Ground-truth Floorplan

(i) We fill the class tokens in

𝐶 to correspond to lamp, bed,
wardrobe, table.

(j) Same conditioning as before,

but now we constrain the angle

of the bed.

(k) Ground-Truth Floorplan (l) We condition to have two

beds angled opposite each other,

and two nightstands.

(m) We change one nightstand

to be a wardrobe.

Figure 9: Different modes of arbitrary conditioning.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
Boundary GT ATISS Ours

Figure 10: Scene generation from scratch: We compare generated scenes from GT, ATISS, and our model on Library class.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka
Boundary GT ATISS Ours

Figure 11: Scene generation from scratch: We compare generated scenes from GT, ATISS, and our model on Bedroom class.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
Boundary GT ATISS Ours

Figure 12: Scene generation from scratch: We compare generated scenes from GT, ATISS, and our model on Dining class.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka
Boundary GT ATISS Ours

Figure 13: Scene generation from scratch: We compare generated scenes from GT, ATISS, and our model on Living class.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Table 1: Summary of key notation used in the paper.

Symbol Description

I A binary image representation of the floorplan boundary.

𝑔𝜙 The Condition Encoder. Implemented as Transformer Encoder with Bidirectional Attention.

𝑓\ The Generative Model. Implemented as Transformer Decoder with Causal Attention.

𝑔I
𝜓

The Boundary Encoder. An untrained ResNet-18 model.

M/[MASK] A learnable token representing a missing value which the Generative Model tries to predict.

𝐶
The sequence of tokens describing the condition.

It is the input to the Condition Encoder.

𝑐𝑖 The 𝑖-th element of 𝐶 .

𝐶𝑔
The output of the last layer of the Condition Encoder.

Encodes conditions from 𝐶 and boundary I.
𝑆 The sequence representing the layout.

𝑆𝐺𝑇 The sequence representation of the Ground Truth layout.

𝑠𝑖 The 𝑖-th element of 𝑆 .

𝑏 Generic placeholder for attribute/property of an object.

𝜏 Type/class attribute. A single integer

𝑡 Translation attribute. A vector with three entries.

𝑒 Extent/size attribute. A vector with three entries

𝑟 Rotation attribute. A vector with a single entry. (rotation around z)

O𝑖
Object Index Token. Each attribute of an objects gets the same token, which helps the network

associate different tokens with different objects.

The number of these tokens is the maximum number of objects in any scene in the dataset..

R𝑖
Relative Position Token. Each attribute of an objects gets a different but shared token, which

helps the network associate different tokens with individual object attributes.

The number of these tokens is the number of attributes (8 = 1𝜏 + 3𝑡 + 3𝑒 + 1𝑟).

P𝑖 Absolute Position Token. Standard positional embedding/token. Each element in the flattened sequence

representation of a scene gets a token.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

REFERENCES

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. 2022. MaskGIT:

Masked Generative Image Transformer. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.

blender.org

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A

large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition. Ieee, 248–255.

Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng,

Chengyue Sun, Rongfei Jia, Binqiang Zhao, and Hao Zhang. 2021. 3D-FRONT:

3D Furnished Rooms with layOuts and semaNTics. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). 10913–10922. https://doi.org/10.1109/

ICCV48922.2021.01075

Dan Hendrycks and Kevin Gimpel. 2016. Gaussian Error Linear Units (GELUs).

arXiv e-prints, Article arXiv:1606.08415 (June 2016), arXiv:1606.08415 pages.

arXiv:1606.08415 [cs.LG]

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. 2020. Transformers are RNNs:

Fast Autoregressive Transformers with Linear Attention. In Proceedings of the
International Conference on Machine Learning (ICML).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.

In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann

LeCun (Eds.). http://arxiv.org/abs/1412.6980

Alex Krizhevsky. 2014. One weird trick for parallelizing convolutional neural networks.

CoRR abs/1404.5997 (2014). arXiv:1404.5997 http://arxiv.org/abs/1404.5997

Mike Lewis, Yinhan Liu, NamanGoyal, Marjan Ghazvininejad, AbdelrahmanMohamed,

Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising

Sequence-to-Sequence Pre-training for Natural Language Generation, Translation,

and Comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online,

7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.

In International Conference on Learning Representations. https://openreview.net/

forum?id=Bkg6RiCqY7

Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. 2022. On Aliased Resizing and

Surprising Subtleties in GAN Evaluation. In CVPR.
Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and

Sanja Fidler. 2021. ATISS: Autoregressive Transformers for Indoor Scene Synthesis.

In Advances in Neural Information Processing Systems (NeurIPS).
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-

maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning

Library. In Advances in Neural Information Processing Systems 32. Curran Associates,

Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-

high-performance-deep-learning-library.pdf

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

2019. Language Models are Unsupervised Multitask Learners. (2019).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In

Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook,

NY, USA, 6000–6010.

Alex Wang and Kyunghyun Cho. 2019. Bert has a mouth, and it must speak: Bert as a

markov random field language model. arXiv preprint arXiv:1902.04094 (2019).
Tomer Weiss, Alan Litteneker, Noah Duncan, Masaki Nakada, Chenfanfu Jiang, Lap-

Fai Yu, and Demetri Terzopoulos. 2019. Fast and Scalable Position-Based Layout

Synthesis. IEEE Transactions on Visualization and Computer Graphics 25, 12 (2019),
3231–3243. https://doi.org/10.1109/TVCG.2018.2866436

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

http://www.blender.org
http://www.blender.org
https://doi.org/10.1109/ICCV48922.2021.01075
https://doi.org/10.1109/ICCV48922.2021.01075
https://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1404.5997
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/TVCG.2018.2866436

	Abstract
	1 Discussion
	2 Additional Generation Results
	2.1 Qualitative Conditional Generation
	2.2 Qualitative Unconditional Generation

	3 Details on Architecture and Experiment Setups
	3.1 Metrics for Unconditional Generation
	3.2 Additional Details on the Perceptual Study

	4 3D-Front Dataset
	5 Ablations
	5.1 Position Encodings
	5.2 Number of Layers
	5.3 Gradient Clipping
	5.4 Masking Strategy
	5.5 Transfer Learning:

	6 Sampling Details
	6.1 A Sampling Trick

	7 Attribute-Level Conditioning
	7.1 An illustrative example

	8 Additional Results
	References

