
Operator-valued Kernels and Control
of Infinite dimensional Dynamic Systems

Pierre-Cyril Aubin-Frankowski and Alain Bensoussan (UT Dallas & CU Hong Kong)

INRIA and Département d’Informatique, École Normale Supérieure, PSL Research University, Paris, France

Conference on Decision and Control, December 2022

1/17



2/17

Motivation: Green kernels to solve PDEs
To solve the heat equation ∂su(s, y) = ∆u(s, y) on Rd with u(t, x ·) = ft(·) for a given t, one
just has to find the Green kernel k(s, t, y , x) s.t.

∂sk(s, t, y , x) = ∆y k(s, t, y , x), ∀s, y and k(t, t, y , x) = δy (x), ∀y

then the solution is obtained through a kernel integral operator u = Kf , i.e.

u(s, y) =
∫

x
k(s, t, y , x)ft(x)dx ,

and we know that actually this is the heat kernel

k(s − t, x , y) = 1

(4π(s − t))
d
2

e−
∥x−y∥2

d
4(s−t) for s ≥ t.

What about ∂su = ∆u + v where v(s, y) is a control? Is it possible to find a notion of Green
kernel for Linear-Quadratic optimal control problems?

Yes! This is what we are going to see in this talk by focusing on the Hilbert space of
controllable trajectories.
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Time-varying infinite-dimensional LQ optimal control
Let (V , ∥·∥V ) and (H, ∥·∥H) be two separable Hilbert spaces, and U a Hilbert space. We
assume that V ⊂ H, with continuous injection. Identifying H to its dual, we have also the
inclusion H ⊂ V ′ with continuous injection, where V ′ is the dual of V .

min
y(·),u(·)

χy0(y(t0)) + g(y(T ))

+ (y(t0), J0y(t0))H +
∫ T

t0
[(M(t)y(t), y(t))H + (N(t)u(t), u(t))U ]dt

s.t. dy
dt + A(t)y(t) = B(t)u(t), a.e. in [t0, T ]

state y(t) ∈ V , control u(t) ∈ U, ∃α > 0, β ∈ R, ∀z ∈ V , ⟨A(t)z , z⟩V ′×V + β∥z∥2H ≥ α∥z∥2V
A(t) ∈ L(V , V ′), B(·) ∈ L∞(t0, T ;L(U, H)), M(·) ∈ L∞(t0, T ;L(H, H)),
N(·) ∈ L∞(t0, T ;L(U, U)), M(t) ≥ 0 and N(t) ≥ ν IdU (ν > 0), J0 ≻ 0,
differentiable terminal cost g : V → R, indicator function χy0 ,

y(·) : [t0, T ]→ V absolutely continuous, N(·)1/2u(·) ∈ L2([t0, T ])
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Let (V , ∥·∥V ) and (H, ∥·∥H) be two separable Hilbert spaces, and U a Hilbert space. We
assume that V ⊂ H, with continuous injection. Identifying H to its dual, we have also the
inclusion H ⊂ V ′ with continuous injection, where V ′ is the dual of V .

min
y(·),u(·)

χy0(y(t0)) + g(y(T )) → L(y(tj)j∈[J])

+ (y(t0), J0y(t0))H +
∫ T

t0
[(M(t)y(t), y(t))H + (N(t)u(t), u(t))U ]dt → ∥y(·)∥2HK

s.t. dy
dt + A(t)y(t) = B(t)u(t), a.e. in [t0, T ] → y(·) ∈ HK

state y(t) ∈ V , control u(t) ∈ U, ∃α > 0, β ∈ R, ∀z ∈ V , ⟨A(t)z , z⟩V ′×V + β∥z∥2H ≥ α∥z∥2V
A(t) ∈ L(V , V ′), B(·) ∈ L∞(t0, T ;L(U, H)), M(·) ∈ L∞(t0, T ;L(H, H)),
N(·) ∈ L∞(t0, T ;L(U, U)), M(t) ≥ 0 and N(t) ≥ ν IdU (ν > 0), J0 ≻ 0,
differentiable terminal cost g : V → R, indicator function χy0 , “loss function“
L : (RQ)J → R ∪ {∞},
y(·) : [t0, T ]→ V absolutely continuous, N(·)1/2u(·) ∈ L2([t0, T ])
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LQ optimal control is a kernel regression!

By rewriting the LQ problem, we can turn it into a loss+regularizer problem in a “machine
learning” (regression) fashion.

min
y(·),u(·)

χy0(y(t0)) + g(y(T ))

+ (y(t0), J0y(t0))H +
∫ T

t0
[(M(t)y(t), y(t))H + (N(t)u(t), u(t))U ]dt

s.t. dy
dt + A(t)y(t) = B(t)u(t), a.e. in [t0, T ]

min
y(·),u(·)

L(y(tj)j∈[J])

+ |y(·)∥2HK

s.t. y(·) ∈ HK

We will see that the regression is over a reproducing kernel Hilbert space (RKHS) HK with a
kernel K depending on [t0, T ], A, B, M, N. The space HK plays the role of a Sobolev space for
LQ optimal control (similarly to Poisson’s equation).
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The classical way of solving LQ optimal control: the Riccati equation
The functional u(·) 7→ J(u(·)) =

∫ T
t0

[(M(t)y(t), y(t))H + (N(t)u(t), u(t))U ]dt is quadratic
and strictly convex. It has a unique minimum u(·), which is computed as follows: the
forward-backward system of equations

dy
dt + A(t)y(t) + B(t)N−1(t)B∗(t)p(t) = 0, y(t0) = y0 (1)
−dp

dt + A∗(t)p(t)−M(t)y(t) = 0, p(T ) = 0,

has a unique solution. Moreover, we have the decoupling property

p(t) = P(t)y(t) (2)

in which P(t) ∈ L(H; H) is symmetric and positive semidefinite. The operator P(t) is defined
by solving a system similar to (1) for each t ∈ [t0, T ] and h ∈ H

dξ
ds + A(s)ξ(s) + B(s)N−1(s)B∗(s)η(s) = 0, ξ(t) = h, (3)
−dη

ds + A∗(s)η(s)−M(s)ξ(s) = 0, η(T ) = 0 ∀s ∈ (t, T ),

and then setting η(t) = P(t)h.
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The classical way of solving LQ optimal control: the Riccati equation
(cont.)

If φ(·) ∈ L2(t0, T ; H) satisfies dφ
dt + A(t)φ(t) ∈ L2(t0, T ; H), then Ψ(t) = P(t)φ(t) satisfies

−dΨ
dt + A∗(t)Ψ(t) ∈ L2(t0, T ; H), and

−dΨ
dt + A∗(t)Ψ(t) + P(t)

[dφ
dt + A(t)φ(t) + B(t)N−1(t)B∗(t)Ψ(t)

]
= M(t)φ(t).

This formally can be written as
−dP

dt + P(t)A(t) + A∗(t)P(t) + P(t)B(t)N−1(t)B∗(t)P(t) = M(t), P(T ) = 0. (4)
The optimal state y(·) for the LQR control problem is solution of the equation

dy
dt + (A(t) + B(t)N−1(t)B∗(t)P(t))y(t) = 0, y(t0) = y0. (5)

and the optimal control u(·) is given by u(t) = −N−1(t)B∗(t)P(t)y(t).
We will use in the sequel the semi-group (a.k.a. evolution family)

∂tΦA,P(t, s) + (A(t) + B(t)N−1(t)B∗(t)P(t))ΦA,P(t, s) = 0, ΦA,P(s, s) = IdH . (6)
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Reproducing kernel Hilbert spaces (RKHS)
A RKHS (Hk , ⟨·, ·⟩Hk ) is a Hilbert space of real-valued functions over a set T if one of the
following equivalent conditions is satisfied

∃ k : T × T → R s.t. kt(·) = k(·, t) ∈ Hk and f (t) = ⟨f (·), kt(·)⟩Hk for all t ∈ T and f ∈ Hk
(reproducing property)

the topology of (Hk , ⟨·, ·⟩Hk ) is stronger than pointwise convergence
i.e. δt : f ∈ Hk 7→ f (t) is continuous for all t ∈ T.

|f (t)− fn(t)| = |⟨f − fn, kt⟩Hk | ≤ ∥f − fn∥Hk∥kt∥Hk = ∥f − fn∥Hk

√
k(t, t)

For T ⊂ Rd , Sobolev spaces Hs(T,R) satisfying s > d/2 are RKHSs.{
H1

0 = {f | f (0) = 0, ∃f ′ ∈ L2(0,∞)}
⟨f , g⟩H1

0
=
∫∞

0 f ′g ′dt ←→ k(t, s) = min(t, s).

Other classical kernels
kGauss(t, s) = exp

(
−∥t − s∥2Rd /(2σ2)

)
kpoly(t, s) = (1 + ⟨t, s⟩Rd )2.
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Two essential tools for computations

Representer Theorem (e.g. [Schölkopf et al., 2001])
Let L : RN → R ∪ {∞}, strictly increasing Ω : R+ → R, and

f̄ ∈ argmin
f ∈Hk

L
(
(f (tn))n∈[N]

)
+ Ω (∥f ∥k)

Then ∃ (an)n∈[N] ∈ RN s.t. f̄ (·) =
∑

n∈[N] ank(·, tn)

↪→ Optimal solutions lie in a finite dimensional subspace of Hk .
Finite number of evaluations =⇒ finite number of coefficients

Kernel trick

⟨
∑

n∈[N]
ank(·, tn),

∑
m∈[M]

bmk(·, sm)⟩Hk =
∑

n∈[N]

∑
m∈[M]

anbmk(tn, sm)

↪→ On this finite dimensional subspace, no need to know (Hk , ⟨·, ·⟩Hk ).
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Vector-valued reproducing kernel Hilbert space (vRKHS)

Let T be a non-empty set. A Hilbert space (HK , ⟨·, ·⟩K ) of V -vector-valued functions defined
on T is a vRKHS if there exists a matrix-valued kernel K : T × T → L(V ′, V ) such that the
reproducing property holds:

K (·, t)p ∈ HK , p⊤f (t) = ⟨f , K (·, t)p⟩K , for t ∈ T, p ∈ V ′, f ∈ HK

There is a one-to-one correspondence between K and (HK , ⟨·, ·⟩K ), so changing T or ⟨·, ·⟩K
changes K . We also have a representer theorem for

J (y(·)) = L((y(tn))N
n=1, ∥y(·)∥2HK ) (7)

for a given extended-valued function L : HN × [0, +∞]→ R ∪ {+∞}.

[Micchelli and Pontil, 2005, Theorem 4.2]
If for every z ∈ HN the function h : ξ ∈ R+ 7→ L(z , ξ) ∈ R+ ∪ {+∞} is strictly increasing and
ŷ(·) ∈ HK minimizes the functional (20), then ŷ(·) =

∑N
n=1 K (·, tn)zn for some {zn}Nn=1 ⊆ H.

In addition, if L is strictly convex, the minimizer is unique.
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Hilbert space of trajectories
We consider the subset H of L2(t0, T ; H) defined as follows

H = {y(·) ∈ L2(t0, T ; H) | dy
dt + A(t)y(t) = B(t)u(t), with u(·) ∈ L2(t0, T ; U)}.

There is not necessarily a unique choice of u(·) for a given y(·) ∈ H (for instance if B(t) is not
injective for some t). Therefore, with each y(·) ∈ H, we associate the control u(·) having
minimal norm based on the pseudoinverse of B(t)⊖ of B(t) for the U-norm
∥ · ∥N(t) := ∥N(t)1/2 · ∥U :

u(t) = B(t)⊖[dy
dt + A(t)y(t)] a.e. in [t0, T ], → we get rid of the control! (8)

whence u(·) minimizes
∫ T

t0
(N(t)u(t), u(t))U dt among the controls admissible for y(·) ∈ H.

We consequently equip H with the norm

∥y(·)∥2H = (y(t0), J0y(t0))H +
∫ T

t0
[(M(t)y(t), y(t))H + (N(t)u(t), u(t))U ]dt,

with J0 s.t. (J0 + P(t0)) invertible. Then H has the structure of a Hilbert space.
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Hilbert space of trajectories is a RKHS with explicit kernel!
H = {y(·) ∈ L2(t0, T ; H) | dy

dt + A(t)y(t) = B(t)u(t), with u(·) ∈ L2(t0, T ; U)}. (9)

∥y(·)∥2H = (y(t0), J0y(t0))H +
∫ T

t0
[(M(t)y(t), y(t))H + (N(t)u(t), u(t))U ]dt, (10)

Theorem (Main result)

We assume the coercivity of the drift, the strong convexity of the objective, and the
invertibility of (J0 + P(t0)) conditions. Set K (s, t) ∈ L(H, H) as

K (s, t) = ΦA,P(s, 0)(J0 + P(t0))−1Φ∗
A,P(t, 0) +

∫ min(s,t)

t0
ΦA,P(s, τ)B(τ)N−1(τ)B∗(τ)Φ∗

A,P(t, τ)dτ.

Then the space (H, ∥·∥H) defined by (9),(10) is a RKHS associated with the kernel K.

where ∂tΦA,P(t, s) + (A(t) + B(t)N -1(t)B∗(t)P(t))ΦA,P(t, s) = 0, ΦA,P(s, s) = IdH .

Proof is mostly integration by parts (if we guess the form of the kernel).
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Decomposition of the kernel into null-control and null-initial condition
From now on, we denote H by HK . We split the kernel K into

K (s, t) = K 0(s, t) + K 1(s, t) (11)

K 0(s, t) := ΦA,P(s, 0)(J0 + P(t0))−1Φ∗
A,P(t, 0), (12)

K 1(s, t) :=
∫ min(s,t)

t0
ΦA,P(s, τ)B(τ)N−1(τ)B∗(τ)Φ∗

A,P(t, τ)dτ.

The kernel K 1 is instrumental for the LQR. Consider the Hilbert subspace of H1
K of functions

with initial value equal to 0, equipped with ∥·∥HK ,

H1
K = {y(·) | dy

dt + A(t)y(t) = B(t)u(t), y(t0) = 0, with u(·) ∈ L2(t0, T ; U)}. (13)

Proposition

The Hilbert space H1
K is a RKHS associated with the operator-valued kernel K 1(s, t).
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Example of heat equation with distributed control
We here focus on bounded B(·) ∈ L∞ and parabolic equations (unbounded/hyperbolic would
require a few changes). Take V = H1(Rd ,R), H = L2(Rd ,R), A(·) ≡ −∆ and B(·) ≡ IdH ,
then the heat equation with distributed control writes as

dy
dt = ∆y(t) + u(t), y(t0) = y0 ∈ H. (14)

As objective, take J0 = λ IdH with λ > 0, M(·) ≡ 0 and N(·) ≡ IdH , thus P(·) ≡ 0, and
ΦA,P(t, s) = ΦA(t, s). In this well-known context, the (integral) operator ΦA(t, s) = e−A(t−s)

is merely the heat semi-group associated to the heat kernel, for t > s,

k(t − s, x , y) = 1
(4π(t − s))d/2

e−∥x−y∥2
d/4(t−s).

Using that A is self-adjoint and the known expression of the Fourier transform of a normalized
Gaussian, one can show that

∫ 2s
0 k(τ, x , y)dτ = k(s2, x , y) and consequently that, for t > s,

K 1(s, t) = 1
2 [
∫ 2s

0 e−Aτ dτ ] ◦ e−A(t−s) is a kernel integral operator with kernel
k1 = k(t − s + s2, x , y)/2. On the other hand K 0(s, t) = e−A(t+s)/λ has for kernel
k0 = k(t + s, x , y)/λ. This allows for explicit handling of the kernel K in applied cases with
various objective functions.
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Solving control problems: Final nonlinear term - Mayer problem
We consider the dynamic system

dy
dt + A(t)y(t) = B(t)u(t), y(t0) = y0. (15)

We want to find the pair y0, u(·) in order to minimize

J(u(·), y0) := g(y(T ))+ 1
2 (y(t0), J0y(t0))H+ 1

2

∫ T

t0

[
(M(t)y(t), y(t))H+(N(t)u(t), u(t))U

]
dt,

where h 7→ g(h) is a Gâteaux differentiable function on H. Using the norm ∥·∥HK defined in
(10), this problem can be formulated as minimizing a functional on HK , namely

J (y(·)) := g(y(T )) + 1
2∥y(·)∥2HK . (16)

If ŷ(·) is a minimizer, it satisfies the Euler equation
(Dg(ŷ(T )), ζ(T ))H + (ŷ(·), ζ(·))HK

= 0, ∀ζ(·) ∈ HK . (17)
By the reproducing property (Dg(ŷ(T )), ζ(T ))H = (K (·, T )Dg(ŷ(T ), ζ(·))HK

and (17) yields
immediately the equation for ŷ(·)

K (·, T )Dg(ŷ(T )) + ŷ(·) = 0. (18)
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Solving control problems: recovering the standard solution of the LQR
We can now go back to the standard LQR problem, where the initial state y0 is known. The
state y(·) can be written as follows y(s) = ΦA(s, 0)y0 + ζ(s) where ζ(·) satisfies

dζ
ds + A(s)ζ(s) = B(s)u(s), ζ(t0) = 0.

Therefore ζ(·) ∈ HK1 . We write y0(s) = ΦA(s, 0)y0 and

J(u(·)) =
∫ T

t0
(M(t)y0(t), y0(t))H dt +

∫ T

t0
(M(t)ζ(t), ζ(t))H dt + 2

∫ T

t0
(M(t)y0(t), ζ(t))H dt

+
∫ T

t0
(N(t)u(t), u(t))U dt.

The problem amounts to minimizing J (ζ(·)) = ∥ζ(·)∥2HK
+ 2

∫ T
t0

(M(t)y0(t), ζ(t))H dt on the
Hilbert space HK1 . Since

J (ζ(·)) = ∥ζ(·)∥2HK + 2
(

ζ(·),
∫ T

t0
K 1(·, t)M(t)y0(t)dt

)
H

, (19)

the minimizer is obtained immediately by the formula ζ̂(s) = −
∫ T

t0
K 1(s, t)M(t)y0(t)dt.
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More general objectives: state constraints and intermediary points

More generally one may consider several constrained time points:

J (y(·)) = L((y(tn))N
n=1, ∥y(·)∥2HK ) (20)

for a given extended-valued function L : HN × [0, +∞]→ R ∪ {+∞}.

[Micchelli and Pontil, 2005, Theorem 4.2]
If for every z ∈ HN the function h : ξ ∈ R+ 7→ L(z , ξ) ∈ R+ ∪ {+∞} is strictly increasing and
ŷ(·) ∈ HK minimizes the functional (20), then ŷ(·) =

∑N
n=1 K (·, tn)zn for some {zn}Nn=1 ⊆ H.

In addition, if L is strictly convex, the minimizer is unique.
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Conclusion
In a nutshell

finding an RKHS somewhere allows for simpler computations

in LQ optimal control, RKHSs come from vector spaces of trajectories

in linear estimation, kernels come from covariances of optimal errors (explains the duality
between estimation & control), The RKHSs underlying linear SDE Estimation, Kalman
filtering and their relation to optimal control, Aubin-Frankowski & Bensoussan, 2022,
Pure and Applied Functional analysis (to appear, available on arXiv)

Objective:
re-read known optimal control/estimation problems through kernel lens

use nonlinear embeddings on the state, apply it to stochastic optimal control, and
optimization over measures

Koopman operator and Model Predictive Control as possible applications

Thank you for your attention!



17/17

References I

Micchelli, C. A. and Pontil, M. (2005).
On learning vector-valued functions.
Neural Computation, 17(1):177–204.

Schölkopf, B., Herbrich, R., and Smola, A. J. (2001).
A generalized representer theorem.
In Computational Learning Theory (CoLT), pages 416–426.


