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Motivation: Green kernels to solve PDEs

To solve the heat equation Osu(s,y) = Au(s,y) on R? with u(t, x-) = f(-) for a given t, one
just has to find the Green kernel k(s, t,y, x) s.t.

Osk(s,t,y,x) = Ayk(s,t,y,x), Vs, y and k(t,t,y,x) = 06,(x), Vy

then the solution is obtained through a kernel integral operator u = Kf, i.e.

u(s.y) = [ K(s.t.yfi(x)ax,
X
and we know that actually this is the heat kernel

1 lx=yli3
k(s —t,x,y) = ——————e 47t fors>t.
(4m(s —t))2
What about 0su = Au + v where v(s,y) is a control? Is it possible to find a notion of Green
kernel for Linear-Quadratic optimal control problems?
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Yes! This is what we are going to see in this talk by focusing on the Hilbert space of
controllable trajectories.



Time-varying infinite-dimensional LQ optimal control

Let (V,|||lv) and (H, ||-||n) be two separable Hilbert spaces, and U a Hilbert space. We
assume that V C H, with continuous injection. Identifying H to its dual, we have also the
inclusion H C V'’ with continuous injection, where V' is the dual of V.

y(‘?}fi} : Xyo(¥(t0)) + &(y(T))

=) () + [ [MOYE: () + (N(Eale), u(0)
s.t. +A() (t) = B(t)u(t), a.e. in[ty, T]

e state y(t) € V, control u(t) € U, Ja > 0,8 € R, Vz € V, (A(t)z, 2) .y + Bllz|3 > oI}
o A(t) e L(V, V"), B(:) € L™(ty, T; L(U, H)), M(-) € L>(to, T; L(H, H)),

N(-) € L>=(ty, T; L(U, U)), M(t) >0 and N(t) > vIdy (v > 0), Jo >~ 0,
o differentiable terminal cost g : V — R, indicator function x,,,

o y(-) : [to, T] = V absolutely continuous, N(-)*/2u(-) € L?([ty, T])
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assume that V C H, with continuous injection. Identifying H to its dual, we have also the
inclusion H C V'’ with continuous injection, where V' is the dual of V.

i Xy () + &((T)) = Ly(t)jern)
+ (y(t0), Joy (o)) + /tOT[(M(t)y(t),y(t))H + (N(t)u(t), u(t))yldt = Iyl
st W A(t)y(t) = B(t)u(t), ae. into, T] — y(-) € Hi

e state y(t) € V, control u(t) € U, Ja > 0,8 € R, Vz € V, (A(t)z, 2) .y + Bllz|3 > oI}
o A(t) e L(V, V"), B(:) € L™(ty, T; L(U, H)), M(-) € L>(to, T; L(H, H)),
N(-) € L>=(ty, T; L(U, U)), M(t) >0 and N(t) > vIdy (v > 0), Jo >~ 0,
o differentiable terminal cost g : V — R, indicator function ¥,,, “loss function”
L:(RP) — RU{cc},
o y(-) : [to, T] = V absolutely continuous, N(-)*/2u(-) € L?([ty, T])



LQ optimal control is a kernel regression!

By rewriting the LQ problem, we can turn it into a loss+regularizer problem in a “machine
learning” (regression) fashion.

i Xyo (¥(t0)) + &(y(T)) min Ly ()jern)
+ (v (t0), Joy (t0)) s + /tT[(I\/I(t)y(t),y(t))H + (N(t)u(t), u(t)) ldt + OB
st P A(Dy(t) = B(t)u(t), ae. in[to, T] st y() € He

We will see that the regression is over a reproducing kernel Hilbert space (RKHS) Hk with a
kernel K depending on [ty, T], A, B, M, N. The space Hy plays the role of a Sobolev space for
LQ optimal control (similarly to Poisson’s equation).



The classical way of solving LQ optimal control: the Riccati equation

The functional u(-) — J(u(:)) = ftOT[(I\/I(t)y(t),y(t))H + (N(t)u(t), u(t)),]dt is quadratic
and strictly convex. It has a unique minimum u(-), which is computed as follows: the
forward-backward system of equations

&+ Alt)y(t) + BIIN T (£)B" (t)p(t) = O, y(to) = yo (1)
—% + A"(t)p(t) — M(t)y(t) = O, p(T) =0,
has a unique solution. Moreover, we have the decoupling property
p(t) = P(t)y(t) (2)

in which P(t) € L(H; H) is symmetric and positive semidefinite. The operator P(t) is defined
by solving a system similar to (1) for each t € [ty, T] and h € H

% TAB)(s) + B(s)N(s)B*(s)n(s) =0, §(t) = h, (3)
— 9L+ A*(s)n(s) — M(s)&(s) =0, n(T)=0Vs e (t, T),
and then setting n(t) = P(t)h.



The classical way of solving LQ optimal control: the Riccati equation
(cont.)

If (-) € L%(to, T; H) satisfies 92 + A(t)p(t) € L2(to, T; H), then W(t) = P(t)p(t) satisfies
— &L+ A*(t)W(t) € L*(to, T; H), and
— % + A (O + PO + AD)e(t) + BN H(1)B*(1)W(2)] = M(t)e(t).
This formally can be written as
—% + P(t)A(t) + A*(t)P(t) + P(t)B(t)N~L(t)B*(t)P(t) = M(t), P(T)=0. (4)
The optimal state y(-) for the LQR control problem is solution of the equation
% + (A1) + B(t)N (1) B () P(£))y(t) = 0, y(t0) = yo. (5)

and the optimal control u(-) is given by u(t) = —N~(t)B*(t)P(t)y(t).
We will use in the sequel the semi-group (a.k.a. evolution family)

OrPap(t,s) + (A(t) + B(t)N1(t)B*(t)P(t))Pap(t,s) =0, ®ap(s,s)=Idy. (6)



Reproducing kernel Hilbert spaces (RKHS)

A RKHS (Hk, (-, <), ) is a Hilbert space of real-valued functions over a set T if one of the
following equivalent conditions is satisfied

Jk:TxT = Rst. ke(-) = k(-, t) € Hi and £(t) = (f(-), ke(+))2, forall t € T and f € H
(reproducing property) J

the topology of (Hx, (-, )2, ) is stronger than pointwise convergence
i.e. 0t : f € Hy — f(t) is continuous for all t € 7. J

£(2) = fa(t)] = [{F = fo, ke)a| < IF = Falla Ml kellze, = 1f = fallo, VK(2, 2)
For T C RY, Sobolev spaces H*(T,R) satisfying s > d/2 are RKHSs.

H} = {f|(0) =0, 3f" € L*(0,00)} |
{ <f0,g>/-/é = [o°f'g'dt +— k(t,s) = min(t,s).

Other classical kernels

Kauss(t,5) = exp (|t = 5[[24/(202))  kpaiy(t,5) = (1 + (£, 5)ga)?.



Two essential tools for computations

Representer Theorem (e.g. [Schdlkopf et al., 2001])

Let L : RV — R U {oo}, strictly increasing Q : R, — R, and

fc inL ((f(tn)), +Q(||f
argrmin L ((#(t0))pep) + 2(17]6)

Then 3 (an)nen € RN st. () = >_ne[N] ank(-, tp)

— Optimal solutions lie in a finite dimensional subspace of Hy.

Finite number of evaluations = finite number of coefficients

<Z a,,k(-,t,,), Z bmk(',sm)>Hk: Z Z anbmk(tmsm)
mée[M]

ne[N] n€[N] me[M]

< On this finite dimensional subspace, no need to know (Hy, (-, )7, )-



Vector-valued reproducing kernel Hilbert space (VRKHS)

Let T be a non-empty set. A Hilbert space (Hk, (:,-)) of V-vector-valued functions defined
on T is a VRKHS if there exists a matrix-valued kernel K : T x T — L(V’, V) such that the
reproducing property holds:

K, typ € Hi, p f(t)=(f,K(t)p)y, fForteT,pe V' fcHg

There is a one-to-one correspondence between K and (Hk, (-, ) ). so changing T or (-,-)
changes K. We also have a representer theorem for

T () = LI (Ea))n1: Iy O)l13e,) (7)
for a given extended-valued function L : HN x [0, +-00] — R U {400}.

[Micchelli and Pontil, 2005, Theorem 4.2]

If for every z € HV the function h: &£ € R, — L(z,€) € R, U {400} is strictly increasing and
9(-) € Hk minimizes the functional (20), then §(-) = >N, K(-, t,)z, for some {z,,},lyz1 C H.
In addition, if L is strictly convex, the minimizer is unique.



Hilbert space of trajectories
We consider the subset H of L2(to, T; H) defined as follows
H={y(") € L*(to, T; H) % + A(t)y(t) = B(t)u(t), with u(-) € L*(to, T; U)}.

There is not necessarily a unique choice of u(-) for a given y(-) € H (for instance if B(t) is not
injective for some t). Therefore, with each y(-) € H, we associate the control u(-) having
minimal norm based on the pseudoinverse of B(t)® of B(t) for the U-norm

I ey = IN(E)Y2 - o
u(t) = B(t)® % + A(t)y(t)] a.e.in[to, T], — we get rid of the control! (8)

whence u(-) minimizes ftOT (N(t)u(t), u(t)), dt among the controls admissible for y(-) € H.
We consequently equip H with the norm

ly( i3 = (v(t0), Joy(t0))y + ' ;OT[(M(t))/(t)vY(t))H + (N()u(t), u(t))yldt,

with Jp s.t. (Jo + P(to)) invertible. Then H has the structure of a Hilbert space.



Hilbert space of trajectories is a RKHS with explicit kernel!
H = {y(") € L(to, Ti H) | G + A(t)y(t) = B(t)u(t), with u() € L*(to, T; U)}. (9)

ly (3 = (v(t0), Joy(t0))y + /tOT[(M(t)Y(t)7Y(t))H + (N(t)u(t), u(t))yldt, (10)

Theorem (Main result)

We assume the coercivity of the drift, the strong convexity of the objective, and the
invertibility of (Jo + P(to)) conditions. Set K(s,t) € L(H, H) as

K(s, ) = Dap(s,0)(Jo + P(t0)) 05 p(£,0) + [ G pl(s, 7)B(r)N=1(r)B* (r) p(t, 7).

to

Then the space (H, ||-||) defined by (9),(10) is a RKHS associated with the kernel K.

where 0t¢A7P(t,S) + (A(t) + B(t)/\/fl(t)B*(t)P(t))q)Ap(t,S) =0, CDA‘p(S, S) =Idy.

Proof is mostly integration by parts (if we guess the form of the kernel).



Decomposition of the kernel into null-control and null-initial condition
From now on, we denote H by Hx. We split the kernel K into

K(s,t) = K%(s, t) + K(s, t) (11)

KO(s, t) := ®a p(s,0)(Jo + P(to)) "} p(t,0), (12)

min(s,t)
Kl(s, t) = / (DA”D(S,T)B(T)Nfl(T)B*(T)(Dj‘,P(t, T)dT.

to

The kernel K1 is instrumental for the LQR. Consider the Hilbert subspace of ’H}( of functions
with initial value equal to 0, equipped with |[|-||4,.,

Hi = {y()| % + A(t)y(t) = B(t)u(t), y(to) = 0, with u() € L?(t, T; U)}. (13)

Proposition

The Hilbert space Hi, is a RKHS associated with the operator-valued kernel K1 (s, t).




Example of heat equation with distributed control

We here focus on bounded B(-) € L* and parabolic equations (unbounded/hyperbolic would
require a few changes). Take V = HY(R? R), H = [2(RY,R), A(-) = —A and B(:) = ldy,
then the heat equation with distributed control writes as

% = Dy(t) + u(t), y(to) = yo € H. (14)

As objective, take Jyp = Aldy W|th A >0, M(-) =0 and N(:) = Idy, thus P(-) =0, and
® 4 p(t,s) = ®a(t,s). In this well-known context, the (integral) operator ®4(t,s) = e A(t=9)
is merely the heat semi-group associated to the heat kernel, for t > s,

1
(4 (t — s))%?
Using that A is self-adjoint and the known expression of the Fourier transform of a normalized
Gaussian, one can show that fozs k(t,x,y)dT = k(s?,x,y) and consequently that, for t > s,
Ki(s,t) = 5[5 25 e=ATd7] 0 e=A(t=5) s a kernel integral operator with kernel
ki = k(t — s+ s, x,y)/2. On the other hand K°(s, t) = e=A(t+5) /X has for kernel

ko = k(t + s,x,y)/A. This allows for explicit handling of the kernel K in applied cases with
various objective functions.

—nx—yuf,/a(tfs)'

k(t—s,x,y) =



Solving control problems: Final nonlinear term - Mayer problem

We consider the dynamic system

&+ A(t)y(t) = B(t)u(t), y(to) = yo. (15)
We want to find the pair yo, u(-) in order to minimize
T
J(u(-), yo) = g(Y(T))Jr%(y(to)Joy(to))HJr%/to [((M(t)y(t), y () y+(N(t)u(t), u(t))y | dt,

where h— g(h) is a Gateaux differentiable function on H. Using the norm ||-||7, defined in
(10), this problem can be formulated as minimizing a functional on Hx, namely

T(y()) = g (T)) + 3lly( 3, (16)
If 9(-) is a minimizer, it satisfies the Euler equation
(Dg(9(T)), <(M)y + (F(), €Dy, = 0, VC() € Hik (17)

¢(
By the reproducing property (Dg(9(T)),¢(T))y = (K(-, T)Dg(9(T), (-))3, and (17) yields
immediately the equation for y(+)

K(-, T)Dg(y(T))+9(:) =0. (18)



Solving control problems: recovering the standard solution of the LQR

We can now go back to the standard LQR problem, where the initial state yp is known. The
state y(-) can be written as follows y(s) = ®a(s,0)yo + ((s) where ((-) satisfies

%+ AS)(s) = B(SJuls), (1) =0
Therefore ((-) € Hy1. We write yp(s) = Pa(s,0)yo and
) = [ MO0+ [ MO, 0Dyt +2 [ (MIE(2). (01

to to
T

+ (N(t)u(t), u(t)), dt.

to

The problem amounts to minimizing 7(¢(-)) = [IC()II3, + 2ft0T (M(t)yo(t),((t))y dt on the
Hilbert space H k1. Since

T = 1€ By +2 (c(-), e f)M(f)YO(t)df> , (19)

H
the minimizer is obtained immediately by the formula ((s) = — ]tOT K (s, t)M(t)yo(t)dt.



More general objectives: state constraints and intermediary points

More generally one may consider several constrained time points:

T () = L (ta))n1s Iy O)ll3e,c) (20)
for a given extended-valued function L : HN x [0, +-00] — R U {4o0}.

[Micchelli and Pontil, 2005, Theorem 4.2]

If for every z € HN the function h: & € R, — L(z,£) € R, U {400} is strictly increasing and
9(-) € Mk minimizes the functional (20), then () = XN 1 K(-, t,)z, for some {z,}V_, C H.
In addition, if L is strictly convex, the minimizer is unique.



Conclusion

In a nutshell
o finding an RKHS somewhere allows for simpler computations

@ in LQ optimal control, RKHSs come from vector spaces of trajectories

@ in linear estimation, kernels come from covariances of optimal errors (explains the duality
between estimation & control), The RKHSs underlying linear SDE Estimation, Kalman
filtering and their relation to optimal control, Aubin-Frankowski & Bensoussan, 2022,
Pure and Applied Functional analysis (to appear, available on arXiv)

Objective:
@ re-read known optimal control/estimation problems through kernel lens

@ use nonlinear embeddings on the state, apply it to stochastic optimal control, and
optimization over measures

@ Koopman operator and Model Predictive Control as possible applications

Thank you for your attention!
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