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Abstract

Combined estimation of state and feed-back gain for optimal load frequency control is proposed. Load frequency
control (LFC) addresses the problem of controlling system frequency in response to disturbance, and is one of main
research areas in power system operation. A well acknowledged solution to this problem is feedback stabilization,
where the Linear Quadratic Regulator (LQR) based controller computes the feedback gain K from the known
system parameters and implements the control, assuming the availability of all the state variables. However, this
approach restricts control to cases where the state variables are readily available and the system parameters are
steady. Alternatively, by estimating the states continuously from available measurements of some of the states, it
can accommodate dynamic changes in the system parameters. The paper proposes the technique of augmenting
the state variables with controller gains. This introduces a non-linearity to the augmented system and thereby the
estimation is performed using an Extended Kalman Filter. This results in producing controller gains that are capable
of controlling the system in response to changes in load demand, system parameter variation and measurement
noise.

Keywords: Load frequency control, State feedback control, Linear quadratic regulator, Extended Kalman filter,
Single area power system

1 Introduction
To control a power system against frequency variation in
response to changes in demand, load frequency control
(LFC) is a well acknowledged strategy. LFC has been ad-
dressed in the literature in great detail [1–7]. By and large,
all the investigations extensively utilize optimal control
theory to develop LFC. However, the difficulty in record-
ing in real time all the state variables from the system re-
quired in the above approaches has been the major
concern for the implementation of the techniques [8]. In
order to alleviate the problems, the reconstruction of all
the states from available outputs and controls using an ob-
server has received significant attention [8, 9].

The design of most observers requires the determin-
ation of observer gains, such that the eigenvalues of the
characteristic equation on the observation error match a
set of pre-assigned values [8]. While the pre-assignment
of the eigenvalues is straightforward for small systems, it
could become a problem for high-order systems. Alter-
natively, continuous estimation of the observer gains,
along with the states from a limited number of measure-
ments can lead to optimal observer gains, capable of sta-
bilizing the system. In this paper, the design and
evaluation of such an observer, which is a state estima-
tor, is presented to minimize the error between the mea-
sured and estimated state variables using the Extended
Kalman Filter (EKF).
The automatic generation control (AGC) or the LFC

problem dates back to 1950’s [1, 10]. With the change of
power system structure and the growth in size and
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complexity of interconnected systems [11], it has be-
come imperative that the total power generation and
load demand match well all the time, and any deviation
in the demand of power could change the operating
point and reflect the disturbance onto the frequency [12,
13]. Stable system frequency and steady interchange of
tie line power with neighboring control areas are the
two main attributes required to be guaranteed by LFC
[4, 11, 14]. In a typical power system, the number of var-
iables influencing the performance can be quite large.
In [15], an improved LFC method is introduced which

has better performance in a multi-area power system in-
cluding HVDC transmission links. The LQR method is
used along with the Kalman Filter because all the system
states may not be available, and the measurements may
not be free from noise. The Kalman Filter estimates the
unmeasurable states and incorporates the optimal gain of
LQR for the control of frequency. Reference [16] presents
the importance of a classical control method such as inte-
gral control in the LFC problem. However, this approach
does not provide adequate control performance when un-
certainties arise in the system parameters.
Implementation of optimal control theory into the con-

trol of power system faces difficulties in the selection of Q
and R matrices for the design of the LQR controller [9].
Typically, feedback gain K is computed from the weight-
ing matrices of the LQR controller. To avoid the difficul-
ties in computing Q and R matrices for LQR controller,
an estimation technique is proposed in [9] which aug-
ments the required feedback gain K, along with the system
state estimation through Extended Kalman Filter method.
For multi-area power systems, the complexity in-

creases and there will be a dimensional expansion of the
dynamic states. Most states may be unmeasurable, and
in such cases, state estimation can be performed with
the Kalman estimator from limited measurements. How-
ever, for control purposes some optimal methods are
preferred. Therefore, the paper proposes a novel tech-
nique of augmenting the states with optimal gains for es-
timation. It also incorporates parameter uncertainties in
the system. On augmenting the gains along with states,
the state space equation becomes nonlinear and thus Ex-
tended Kalman Filter is considered for the estimation in
the new augmented system.
Since real time measurements are always noisy, the

proposed technique is designed in such a way that it can
handle measurement noise variance better than conven-
tional control methods. For the incorporation of noise,
no additional tuning is needed for this technique, while
the computational time required is also comparatively
reduced.
Accordingly, in the sections to follow, control strategy

based on state space theory is used to formulate LFC im-
plementation. The basic idea of state estimation using

EKF is introduced in Section 4, followed by the proposed
LFC. Detailed simulation results are given in Section 6.
These are summarized for three cases with different
noise variances injected to frequency measurements. A
comparative study is also provided with LQR [15] and
integral control [16]. The system used for verification is
discussed in detail in the Appendix.

2 State feedback control
The discrete-time state-space model with p inputs, q
outputs and n state variables is considered as

X kþ1ð Þ ¼ AX kð Þ þ Bu kð Þ ð1Þ
z kð Þ ¼ HTX kð Þ ð2Þ

where.
A is the state matrix of dimension (n × n).
B is the input matrix of dimension (n × p).
H is the output matrix of dimension (q × n).
X(k) is the state vector of dimension n.
u(k) is the input vector of dimension p.
z(k) is the output vector of dimension q.
Assuming that all the states of the system are measur-

able, a state feedback control law uses the current states
of the plant in order to determine the control effort,
u(k) = g(X(k)) [17, 18]. Thus, choosing g(X(k)) to be in the
form g(X(k)) = − KTX(k), where K is the gain matrix of di-
mension (n × p), the closed-loop system dynamics are
given by

X kþ1ð Þ ¼ A − BKT
� �

X kð Þ ð3Þ

Fig. 1 State space implementation of Load
Frequency Control

Fig. 2 State feedback control
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Figure 1 illustrates the scheme. It may be noted from (3)
that K can be used to place the poles of the closed loop
system in order to obtain a desired behavior.

3 Linear quadratic regulator control
Assuming that all the state variables are simultan-
eously measurable, the LQR control strategy forms an
optimal method to compute the value of K, where
the optimal solution is given by minimizing a linear-
quadratic cost function [18]. The LQR approach pre-
sumes that a gain which stabilizes the system is guar-
anteed to offer a valid solution for the problem [19].
Hence, for the dynamic system in (1) and (2), the
control gain for the LQR controller minimizes the
cost function given by [18]

Fig. 3 Single area power system

Fig. 4 Implementation of the proposed LFC in MATLAB / Simulink
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J ¼
Z t

0
XTQX þ uTRu
� �

dt ð4Þ

Following [6], the optimal gain is the solution of the Al-
gebraic Riccati Equation given by

PAþ ATP − PBR − 1 BTP þ Q ¼ 0 ð5Þ

As is clear from (5), the LQR presupposes the ready
availability of Q and R, which are difficult to specify
for a given system. Assuming that all states are meas-
urable, the control strategy u = − KTX places poles to
stabilize the system. In the state feedback design as
outlined above, it is assumed that all state variables
are readily available for feedback. However, in prac-
tice, not all state variables are directly measurable in
the case of large systems while any measurements
would contain noise. Thus, it becomes imperative to
estimate unavailable state variables from the available
measurements of state variables using a state observer
[9, 15, 20]. The present paper proposes to use the
Kalman Estimator for estimating states from the avail-
able measurement of frequency change. It also esti-
mates the gain vector K by augmenting the state
vector with the K vector given by

Xa ¼ X;K½ �T ð6Þ

where Xa represents the states of the new augmented
system.

4 Estimation of augmented state and feedback
gain - extended Kalman filter-based approach
It is also interesting to note that LQR-based computation
of K restricts the control to those cases where the system
parameters are available. Alternatively, by estimating the
states continuously from available measurements of some
of the states, it will be possible to accommodate the dy-
namic changes of the system parameters.
The available measurements are given to the observer,

where the Kalman estimator estimates the states X of the
system [15] along with K, by minimizing the difference be-
tween the measurements and the values computed from
the state estimates. Finally, u = −KTX is used to stabilize
the system. Figure 2 illustrates the approach.

Fig. 5 System response during changes in demand with frequency measurement noise variance of 0.005: a Variation in Δf; b
Frequency response during control action; c Variation of states ΔPv; d Variation of states ΔPm

Table 1 Mean and variance of state variables estimated
corresponding to a measurement noise variance of 0.005

K State variable Mean Variance

[2.999, 1.000, − 80.002] ΔPv 0.0634 4.0817 × 10−4

ΔPm 0.0635 4.2357 × 10−4

Δf −0.0040 1.6709 × 10− 6

K1 2.9999 1.3138 × 10− 9

K2 1.0000 7.0250 × 10− 11

K3 − 80.0002 9.3576 × 10− 9
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4.1 Kalman estimator
The Kalman Filter provides a recursive statistical
framework for estimation and prediction of the state
of a process, given a mathematical model of that
process [21]. The Kalman Filter estimates the
process state by minimizing the mean of the squared
estimate error (z(k) −HTX(k)). In doing so, the goal of
the Kalman Filter is to minimize the estimate error
covariance as

P kð Þ ¼ E Xa kð Þ − X̂a kð Þ
� �

Xa kð Þ − X̂a kð Þ
� �Th i

ð7Þ

The posteriori state estimate X̂aðkjkÞ , based on the past k
observations, gives the mean of the state distribution,
i.e., E(Xa(k)), and is computed as

X̂a kjkð Þ ¼ Xa kjk − 1ð Þ þ Lk zk −HTXa kð Þ
� � ð8Þ

The difference (z(k) −HTX(k)) is called the measurement
innovation, or the residual, and reflects the discrepancy
between predicted measurement and the actual meas-
urement. L(k) is the Kalman gain given by

Fig. 6 a, b and c Variation of states Δf, ΔPv and ΔPm in response to disturbance along with the estimate from the observer; d
Normalized histogram of error in frequency estimate for a measurement noise variance of 0.005

Fig. 7 Comparison of frequency deviation with the application of integral control, LQR and proposed technique for a measurement
noise variance of 0.005
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L kð Þ ¼ P k=k − 1ð ÞHT HP k=k − 1ð ÞHT þ R kð Þ
� � − 1 ð9Þ

where R(k) is the measurement error covariance.
The state covariance P(k/k − 1) is updated as

P k=kð Þ ¼ I − LkHð ÞP k=k − 1ð Þ ð10Þ

5 Proposed load frequency control
As explained in Section 2, the LFC controls the states of
a system based on the measurement of the frequency
change in the power system, considering the changes in
the system dynamics. Though the problem is best ad-
dressed in the context of optimal control theory [18],
limitation in obtaining the accurate real time measure-
ments of all state variables which are required to esti-
mate the unknown states, using the measured frequency
values and the system model [22]. Considering the aug-
mented states, the system model is modified as two sets
of equations shown in (11) and (13), as

X kþ1ð Þ ¼ A − BKT
� �

X kð Þ ð11Þ

where

Xk ¼ ΔPv;ΔPm;Δ f½ � ð12Þ
ΔPv: real power command in p.u.
ΔPm: resulting deviation in mechanical power in p.u.
Δf: the change in frequency in p.u.

K kþ1ð Þ ¼ K kð Þ ð13Þ

zk ¼ 0 0 1 0 0 0½ �Xa kð Þ ¼ HTXa kð Þ ð14Þ
From (11) it can be seen that the system is non-linear

as X and K are now the states of the augmented system
and hence the Extended Kalman Filter (EKF) [23, 24] is
used to compute the updates of the augmented state
vector Xa.
The update equations of EKF [25, 26] are modified ac-

cordingly as (17)–(27). While the measurement Jacobian
H(k) is the same as H given in (14), the Jacobian of the
state model takes the following structure [21], as

(i) (i)The product terms involved in the equation

X kþ1ð Þ ¼ A − BKT
� �

X kð Þ þ Gω kð Þ ð15Þ

(ii) The identity nature of K(k + 1) = Kk

Fk ¼ ∂ F
∂Xa kð Þ

¼ A − BKT
� �

− BXT

0 I

� �
ð16Þ

The instantaneous measurements of Δf from the plant

Table 2 Performance comparison of controllers corresponding
to a measurement noise variance of 0.005

Controller Steady state error (p.u.) Variance Computational
time (s)

Integral −0.007 3.49 × 10−7 2.56377

LQR −3 × 10− 4 2.16 × 10− 8 14.9660

Proposed − 4 × 10− 3 1.67 × 10− 6 1.70527

Fig. 8 System response during changes in demand with frequency measurement noise variance of 0.01. a Variation in Δf,; b
frequency response during control action; c Variation of states ΔPv; d Variation of states ΔPm
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are given to the EKF to estimate the states including the
K, while applying the control of u = − KTX continuously.
State model:

Xk ¼ ΔPv;ΔPm;Δ f½ � ð17Þ

X kþ1ð Þ ¼ A − BKT
� �

Xk ;K kþ1ð Þ ¼ K kð Þ; ð18Þ

Xa kþ1ð Þ ¼ FXa kð Þ þ Gω kð Þ ð19Þ

where Xa = [X, K]T and G is the disturbance vector of di-
mension 2n.
Measurement equation:

zk ¼ 0 0 1 0 0 0½ � Xa kð Þ ¼ HTXak þ νk ð20Þ

Gω(k) accounts for the plant disturbance and νk the
measurement noise.
Correction update:

Xa kjkð Þ ¼ Xa kjk − 1ð Þ þ Lk z kð Þ −H Xa kð Þ
� � ð21Þ

where Lk is given by

Lk ¼ P kjk − 1ð ÞHT HP kjk − 1ð ÞHT þ Rk
� � − 1 ð22Þ

where

Hk ¼ ∂ H
∂ Xa kð Þ

ð23Þ

Rk ¼ E ν2
� � ð24Þ

P kjk − 1ð Þ ¼ FkP k − 1jk − 1ð ÞFT
k þ Q ð25Þ

Fk ¼ ∂ F
∂ Xa kð Þ

ð26Þ

Q ¼ E ω2
� �

GGT ð27Þ

6 Results and discussion
Following the linearized single-area power system out-
lined in [6], the proposed algorithm is simulated in
MATLAB R2018a, where the single-area power system
has the following components:

1. A governor with transfer function 1
ð1þsTg Þ ;

2. Load and machines with transfer function 1
ð2HsþDÞ ;

3. Droop characteristic 1
R ;

4. A non-reheated turbine with transfer function 1
ð1þsTtÞ ;

The components are interconnected as shown in
Fig. 3. R is the speed regulation of the governor, and
Tg and Tt are the governor and turbine time con-
stants, respectively. H is the inertia constant and D
the frequency sensitive load coefficient. ΔPv is the real
power command and ΔPm is the change in mechan-
ical power. Δf is the change in frequency, ΔPL is the
change in load and ΔPref the reference signal.

Table 3 Mean and the variance of state variables estimated
corresponding to a measurement noise variance of 0.01

K State variable Mean Variance

[3.0007, 0.9998, −80.0015] ΔPv 0.0635 3.8767 × 10− 4

ΔPm 0.0636 3.9950 × 10− 4

Δf − 0.0040 1.5726 × 10− 6

K1 3.0004 1.1718 × 10− 7

K2 0.9999 5.4111 × 10− 9

K3 − 80.0002 5.2235 × 10− 7

Fig. 9 a, b and c Variation of states Δf, ΔPv and ΔPm in response to disturbance along with the estimate from the observer (d)
Normalized histogram of error in frequency estimate for a measurement noise variance of 0.01
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As shown in Fig. 3, the measured values of Δf are
provided for the EKF estimator to estimate the
states. The detailed derivation of the state space
model of the single-area power system shown in
Fig. 3 [6] is given in the Appendix. The augmented
linearized discrete model of the single-area power
system [6] is described by

A ¼

0:6041 − 0:0397 − 7:8288
0:1413 0:8161 − 0:7935
0:0008 0:0090 0:9892

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

2
666664

3
777775

ð28Þ

B ¼

0:04250
0:0028
− 0:0100

0
0
0

2
666664

3
777775

ð29Þ

H ¼ 0 0 1 0 0 0½ � ð30Þ

R ¼ 0:001 ð31Þ

Q ¼

0:001 0 0
0 0:001 0
0 0 0:001

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0:001 0 0
0 0:001 0
0 0 0:001

2
666664

3
777775

ð32Þ

The power system model in MATLAB / Simulink is
shown in Fig. 4, in which the MATLAB function “COM-
BINED ESTIMATION” performs a continuous estima-
tion of both the state X and the feedback gain K. For all
simulations explained below, a sudden increase in de-
mand is injected (i) after 30 s and (ii) 500 s from the
commencement of simulation, while each of the in-
creases in demand exists for a duration of 30 s.

6.1 Case I
The noise in the frequency measurement is assumed to
have a variance of 0.005. The corresponding variation in
the frequency output of the power system shown in Fig. 5
confirms that the control is effective to bring down Δf to
a range of ±1.6709 × 10− 6 within 50 s after the change in
demand is removed. Thereafter the system continuously

Fig. 10 Comparison of frequency deviation of the system considered with the application of integral control, LQR and proposed
technique for a measurement noise variance of 0.01

Table 4 Performance comparison of controllers corresponding
to a measurement noise variance of 0.01

Controller Steady state
error (p.u.)

Variance Computational
time (s)

Integral −0.03 1.12 × 10− 6 3.31081

LQR −2 × 10− 4 2.19 × 10− 8 14.0762

Proposed −5 × 10− 3 1.57 × 10− 6 1.3579
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corrects the gain value while estimating the states so
that during the occurrence of a second disturbance at
500 s Δf remains fully within the limits mentioned above.
The mean value and the variance of each of the state
variables after stabilization, for different levels of meas-
urement noise injected, are shown in Table 1. Variations
of other states ΔPv and ΔPm in response to change in
demand are shown in Fig. 5(c) and (d), respectively.
It is interesting to note that ΔPv and ΔPm also increase

initially to meet the increase in demand, but are stabi-
lized after the second spurt in demand to values within
±4.0817 × 10− 4 and ± 4.2357 × 10− 4, respectively.
Estimated values of state variables plotted along with

the measurements from the plant are shown in Fig. 6
(a), (b) and (c). The corresponding normalized histogram
in frequency estimate confirming the merit of estimation
is shown in Fig. 6 (d). Figure 7 compares the control ac-
tion of the proposed technique with conventional inte-
gral control and LQR for the noise variance of 0.005.
With reference to Table 2, it is evident that the proposed
control has better computational time compared to the
integral controller and LQR.

6.2 Case II
The noise in frequency measurement is assumed to have a
variance of 0.01. Here again the system continuously cor-
rects the gain values while estimating the states, so that Δf
stabilizes to ±1.5726 × 10− 6 as shown in Fig. 8.
As in the previous case the continuous control keeps

Δf well within the limits during the second disturbance.
The mean value and the variance of each of the state
variables after stabilization for different levels of meas-
urement noise injected are shown in Table 3.
Variations of other states ΔPv and ΔPm in response to

change in demand are shown in Fig. 8(c) and (d),

respectively. It is noted that ΔPv and ΔPm also increase
initially to meet the increase in demand; but are grad-
ually stabilized to values within ±3.8767 × 10− 4 and ±
3.9950 × 10− 4, respectively after the second spurt in de-
mand. Estimated values of state variables plotted along
with the measurements from the plant are shown in
Fig. 9 (a), (b) and (c). The corresponding normalized
histogram in frequency estimate confirming the merit of
estimation is shown in Fig. 9 (d).
The control actions of the proposed technique and the

conventional integral control and LQR for a noise variance
of 0.01 are compared in Fig. 10. With reference to Table 4,
it is clear that the proposed control has better computa-
tional time compared to the integral controller and LQR.

6.3 Case III
The noise in frequency measurement is assumed to have a
variance of 0.1. Here again the system continuously cor-
rects the gain values while estimating the states, so that Δf
stabilizes to ±1.023× 10− 6 as shown in Fig. 11.
It can be seen that the increase in the measurement

noise affects the variance in the estimate of all the state
variables. However, as in the previous cases, the

Fig. 11 System response during changes in demand and frequency measurement noise variance of 0.1: a Variation in Δf; b
Frequency response during control action; c Variation of states ΔPv; d Variation of states ΔPm

Table 5 Mean and variance of state variables estimated
corresponding to a measurement noise variance of 0.1

K State variable Mean Variance

[2.9943, 0.9940, −80.6344] ΔPv 0.1284 0.5515

ΔPm 0.1282 0.5677

Δf −0.0080 1.023 × 10−6

K1 2.9935 6.9818 × 10−5

K2 0.9941 2.6252 × 10− 5

K3 −80.3066 0.0602
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continuous control keeps Δf well within the limits dur-
ing the second disturbance. The mean value and the
variance of each of the state variables after stabilization
for different levels of measurement noise injected, are
shown in the Table 5, while variations of other states
ΔPv and ΔPm are shown in Fig. 11(c) and (d), re-
spectively. It can be noted that ΔPv and ΔPm also in-
crease initially to meet the increase in demand; but
are stabilized to values within ±0.5515 and ± 0.5677,
respectively after the second spurt in demand. It can
be seen that the states stabilize within a variance of
±σ in all cases, while the gain K shows little variation
from the mean value.
Estimated values of state variables plotted along with

the measurements from the plant are shown in Fig. 12
(a), (b) and (c). The corresponding normalized histogram

in frequency estimate confirming the merit of estimation
is shown in Fig. 12 (d). Figure 13 compares the control
actions of the proposed technique with the conventional
integral control and LQR for a noise variance of 0.1. It is
noted that the corresponding poles placed in the system
also stabilize around mean values with variances as
shown in Table 6.
Table 7 compares these controllers in terms of steady

state error, variance and computational time. It can be
seen that for high measurement noise variance, the pro-
posed technique performs well in comparison to others,
as integral controller and LQR show higher steady state
errors. Since the measurements are corrupted by high
noise variance, additional tuning is required for these
controllers to bring back the offset to zero. This is
avoided with the proposed technique.

Fig. 12 a, b and c Variation of states f, Pv and Pm in response to disturbance along with the estimate from the observer; d
Normalized histogram of error in frequency estimate for a measurement noise variance of 0.1

Fig. 13 Comparison of frequency deviation of the system considered with the application of integral control, LQR and proposed
technique for a measurement noise variance of 0.1
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7 Extension to MIMO systems
The techniques demonstrated so far are directly applicable
for SISO systems, where K will be a (n × 1) vector. However,
for MIMO systems as in the case of a multi-area power sys-
tem, K will be a matrix as shown in (3). By arranging the ele-
ments of the (n × p) matrix as a (np × 1) vector and
augmenting it to the state vector X, the proposed approach
can be extended to MIMO systems. The dimensions of the
matrices such as Fk in (17), P(k|k) in (10) and H in (24) will
increase, but can be handled in the implementation easily by
taking note of the sparse nature of the matrices.

8 Conclusion
This paper has demonstrated a new observer-based ap-
proach for implementing the LFC in power systems. The
EKF based observer continuously estimates the gains and
the states based on the measurement of shift in frequency.
Simulations are carried out in a single-area power system
in MATLAB/SIMULINK, in which the observer imple-
mented as a separate MATLAB code is plugged into the
system to sample the output from the power system and
inject the control back. The performance of the imple-
mented LFC is tested by injecting a sudden change in de-
mand lasting for 30 s. The power system is stabilized
within ±σ after each change in demand, thereby ascertain-
ing the effectiveness of the control strategy.

9 Appendix
In this section, a simplified frequency response model
for a single-area power system with generator, along
with a turbine and governor, is chosen for illustration.
Following [6], the s domain equations for the block

diagram shown are given below:

1þ sTg
� �

Δ Pv sð Þ ¼ Δ Pref −
1
R

Δ f sð Þ ð33Þ

1þ sTtð Þ Δ Pm sð Þ ¼ Δ Pv ð34Þ

2Hsþ Dð Þ Δ f sð Þ ¼ Δ Pm −Δ PL ð35Þ

Solving the first derivative term yields

sΔPv sð Þ ¼ − 1
Tg

ΔPv −
1

RTg
Δ f sð Þ þ 1

Tg
ΔPref sð Þ ð36Þ

sΔPm sð Þ ¼ 1
Tt

ΔPv −
1
Tt

ΔPm ð37Þ

sΔ f sð Þ ¼ 1
2H

Δ Pm −
D
2H

Δ f sð Þ − 1
2H

Δ PL ð38Þ

ΔPv

ΔPm

Δ f

2
4

3
5 ¼

1
Tg

0
− 1
RTg

1
Tt

− 1
Tt

0

0
1
2H

−D
2H

2
666664

3
777775

ΔPv

ΔPm

Δ f

2
4

3
5þ

0
0
− 1
2H

2
64

3
75ΔPL þ

1
Tg
0
0

2
64

3
75ΔPref

ð39Þ

System matrix,

Table 6 Resulting pole placement for the feedback control

Measurement noise
variance = 0.005

Measurement noise
variance = 0.01

Measurement noise
variance = 0.1

Poles Mean Variance Mean Variance Mean Variance

1 −6.0424 1.2244 × 10− 11 − 6.0426 1.2479 × 10− 8 −6.0595 2.0212 × 10− 4

+j4.8839 +j1.6562 × 10− 9 +j4.8845 +j1.4642 × 10− 7 +j4.8720 +j1.1398 × 10− 4

2 −6.0424 1.2244 × 10− 11 − 6.0426 1.2479 × 10− 8 − 6.0595 2.0212 × 10− 4

-j4.8839 +j1.6562 × 10− 9 -j4.8845 +j1.4642 × 10− 7 -j4.8720 +j1.1398 × 10− 4

3 −2.9952 + j0 3.6999 × 10− 11 + j0 −2.9950 + j0 2.2913 × 10− 8 + j0 −2.9917 + j0 2.1535 × 10− 5 + j0

Table 7 Performance comparison of controllers corresponding
to a measurement noise variance of 0.1

Controller Steady state
error (p.u.)

Variance Computational
time (s)

Integral 0.021 1.32 × 10−4 2.5230

LQR ± 0.04 0.0126 13.2677

Proposed −7 × 10− 3 1.57 × 10−6 1.1353

Table 8 System parameters

Variable Value

Turbine Time Constant (Tt), s 0.5

Governor Time Constant (Tg), s 0.2

Inertia Constant (H) 5

Speed Regulation (R), p.u. 0.05

Frequency Sensitive Load Coefficient (D) 0.8

Nominal Frequency (f),Hz 60

Base Power (S), MVA 1000
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A ¼

1
Tg

0
− 1
RTg

1
Tt

− 1
Tt

0

0
1
2H

−D
2H

2
666664

3
777775

ð40Þ

A typical power system with parameters described
above for constructing A and B matrices is shown in
Table 8.
For the purpose of discrete simulations, A and B are

discretized as

A ¼
0:6041 − 0:0397 − 7:8288
0:1413 0:8161 − 0:7935
0:0008 0:0090 0:9892

2
4

3
5 ð41Þ

B ¼
0:04250
0:0028
− 0:0100

2
4

3
5 ð42Þ
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