
Research Article
Rolling Force Prediction of Hot Rolling Based on GA-MELM

Jingyi Liu ,1 Xinxin Liu,2 and Ba Tuan Le 2,3

1College of Sciences, Northeastern University, Shenyang 110819, China
2School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
3NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam

Correspondence should be addressed to Ba Tuan Le; lebatuan@qq.com

Received 18 January 2019; Revised 9 May 2019; Accepted 4 June 2019; Published 24 June 2019

Academic Editor: Mahardhika Pratama

Copyright © 2019 Jingyi Liu et al.This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the hot continuous rolling process, the main factor affecting the actual thickness of strip is the rolling force. The precision of
rolling force calculation is the key to realize accurate on-line control. However, because of the complexity and nonlinearity of the
rolling process, as well as many influencing factors, the theoretical analysis of the traditional rolling force prediction model often
needs to be simplified and hypothesized. This leads to the incompleteness of the mathematical model and the deviation between
the calculated results and the actual working conditions. In this paper, a rolling force predictionmethod based on genetic algorithm
(GA), particle swarm optimization algorithm (PSO), and multiple hidden layer extreme learning machine (MELM) is proposed,
namely, PSO-GA-MELM algorithm, which takes MELM as the basic model for rolling force prediction. In the modeling process,
GA is used to determine the optimal number of hidden layers and the optimal number of hidden nodes, and PSO is used to
search for the optimal input weights and biases. This method avoids the influence of human intervention on the model and saves
the modeling time. This paper takes the actual production data of BaoSteel 2050 production line as experimental data, and the
experimental results indicate that the algorithm can be effectively used to determine the optimal network structure of MELM.The
rolling force prediction model trained by the algorithm has excellent performance in prediction accuracy, computational stability,
and the number of hidden nodes and is applicable to the prediction of rolling force in hot continuous rolling process.

1. Introduction

In the hot continuous rolling production process, the main
factor affecting the actual strip thickness is the rolling force,
and the accurate calculation of the rolling force is the
key to achieve accurate online control [1]. The traditional
calculation of rolling force [2] is carried out by mathematical
model, because the establishment process of mathematical
model itself ignores and simplifies many practical factors
of rolling production site, the error of calculating rolling
force solely by mathematical model is large, which cannot
meet the increasingly accurate rolling requirements. Unlike
traditional methods, the artificial intelligence approach [3]
avoids endless exploration of the deep laws of the rolling
process and instead simulates the human brain to process
what actually happens. It does not start from the basic
principle, but takes the fact and the data as the basis, and
reveals the parameter change rule in the rolling process.

With the development of artificial intelligence, the method
of using artificial neural network to predict rolling force
starts to rise [4–7], and a wave of intellectualized rolling
technology is emerging. A number of examples of applying
the intellectualized methods such as expert system, neural
network and fuzzy logic to rolling process are presented
[8–12]. In previous studies, most rolling force prediction
methods based on neural network adopt BP neural network,
which is based on gradient descent algorithm. All network
parameters need to be updated iteratively, so the learning
speed is slow and it is easy to fall into local optimization.
Moreover, the whole network is also sensitive to the selection
of learning efficiency. These inherent shortcomings have
become the main bottleneck restricting its development.

Extreme learning machine (ELM) [13] is a novel learning
algorithm for the single hidden layer feedforward neural
network (SLFNs). This algorithm is simple and easy to
implement, with fast learning speed and good generalization
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performance. Many experimental studies have shown that
ELM tends to select more hidden layer nodes due to the
random selection strategy of input layer parameters. There-
fore, many researchers are committed to the optimization of
ELM model structure [14–16]. With the emergence of deep
learning theory, a novel neural network based the algorithm
named MELM [17] is presented that, by making the actual
hidden layers output approach the expected hidden layers
output, both the average training and testing performance are
improved to a significant degree. Feng [18] et al. proposed an
EM-ELM algorithm based on error minimization, which can
add new hidden nodes individually or in batches. Lan [19] et
al. further improved it. Rong [20] et al. proposed a pruning
algorithm P-ELM to perform pruning of hidden nodes by
using statistics and information gain. Miche [21] et al. also
proposed another pruning algorithm, OP-ELM. In addition,
Lan [22] et al. proposed a two-stage model construction
method, TS-ELM, for regression problems. Due to the need
of some practical application problems, the research on
online learning and incremental learning algorithm is of great
significance [23–25].The online sequence learning algorithm
(OS-ELM) proposed by Liang [26] et al. can realize the
batch (or single) learning of samples in the training process,
which is suitable for solving some online learning problems.
Literature [27] studied the incremental learning algorithm (I-
ELM) of ELM, in which hidden nodes can be added into the
model one by one in the process of training. While ELM has
been deeply studied and greatly improved in algorithm, it has
been successfully applied in more and more fields due to its
advantages of easy implementation, fast learning speed, and
high precision [28]. At present, algorithms have been widely
used in pattern recognition, regression estimation, and other
aspects [29–31]. Specific application problems include the
following: face recognition [32], time series prediction [33],
soft sensing [34], medical diagnosis [35], communication
technology [36], image processing [37], text classification
[38], economic analysis [39], remote sensing [40], and so
on. The above research work not only solves some important
problems in the algorithm, but also improves its performance
and broadens its research scope.

In many complex practical application problems, due
to the complexity of calculation, we often hope to achieve
the desired effect with fewer hidden nodes, which is the
advantage of MELM network. Obviously, reasonable selec-
tion of MELM network structure is a guarantee to effectively
avoid overfitting and improve generalization performance.
The essence of network structure selection lies in the estab-
lishment of network structure selection criteria. For the
MELM algorithm, it is necessary to study effective network
structure selection criteria. Stability is also a very important
performance index of a learning algorithm, which has a
significant influence on the applicability of an algorithm
in practical problems. In the MELM algorithm, the input
weights and biases are selected randomly, which is crucial for
simplifying the complexity of the model, but this randomness
will inevitably affect the stability of the model and affect
its application in many problems requiring high modeling
accuracy and stability. Therefore, how to improve the stability
of the model is undoubtedly a very important research topic.

When using the MELMmodel to predict the rolling force
in the hot continuous rolling process, in order to realize
the effective design of the MELM network structure, this
paper proposes a multiple hidden layer extreme learning
machine method based on genetic algorithm and particle
swarm optimization algorithm, namely, POS-GA-MELM. In
this method, MELM is used as the basic model for rolling
force prediction, and GA is used to determine the optimal
number of hidden layers and the corresponding optimal
number of hidden nodes in the MELM network, so as to
reasonably select the network structure of the model. PSO
is used to determine the optimal input weights and biases to
enhance the stability of the model. In this paper, the actual
production data of BaoSteel 2050 production line is used as
training and test data to establish a POS-GA-MELM based
rolling force prediction model. The validity of the model will
be verified by a rolling force prediction example in the hot
continuous rolling process.

The rest of this paper is organized as follows: Section 2
presents a brief review of the basic concepts and related work
of the original ELM and the multiple hidden layers ELM,
Section 3 describes the proposed PSO-GA-MELM technique,
Section 4 reports and analyzes the experimental results, and,
finally, Section 5 summarizes key conclusions of the present
study.

2. Brief Review of ELM and MELM

In this section, we shortly introduce the original ELM and
MELM, respectively. In the following, the structure of SLFNs
and the theory of ELM are briefly reviewed.

2.1. Extreme LearningMachine. Extreme learning machine is
an easy to utilize and effective algorithm for the single hidden
layer feedforward neural network; it can adaptively set the
number of hidden nodes and randomly assign for the input
weights and biases, the output weights obtained by the least
square method, and the whole training process completed
through one mathematical change without iteration and gen-
erates a unique optimal solution, with the advantages of fast
learning speed and generalization performance. Compared
with traditional BP algorithm based on gradient descent, the
learning speed of ELM has significantly improved. Specifi-
cally, the ELM learning algorithm mainly has the following
steps:

Algorithm 1 (ELM algorithm). Given 𝑄 training samples
{𝑋, 𝑇} = {𝑥𝑖, 𝑡𝑖} (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑄) and 𝐿 hidden nodes with
activation function 𝑔(𝑥):
(1) Determine the number of hidden nodes, and ran-

domly set the connection weights between the input layer
𝑊 and the hidden layer and the biases of the hidden nodes
𝐵.
(2) Select an infinitely differentiable function as the

activation function of hidden nodes, and then calculate the
hidden layer output matrix𝐻 = 𝑔(𝑊𝑋 + 𝐵).
(3) Calculate the weights between the hidden layer and

the output layer using the least-square method 𝛽 = 𝐻+𝑇.
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Figure 1: The workflow of the MELM approach.
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Figure 2: The structure of the MELM approach.

2.2. Multiple Hidden Layer Extreme Learning Machine. The
structure of MELM neural network is composed of input
layer, multiple hidden layers (the number of hidden layers is
greater than 3), and output layer. Meanwhile, MELMnetwork
inherits the theory of ELMnetwork randomly initializing the
weights matrix between the input layer and the first hidden
layer and the biases vector of the first hidden layer. Bymaking
the actual hidden output approach the expected hidden layer
output, the parameters of the remaining hidden layers (the
weights matrix and the biases vector) are obtained, and a
new network with multiple hidden layers is constructed. In
the following, we take the ELM network with three hidden
layers as an example to introduce the MELM network. The
workflow of the MELM architecture is illustrated in Figure 1,
and the MELM network structure is depicted in Figure 2.
The implementation of the MELM proceeds according to the
following steps.

Algorithm 2 (MELM algorithm). For a given training data
set {𝑋, 𝑇} = {𝑥𝑖, 𝑡𝑖} (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑄), the number of hidden
nodes 𝐿, and activation function 𝑔(𝑥):
(1) Assign the connection weights matrix between the

input layer and the first hidden layer𝑊 and the biases matrix

of the first hidden layer 𝐵 randomly. For simplicity, defined
the augmented matrix𝑊𝐼𝐸 = [𝐵 𝑊], 𝑋𝐸 = [1 𝑋]

𝑇.
(2) Calculate the first hidden layer output matrix 𝐻 =
𝑔(𝑊𝐼𝐸𝑋𝐸).
(3) Calculate the output weights matrix between the

second hidden layer and the output layer 𝛽.
(a) If the number of training samples is greater than the

number of hidden nodes, we can obtain the output weights
matrix 𝛽 = (𝐼/𝜆 + 𝐻𝑇𝐻)−1𝐻𝑇𝑇;

(b) If the number of training samples is less than the
number of hidden nodes, we can obtain the output weights
matrix = 𝐻𝑇(𝐼/𝜆 + 𝐻𝐻𝑇)−1𝑇;

(c) If the number of training samples is equal to the
number of hidden nodes, we can obtain the output weights
matrix 𝛽 = 𝐻+𝑇.
(4) Calculate the expected output matrix of the second

hidden layer𝐻1∗ = 𝑇𝛽
+.

(5)Determine the parameters of the second hidden layer
𝑊𝐻𝐸, that is the connection weights matrix between the first
and second hidden layer 𝑊1 and the biases of the second
hidden layer 𝐵1, where 𝑊𝐻𝐸 = [𝐵1 𝑊1] = 𝑔

−1(𝐻1∗)𝐻
+
𝐸 ,
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the matrix 𝐻𝐸 = [1 𝐻]
𝑇, the natation 𝑔−1(𝑥) represent the

inverse of the activation function 𝑔(𝑥).
(6) Obtain the actual output of the second hidden layer
𝐻2 = 𝑔(𝑊𝐻𝐸𝐻𝐸).
(7) Recalculate the weights matrix between the second

hidden layer and the output layer 𝛽𝑛𝑒𝑤.
(a) If the number of training samples is greater than the

number of hidden nodes, we can obtain the output weights
matrix 𝛽𝑛𝑒𝑤 = (𝐼/𝜆 + 𝐻2

𝑇𝐻2)
−1𝐻2
𝑇𝑇;

(b) If the number of training samples is less than the
number of hidden nodes, we can obtain the output weights
matrix 𝛽𝑛𝑒𝑤 = 𝐻2

𝑇(𝐼/𝜆 + 𝐻2𝐻2
𝑇)−1𝑇;

(c) If the number of training samples is equal to the
number of hidden nodes, we can obtain the output weights
matrix 𝛽𝑛𝑒𝑤 = 𝐻2

+𝑇.
(8) Calculate the expected output matrix of the third

hidden layer𝐻3∗ = 𝑇𝛽new
+.

(9) Determine the parameters of the third hidden layer
𝑊𝐻𝐸1 that is the connection weights matrix between the
second and third hidden layer𝑊2 and the biases of the third
hidden layer 𝐵2, where 𝑊𝐻𝐸1 = [𝐵2 𝑊2] = 𝑔

−1(𝐻3∗)𝐻
+
𝐸1,

the matrix 𝐻𝐸1 = [1 𝐻2]
𝑇, the natation 𝑔−1(𝑥) denote the

inverse of the activation function 𝑔(𝑥).
(10) Obtain the actual output of the third hidden layer
𝐻4 = 𝑔(𝑊𝐻𝐸1𝐻𝐸1).
(11) Recalculate the weights matrix between the third

hidden layer and the output layer 𝛽𝑛𝑒𝑤1.
(a) If the number of training samples is greater than the

number of hidden nodes, we can obtain the output weights
matrix 𝛽𝑛𝑒𝑤1 = (𝐼/𝜆 + 𝐻4

𝑇𝐻4)
−1𝐻4
𝑇𝑇;

(b) If the number of training samples is less than the
number of hidden nodes, we can obtain the output weights
matrix 𝛽𝑛𝑒𝑤1 = 𝐻4

𝑇(𝐼/𝜆 + 𝐻4𝐻4
𝑇)−1𝑇;

(c) If the number of training samples is equal to the
number of hidden nodes, we can obtain the output weights
matrix 𝛽𝑛𝑒𝑤1 = 𝐻4

+𝑇
(12) Obtain the final output of MELM network 𝑓(𝑥) =
𝐻4𝛽𝑛𝑒𝑤1.

3. Proposed PSO-GA-MELM

In the MELM network, the number of hidden layers and
the number of hidden layer nodes need to be predetermined
artificially. The selection of appropriate network structure has
a direct impact on the performance of the model. Too many
hidden layers and hidden nodes will increase the structural
complexity of the model, and too few hidden layers and
hidden nodes will not reach the optimal accuracy of the
model. Up to now, there is no established theory on how to
select the number of hidden layers and the number of hidden
nodes. In most cases, it is based on the experience of scholars
themselves or through a large number of experiments to
determine the appropriate network structure. However, for
the MELM model, if the appropriate network structure is
still determined through experiments, it will be very time-
consuming. In addition, in order to simplify the model, the
inputweights and biases of the first hidden layer in theMELM
algorithm are selected randomly, which will greatly affect the

stability of the model. Therefore, this paper introduces GA
and PSO algorithm into the framework of MELM and puts
forward a novel learning algorithm named PSO-GA-MELM.
The workflow of the proposed PSO-GA-MELM technique is
demonstrated in Figure 3. In the modeling process of PSO-
GA-MELM, GA is used to determine the optimal number
of hidden layers and the corresponding optimal number of
hidden nodes, and PSO is used to determine the optimal
input weights and biases of the first hidden layer, so as to
select the model network structure reasonably and enhance
the stability of the model.

Genetic algorithm [41] is a parallel stochastic search
optimization algorithm that simulates the geneticmechanism
and biological evolution in nature. It introduces the biological
evolution principle of survival of the fittest in nature into the
coding tandem population formed by optimization param-
eters and screens the individuals according to the selected
fitness function and through the selection, crossover, and
variation in heredity, so that the individuals with good fitness
are retained and those with poor fitness are eliminated. The
new population not only inherited the information of the
previous generation, but also is superior to the previous
generation. In this way, the cycle is repeated until the
conditions are met. GA is characterized by efficient heuristic
search and parallel computation and has been widely used
in function optimization, combination optimization, and
production scheduling.

PSO is a swarm intelligence optimization algorithm [42],
in which each particle represents a potential solution. The
velocity of particles determines the direction and distance of
particle movement, and the velocity is dynamically adjusted
according to the movement experience of particle itself
and other particles, so as to achieve optimization in the
solvable space. In order to ensure the prediction accuracy of
the model, after determining the structure of MELM with
GA, PSO is used to optimize the input weights and biases.
According to the above discussion, the proposed PSO-GA-
MELM can be summarized as follows.

Algorithm 3 (proposed algorithm PSO-GA-MELM). (1)
Determine the optimal inputweightsmatrix and biases vector
of the ELM model with different hidden nodes.
(2) Initialize the GA algorithm, determine the individual

length, the size of the population, the number of iterations,
the crossover probability and the mutation probability, and
randomly generate the binary population.
(3) Convert the binary population to the decimal system

for ELMmodeling.The inputweights and biases are no longer
generated randomly, but are directly called from the results
saved in step 1 according to the number of hidden nodes.
(4) Calculate the fitness value of each individual to find

the optimal individual. In the step, the fitness value of the
individual is themean absolute error of the prediction model,
and the individual with the smallest error is the optimal
individual.
(5) Implement selection operation, crossover operation,

and mutation operation successively.
(6) Determine whether the maximum number of itera-

tions is reached. If the maximum number of iterations is not
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Figure 3: The workflow of the proposed PSO-GA-MELM approach.

reached, return to step (3); otherwise, the optimal MELM
network structure is obtained.
(7)Determine the number of parameters to be optimized

for PSO.
(8) Assign and initialize the basic parameters, including

the number of population iterations, the population size,
the maximum and minimum of the individual, and the
maximum and minimum of the speed.
(9) Calculate the fitness value of the particles and search

for the individual extremum and the population extremum.
In this step, the fitness value of the particles is the reciprocal of
the rolling force prediction error.The higher the fitness value
is, the better the particles are.
(10) Update the velocity and position of the particle

according to the following formula. The velocity update for-
mula is𝑉𝑘+1𝑖𝑑 = 0.8𝑉

𝑘
𝑖𝑑+1.49445𝑟1(𝑃

𝑘
𝑖𝑑−𝑋
𝑘
𝑖𝑑)+1.49445𝑟2(𝑃

𝑘
𝑔𝑑−

𝑋𝑘𝑖𝑑), the position update formula is 𝑋𝑘+1𝑖𝑑 = 𝑋
𝑘
𝑖𝑑 + 𝑉

𝑘+1
𝑖𝑑 ,

where 𝑘 is the number of current iterations, 𝑉𝑖𝑑 is the particle
velocity, 𝑟1 and 𝑟2 are random numbers distributed between
[0, 1].
(11) Calculate the fitness value of the particle, update

the individual extremum and the population extremum
according to the fitness value of the particle.
(12) Determine whether the maximum number of iter-

ations is reached. If the maximum number of iterations is
not reached, return to step (10); otherwise, the optimization
process is completed, and the optimal input weights and
biases are obtained.

4. Experiments and Results

Extensive experiments were conducted to evaluate the pre-
diction accuracy of the proposed PSO-GA-MELM, which are
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further compared with PSO-ELM and deep belief networks
(DBN) [43].

4.1. Acquisition of Training Samples. This paper utilizes the
actual production data of BaoSteel 2050 production line as
the experimental data. The production line of BaoSteel 2050
is mainly used to roll the slabs after rough rolling into strips
with required thickness. First of all, we briefly introduce the
technological process of the hot rolling mill.

The slabs delivered by the blooming mill and continuous
casting are heated by a step-type continuous heating furnace.
After removing phosphorus with high pressure water and
controlling the width and shape of the slab with strong
roller, the slab is sent to no.1-4 roughing mill to be rolled
into intermediate billet. Thus, forming a three-quarters hot
continuous rolling mode with the finishing mill behind. The
roughing mill is numbered as 1-4 according to the order in
which the slabs enter. Among them, no. 1 roughing mill is
two-high reversible mill, no. 2 mill is four-high reversible
mill, and nos. 3 and 4 roughing mill are four-high irreversible
continuous mill. The thickness of the intermediate blank is
38-65mm. After the cutting head by crop shear, it is sent
to seven sets of continuous four-high finishing mill to be
rolled into finished strip steel. Though laminar flow cooling
and temperature control, the strip is coiled into steel coils by
bottomcoiler, and the finished steel coils are used for different
purposes according to the quality.

In finishing rolling process, motor and hydraulic press are
used for thickness control, and seven CVC working rollers
and hydraulic bending rollers are used for shape control. The
seven racks are identical in structure, but the work rolls are
different in diameter. In the experimental data selected in
this paper, the diameters of the seven rollers are, respectively,
810mm, 837mm, 838mm, 714mm, 691mm,741 mm, and 758
mm. The frame is denoted as F1-F7 according to the entry
sequence of the strip steel, the height of the F1-F3 engine base
is higher than that of the F4-F7 engine base, the F1-F3 adopt
Cr, Ni semi-steel roll, the F4-F7 adopt infinite chilled cast
iron roll, the F1-F5 is driven by the main motor through the
reducer, gear machine, and universal joint shaft, and the F6-
f7 is driven by motor through gear base and universal joint
shaft. The rolling temperature decreases successively and the
rolling speed increases gradually.

In this experiment, a total of 134 sets of data were
obtained, which were respectively from 134 rolls of strip steel,
belonging to batch data. Since the rolling time of a coil of
strip is about 60 seconds to 80 seconds, the time interval for
obtaining each group of data is 60 seconds to 80 seconds. We
get the value of influencing factors through the sensor on the
rolling mill, among which the first 100 groups were selected
as training data and the last 34 groups as test data. The
factors that affect the prediction of rolling force are the width
of incoming material, the thickness of incoming material,
the entry and exit thickness of each roller, the entry and
exit tension, the rolling temperature, and the rolling speed.
Combined with the experimental data, it is determined that
the input of the model is 30 dimensions and the output is 7
dimensions; that is, there are 7 rolling forces to be predicted.

4.2. Evaluation and Performance Analysis. When GA is used
to determine the network structure of MELM, because the
number of hidden layers and the number of hidden layer
nodes must be positive integers, the genetic algorithm adopts
binary coding. The parameters of GA are set as follows: the
population iteration number is 100, the population size is
20, the crossover probability is set at 0.4, and the mutation
probability is set at 0.2. The method selected in the selection
operation is the roulette method. According to the data used
in this experiment, we determined that the number of hidden
layers of the model should be selected between 1-15, and
the number of hidden nodes should be selected between
1-31. Therefore, the binary encoding length is 9, and the
absolute value of the average prediction error of the model
is selected as the evaluation index. The parameters of PSO
are set as follows: the number of population iterations is 200,
the population size is 20, the maximum and minimum of
individuals are 1 and -1, and the maximum and minimum
values of speed are 0.3 and -0.3, respectively.

In this section, several experiments in rolling force
prediction are carried out to show the better performance
do the proposed PSO-GA-MELM. Those experiments are
design from the aspects of the accuracy and stability of
the proposed PSO-GA-MELM compared with PSO-ELM
and DBN. DBN is a deep network model with multiple
hidden layers. Each layer of DBN is composed of a Restricted
Boltzmann Machines (RBM).This method further solves the
problem of gradient disappearance in deep training, which
has been troubled for many years, and leads the development
boom of deep learning. In this experiment, the data input has
30 features, which are trained by the DBN network, and the
final output is 10 features.

All the simulations in this experiment were conducted
under the environment of MATLAB 2016b. The activation
function adopted by MELM is the hyperbolic tangent func-
tion. Before using genetic algorithm to determine the MELM
network structure, we first tested the prediction error of some
MELM models with fixed network structure through a large
number of experiments. The experimental results are shown
in Table 1.

The data in the Table 1 represent the prediction error
of the MELM model with fixed network structure, that is,
the difference between the measured rolling force and the
predicted rolling force. It can be seen from Table 1 that when
the number of hidden layers is between 3 and 10, and the
number of hidden nodes is between 10 and 15, the prediction
error of the model is small, and the errors in other ranges are
large. Therefore, we determined that the optimal number of
hidden layers is between 3 and 10, and the optimal number
of hidden nodes is between 10 and 15. On this basis, further
experiments are conducted, and the experimental results are
shown in Table 2.

By analyzing the data in Table 2, we can conclude that
when the number of hidden layers is between 3 and 5 and the
number of hidden nodes is between 10 and 12, the prediction
error of the model is small. Therefore, for the experimental
data in this paper, the optimal number of hidden layers in
the MELM based rolling force prediction model is between 3
and 5, and the optimal number of hidden nodes is between 10
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Table 1: The prediction error of MELM models with fixed network structure.

The number of hidden layers The number of hidden nodes
10 15 20 25 30

3 360.24 433.33 400.78 360.77 418.95
5 250.65 282.39 328.18 424.44 623.37
8 357.71 1116.80 1116.80 1116.80 1116.80
10 307.03 1116.80 1116.80 1116.80 1116.80
13 608.08 1116.80 1116.80 1116.80 1116.80
15 1116.80 1116.80 1116.80 1116.80 1116.80

Table 2: The prediction error of MELM models with fixed network structure.

The number of hidden layers The number of hidden nodes
10 11 12 13 14 15

3 360.24 325.78 276.04 369.20 330.46 433.33
4 368.18 299.67 288.20 349.05 320.38 314.27
5 250.65 291.97 288.29 292.69 335.23 282.39
6 406.11 353.54 420.48 318.03 261.71 362.73
7 370.04 295.40 351.66 380.54 478.04 481.86
8 357.71 266.36 374.05 550.01 2156.40 1116.80
9 390.99 458.34 587.47 1116.80 1116.80 1116.80
10 307.03 562.14 1116.80 1116.80 1116.80 1116.80

Table 3: The prediction error for the algorithms PSO-ELM, PSO-
GA-MELM and DBN.

Model Training error Testing error
PSO-ELM 599.91 341.74
PSO-GA-MELM 328.73 229.76
DBN 379.75 362.38

and 12. The network structure of the rolling force prediction
model based on PSO-GA-MELM algorithm is as follows: the
optimal number of hidden layers is 5, and the optimal number
of hidden nodes is 11.

In order to investigate the improvement of learning
accuracy of the proposed PSO-GA-MELM approach, the
PSO-ELMbased rolling force prediction model and the DBN
based rolling force prediction model are also evaluated, and
the number of hidden nodes in the PSO-ELM model is 17.
Theprediction errors for the algorithmsPSO-ELM, PSO-GA-
MELM, and DBN are shown in Table 3.

As observed from Table 3, the proposed PSO-GA-MELM
algorithm achieves a lower prediction error for rolling force
prediction in hot continuous rolling process, relative to
the PSO-ELM and DBN techniques. PSO-GA-MELM adds
hidden layer and sets hidden layer parameters; by making
the actual hidden layer output approach the expected hidden
layer output, a better mapping method between input signal
and output signal is finally found, which improves the
prediction accuracy of the model.

Prediction results of rolling force prediction model based
on PSO-ELM are shown in Figure 4. Prediction results of

rolling force prediction model based on PSO-GA-MELM
are shown in Figure 5. Prediction results of rolling force
prediction model based on DBN are shown in Figure 6. The
average testing error for the algorithm PSO-ELM, PSO-GA-
MELM, and DBN is shown in Figure 7.

The rolling force prediction model is established to
predict the rolling force through the rolling conditions, and
the change of rolling force also reflects the change of rolling
conditions, such as rolling temperature, incoming material
thickness, and other factors. From the above experimen-
tal results, we can be concluded that both the prediction
accuracy and stability of the PSO-GA-MELM algorithm are
dramatically superior to those of the PSO-ELM and DBN
algorithms when using fewer hidden nodes. It is there-
fore inferred that the proposed PSO-GA-MELM algorithm
achieves a superior performance under the conditions where
there is relatively small number of hiddennodes.There results
further indicate the effectiveness of adopting the novel PSO-
GA-MELM approach for the rolling force prediction in hot
continuous rolling process.

5. Conclusion

As an improved model of MELM that can automatically
determine the optimal network structure, PSO-GA-MELM
uses GA to determine the optimal number of hidden layers
and the number of nodes matching the optimal hidden
layers. Meanwhile, by introducing PSO to search for the
optimal input weights and biases ofMELM, PSO-GA-MELM
algorithm has significantly improved its generalization ability
and calculation stability compared with the traditional neural



8 Complexity

×104 Test set output

Expected output
Training output

3010 15 20 25 350 5
Test set sample number

0.5

1

1.5

2

2.5

3

Te
st 

se
t o

ut
pu

t

Figure 4: Prediction results of PSO-ELM based rolling force prediction model.
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Figure 5: Prediction results of PSO-GA-MELM based rolling force prediction model.

networkmodel.The influence of human intervention training
process on the prediction accuracy and calculation stability of
the model is effectively avoided.

Experiments on rolling force prediction in hot continu-
ous rolling demonstrate that PSO-GA-MELM can effectively
determine the optimal network structure of MELM and
has the advantages of high prediction accuracy and com-
putational stability, which can provide a novel and efficient
solution for rolling force prediction in hot continuous rolling.
The average testing error percentage of the proposed PSO-
GA-MELM algorithm is distinctly lower than those of the
PSO-ELM and DBN techniques when using fewer hidden

nodes. Therefore, this technique is a particularly attrac-
tive alternative for solving complex practical application
problems in the presence of limited computational storage
resources. In particular, the PSO-GA-MELM approach can
able to deliver improved accuracy in applications where the
number of hidden nodes that can be assigned is limited by
hardware limitations.

In practical application, this paper only discusses the
application of extreme learning machine in the modeling of
hot continuous rolling process. In fact, for all the complex
industrial processes which are difficult to establish the mech-
anism model, the extreme learning machine should be a new
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Figure 6: Prediction results of DBN based rolling force prediction model.
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Figure 7: Average testing error for the algorithms PSO-ELM, PSO-GA-MELM, and DBN.

algorithmworth trying.This is helpful for further discovering
and solving potential new problems in the algorithm of
extreme learning machine and improving its theoretical
framework. In addition, there is a very important problem to
be solved in practical application, that is, how to better use the
extreme learning machine, such a learning algorithm of static
mapping relation, to model the dynamic industrial process
which is essentially a dynamic evolutionary process.
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