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ABSTRACT
Background. Due to intensive sluice construction and other human disturbances,
lakeshore vegetation has been destroyed and ecosystems greatly changed. Rhizospheric
microbiota constitute a key part of a functioning rhizosphere ecosystem. Maintain-
ing rhizosphere microbial diversity is a central, critical issue for sustaining these
rhizospheric microbiota functions and associated ecosystem services. However, the
community composition and abiotic factors influencing rhizospheric microbiota in
lakeshore remain largely understudied.
Methods. The spatiotemporal composition of lakeshore rhizospheric microbiota and
the factors shaping them were seasonally investigated in three subtropical floodplain
lakes (Lake Chaohu, Lake Wuchang, and Lake Dahuchi) along the Yangtze River in
China through 16S rRNA amplicon high-throughput sequencing.
Results. Our results showed that four archaeal and 21 bacterial phyla (97.04 ±
0.25% of total sequences) dominated the rhizospheric microbiota communities of
three lakeshore areas. Moreover, we uncovered significant differences among rhizo-
spheric microbiota among the lakes, seasons, and average submerged depths. The
Acidobacteria, Actinobacteria, Bacteroidetes, Bathyarchaeota, Gemmatimonadetes,
and Proteobacteria differed significantly among the three lakes, with more than half
of these dominant phyla showing significant changes in abundance between seasons,
while the DHVEG-6, Ignavibacteriae, Nitrospirae, Spirochaetes, and Zixibacteria varied
considerably across the average submerged depths (n= 58 sites in total). Canonical
correspondence analyses revealed that the fluctuation range of water level and pH
were the most important factors influencing the microbial communities and their
dominant microbiota, followed by total nitrogen, moisture, and total phosphorus in
soil. These results suggest a suite of hydrological and soil physiochemical variables
together governed the differential structuring of rhizospheric microbiota composition
among different lakes, seasons, and sampling sites. This work thus provides valuable
ecological information to better manage rhizospheric microbiota and protect the
vegetation of subtropical lakeshore areas.
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INTRODUCTION
Rhizospheric microbiota (RM) is a vital component of the rhizosphere ecosystem in
lakeshore areas. The interaction of plant roots with innumerable microbial communities
within this niche has a considerable impact on developmental stages of lakeshore plants
and their tolerance to stressful conditions (Shilev et al., 2001; Dennis, Miller & Hirsch,
2010; Gill et al., 2016; Bandyopadhyay et al., 2017). For instance, higher plant growth
and biomass were obtained when bacteria selected from metal-contaminated soil were
added to experimental soil (Shilev et al., 2001). Plant-associated microbes are considered
as ‘‘helpers’’ that can provide additional genes to the host for acclimatization of the
latter in changing or distinctive environmental conditions (Vandenkoornhuyse et al.,
2015), although they also associated with soil-borne microbial diseases (Mao et al., 2019;
Mao et al., 2020). Recently, the recruitment of RM into the rhizosphere gained much
attention among researchers (Standing et al., 2005; Bandyopadhyay et al., 2017; Zhang et
al., 2019; Kavamura et al., 2020). Related studies with terrestrial plants have shown that the
factors influencing microbial recruitment include plant genotype and age, edaphic factors,
geographical location, and climatic changes (Berg & Smalla, 2009; Bulgarelli et al., 2012;
Tkacz et al., 2015; Bandyopadhyay et al., 2017). But given the enormous species diversity
of plants and microbes, and the staggering number of potential interactions and complex
community structure within the rhizosphere, our understanding about the drivers of this
recruitment process is still uncovered. To better understand it, one must distinguish the
microbial species and influencing factors that contribute to the formation of complex RM.

The lakeshore is an important ecological ecotone between terrestrial and aquatic
ecosystems. As the primary producer and main constituent of lakeshore habitats, lakeshore
plants play vital roles in maintaining the structural and functional stability of lake
ecosystems. For this reason, lake managers often strive to conserve and create greenbelts
in lakeshore areas threatened by eutrophication and intensive sluice construction (Coops,
Vulink & Van Nes, 2004; Zhang et al., 2016; Baastrup-Spohr et al., 2017). Considering the
non-trivial benefit of RM for lakeshore plant growth and health, studies on the formation
andmaintenance mechanisms of RM are very valuable to protect and restore the vegetation
of lakeshore areas.However,most research on this topic tends to focus onplant composition
and biodiversity (Van Geest et al., 2005; Bayley & Guimond, 2008), standing crops (Koç,
2008; Paillisson & Marion, 2011), as well as morphological and structural characteristics
of plants (Cooling, Ganf & Walker, 2001; Raulings et al., 2010). Consequently, we know
relatively little of the community composition of RM and the primary factors governing it
in lakeshore areas, especially in the subtropics.

The Yangtze River floodplain is one of the world’s largest, where numerous lakes were
freely connected with the Yangtze’s main flow stem. However, due to intensive sluice
construction and other human disturbances, these natural river-lake connections have
been blocked for most lakes, leaving their water level fluctuations altered to various extents
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(Zhang, Liu & Wang, 2015), which probably change the community composition of the
lakeshore RMs and probably influence the lakeshore plant metabolism and function.
However, the influence of the water level fluctuations alter on the lakeshore RMs is
rarely studied. To answer two main questions: (1) Are the lakeshore RMs located in the
Yangtze River floodplain significantly different among different lakes, seasons, and sites?
(2) What are the most important factors determining the microbial species composition
and community structure of RMs in these subtropical lakeshore areas? In the present study,
lakeshore RM was collected on a seasonal basis from three subtropical floodplain lakes
located in the Yangtze River floodplain with different water level fluctuations.

MATERIAL AND METHODS
Sample collection
A detailed overview of the studied lakes and water level features of the sampling area was
given in our previous report (Zhang et al., 2018). The RMs were collected from lakeshore
areas of three lakes: Lake Chaohu (LC), Lake Wuchang (LW), and Lake Dahuchi (LD)
in summer (August 28–31, 2016; SU), autumn (November 17–20, 2016; AU), winter
(February 18–20, 2017; WI), and spring (May 13–15, 2017; SP). One transect free of any
artificial disturbance was established at each lake (Fig. 1). Along each transect, five sites
numbered I, II, III, IV, and V were sequentially set perpendicular to the lakeshore from the
mean annual lowest water level to its highest water level (Fig. 1). The elevation differences
were equal between any two adjacent sites in each transect. Three rhizosphere soil samples
were randomly collected from each site using a portable root-soil core sampler (4.0 cm
diameter with a 17 cm depth), and these samples mixed to form a composite sample. The
latter was named according to the season, lake, and location of sampling: for instance,
‘‘SPLWIII’’ refers to a sample obtained from site III of Lake Wuchang in spring. A total of
58 samples were collected from the three lakes spanning four seasons; the samples SULDV
and WILCV were not collected due to logistical limitations in the field.

Measurement of physiochemical and hydrological variables
Rhizosphere soil pH and moisture were measured using the potentiometric method
and the oven-drying method, respectively (Lu, 2000). Organic content (OC) was
measured using the K2Cr2O7 titration method, while the total nitrogen (TN) and total
phosphorus (TP) contents were measured respectively with the Kjeldahl method and
molybdenum blue colorimetry (Lu, 2000). Daily average water level data from 2012–
2016 was used to calculate the fluctuation range of the water level (FRWL), submerged
duration (SD), and average submerged depth (ASD); the data were obtained from
the Jiangxi Poyang Lake National Nature Reserve and relevant hydrological website
(http://yc.wswj.net/ahsxx/LOL/public/public.html). The FRWL was calculated as the
difference between the highest and lowest water level for a given lake within a calendar
year. The SD was calculated as the sum of days the site was under water, and the ASD was
calculated according to the relative elevation of each sampling site and daily hydrological
data.
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Figure 1 Location of the sampled three lakes and transects in this study. Along each transect, five sites
numbered I, II, III, IV, and V were sequentially set perpendicular to the lakeshore from the mean annual
lowest water level to its highest water level. The elevation differences were equal between any two adja-
cent sites in each transect. The average submerged depths of sampling sites were showed in Fig. S1(N). The
sample group names were formed by combining sampling season, lake, and sampling site. AU, autumn;
LD, Lake Dahuchi; hence AULDIII indicated the sample taken from the III site of Lake Dahuchi in au-
tumn, 2016.

Full-size DOI: 10.7717/peerj.10078/fig-1
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DNA extraction and sequencing
Microbial DNA was extracted from samples using the SDS-based DNA extraction method,
as done in earlier studies (Ni et al., 2010; Ni et al., 2012; Natarajan et al., 2016). The DNA
integrity was checked by 1.0% agarose gel electrophoresis at 120 V for 30 min. The DNA
concentration and purity were evaluated using a Nanodrop 2000 spectrophotometer
(Thermo Scientific, USA) and then diluted to 1 ng/µl using sterile water. The V4
hypervariable region of prokaryotic 16S rRNA gene was amplified by using the prokaryotic
specify primer set 515F and 806R with sample-specific barcode sequences, as done in earlier
studies (Xiang et al., 2018). In brief, each 25-µl reaction mix contained 1 × PCR buffer,
0.25 U of Taq polymerase (Transgen Biotech, China), 0.2 mM of each dNTP, 1.0 µM of
each primer, and 10 ng of microbial genomic DNA. The thermal cycling procedure was
predenaturation at 94 ◦C for 10 min, followed by 30 cycles of 94 ◦C for 30 s, 56 ◦C for 30 s,
and 72 ◦C for 30 s, with a final extension at 72 ◦C for 10 min. After this amplification, the
PCR products were subjected to electrophoresis using a 2% agarose gel and quantified using
a Nanodrop 2000 spectrophotometer (Thermo Scientific, USA). All amplicons were then
pooled together with an equal molar amount from each sample (Huang et al., 2018) and
purified using a DNA gel extraction kit (QIAGEN, Germany). Next, the pooled amplicons
were sequenced using an Illumina HiSeq 2500 system at Beijing Novogene Technology
Co., Ltd.

Data processing and analysis
Raw data were merged with tags by using FLASH v1.2.7 (Magoč & Steven, 2011), and
divided among the samples according to the barcode sequences using QIIME v1.9.0
(Caporaso et al., 2010). After removing the barcode and primer sequences, the reads of
low-quality sequences were detected and removed in QIIME v1.9.0, as recently described
byHuang et al. (2018). Next, any chimeras presentwere sought and filtered out byUCHIME
software with the ‘‘Gold’’ database (http://drive5.com/uchime/uchime_download.html).
The sequences were classified into operational taxonomic units (OTUs) by setting a
threshold of 97% identified sequence by using UPARSE v7.0.1001 software (Edgar, 2013);
the highest frequency sequence in each OTU was then selected as the representative
sequence of the OTU.

Phylogenetic information for each OTU was annotated, according to the representative
sequence, by using the Mothur pipeline-referenced SILVA SSUrRNA database (Quast et
al., 2013). A phylogenetic tree of the OTUs was constructed in MUSCLE v3.8.31 (Edgar,
2004). Four alpha-diversity indexes—observed OTU counts, Chao1 index, Shannon
index, and Good’s coverage—were calculated using QIIME v1.9.0. Rarefaction curve, and
rank-abundance curve were drawn using R v2.15.3. The weighted UniFrac distances were
calculated using QIIME v1.9.0.

All the bacterial sequences have been deposited in the NCBI SRA database under
accession number SRP161734.

Statistical analysis
Results for each variable are presented as the mean± standard error for each group (Huang
et al., 2018). The non-parametric Kruskal-Wallis rank sum test and post-hoc tests were used
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to identify significantly different taxa among different groups with STAMP software (Parks
et al., 2014). Correspondence analysis (CA), canonical correspondence analysis (CCA),
Non-metric multidimensional scaling (NMDS), and non-parametric multivariate analysis
of variance (MANOVA) were conducted using the ‘‘vegan’’ package in the R platform. A
heatmap profile was drawn using HemI software. Separate Wilcoxon tests were used to
compare the α-diversity indexes between different groups, by using the agricolae package
in R.

RESULTS
Environmental variables and taxonomic composition of the RMs
Both OC and TN differed significantly between spring and winter (Figs. 2A and 2C, and
Table S1), as did soil pH, but it also was significantly different between summer and
autumn, and likewise between summer and winter (Fig. 2B, and Table S1). Soil moisture,
pH, elevation, and FRWL were significantly different among the three lakes. OC and TN
were significantly different between LC and LD, and between LD and LW, while TP was
significantly different between LC and LD, and between LC and LW (Figs. 2D–2J, and
Table S1). The SD and ASD were significantly different among sampling sites; specifically,
the OC of site I differed from all other sites; TN differed between sites I and V; moisture of
site V differed from all other sites except I (Figs. 2K–2O, and Table S1).

After removing low quality sequences, a total of 2 488 433 (42 904.02 ± 1201.19
per sample) high-quality sequences were obtained for the 58 samples. To eliminate the
influence of sequencing depth upon our results, all samples were randomly resampled to 24
038 sequences for further analysis, which was the lowest number of sequences per sample.
Besides a few unclassified sequences (1.11± 0.14%), other sequences could be classified into
14 archaeal and 58 bacterial phyla.However, only four archaeal—i.e., Euryarchaeota (2.41±
0.47%), and Thaumarchaeota (2.31± 0.55%), DHVEG-6 (1.04± 0.19%), Bathyarchaeota
(0.59 ± 0.15%)—and 21 bacterial phyla—Proteobacteria (32.64 ± 1.12%), Acidobacteria
(23.79 ± 1.76%), Nitrospirae (8.16 ± 0.61%), Firmicutes (4.76 ± 0.54%), Chloroflexi
(4.51 ± 0.33%), Bacteroidetes (2.98 ± 0.34%), Gemmatimonadetes (2.60 ± 0.22%),
Verrucomicrobia (2.39 ± 0.27%), Actinobacteria (1.84 ± 0.19%), Ignavibacteriae (1.52 ±
0.11%), Latescibacteria (1.37± 0.15%), Spirochaetes (0.83± 0.09%), Aminicenantes (0.75
± 0.20%), Planctomycetes (0.66 ± 0.15%), Zixibacteria (0.48 ± 0.05%), Parcubacteria
(0.42 ± 0.06%), Cyanobacteria (0.41 ± 0.07%), Omnitrophica (0.20 ± 0.07%), GAL15
(0.17 ± 0.06%), AC1 (0.12 ± 0.03%), and Chlamydiae (0.08 ± 0.04%) —were found to
be dominant, in that their relative abundances exceeded 1% in at least one of our samples
(Fig. 3A). In Proteobacteria, Deltaproteobacteria was the most abundant class, followed by
Betaproteobacteria, and Alphaproteobacteria (Table S2).

Comparing the RMs among different lakes, seasons, and sites
Within these four archaeal and 21 bacterial phyla, the relative abundances of Acidobacteria,
Actinobacteria, Bacteroidetes, Bathyarchaeota, Gemmatimonadetes, and Proteobacteria
were significantly different among the three lakes. More than half of these dominant phyla
also differed significantly among seasons in their relative abundance, while the relative
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Figure 2 Boxplots (A-O) show the differences of environmental factors among seasons, among lakes,
and among sampling sites.OC, organic content; TN, total nitrogen; FRWL, fluctuation range of the water
level; TP, total phosphorus; SD, submerged duration; ASD, average submerged depth. Different lower case
letters above the boxes indicate there were significant differences between the two groups (p< 0.05).

Full-size DOI: 10.7717/peerj.10078/fig-2

abundance of DHVEG-6, Ignavibacteriae, Nitrospirae, Spirochaetes, and Zixibacteria were
significant differences among the sampling sites (Fig. 3B).

Zhang et al. (2020), PeerJ, DOI 10.7717/peerj.10078 7/22

https://peerj.com
https://doi.org/10.7717/peerj.10078/fig-2
http://dx.doi.org/10.7717/peerj.10078


Figure 3 Dominant phyla (A) and significant dominant phyla (B) among different groups in the
lakeshore rhizospheric microbiota. The sample group names were formed by combining sampling
season, lake, and sampling site. SP, spring; SU, summer; AU, autumn; WI, winter; LC, Lake Chaohu; LW,
Lake Wuchang; LD, Lake Dahuchi. Therefore, for example, SPLWIII indicated the sample taken from the
III site of Lake Wuchang in spring, 2017.

Full-size DOI: 10.7717/peerj.10078/fig-3

Almost all the sequences (98.89± 0.14%) were classified into phyla, for a total of 21 361
OTUs detected. The rarefaction curve showed that most samples reached the platform,
which implied that the sequences could represent the microbiota structures of the RMs
(Fig. S1A). The rank-abundance curve showed that the OTUs in the microbiota were
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very uneven (Fig. S1B). Of the 21 361 OTUs, only 182 of them dominated the RMs (i.e.,
relative abundance >1% in at least one sample; Fig. S2), harboring 30.87 ± 1.53% of all
the high-quality sequences, which were consistent with the result of the rank abundance
curve (Fig. S1B). The microbiota first tended to cluster according to lakes, and cluster
according to seasons within the same lake. However, no evidence was found to indicate the
microbiota clustered according to sampling sites of the lakeshore areas (Fig. S2).

Spatially, there were 118 dominant OTUs for which we detected a significant difference
in their relative abundance among the three lakes. The relative abundances of the dominant
OTUs classified into Nitrospira cf. moscoviensis SBR1015, Gaiella sp., Tenderia sp.,
Steroidobacter sp., Steroidobacter sp. WWH78, Methylomirabilis sp., Sphingomonas sp.,
Methylotenera sp., Sulfuricurvum sp., Methanosaeta sp., Nitrosoarchaeum sp., Clostridium
beijerinckii, Thiobacillus sp., Eubacterium sp., Sulfurifustis sp., family Gemmatimonadaceae,
Gallionellaceae, Rhodospirillaceae, Nitrospiraceae, Desulfurellaceae, MIZ17, Sh765B-
TzT-35, 0319-6A21, order Xanthomonadales, Holophagae, NB1-j, class Acidobacteria,
and SAGMCG-1 were all significantly higher in LC than in the other two lakes. The
relative abundances of the dominant OTUs classified into Koribacter sp., Nitrotoga sp.,
Acidibacter sp., Solibacter sp., Terracidiphilus sp., family Acidobacteriaceae, DA111,
FW13, ASC21, Gallionellaceae, order Sva0485, Holophagae, class Acidobacteria, JG37-
AG-4, and SAGMCG-1 were all significantly higher in LD than in the other two
lakes. Finally, the relative abundances of the dominant OTUs classified into Koribacter
sp., Rhodanobacter sp., Geobacter sp., Methanoperedens sp., Nitrosotalea sp., family
Nitrospiraceae, Nitrosomonadaceae, Acetobacteraceae, Gemmatimonadaceae, order
Sva0485, and MSBL5 were all significantly higher in LW than in the other two lakes.

Temporally, 112 of the 182 dominant OTUs detected showed significant differences
in their relative abundance among the four seasons. In the summer, the dominant
OTUs classified into Clostridium beijerinckii, Thiobacillus sp., family 0319-6A21, FW13,
Acidobacteriaceae, Sh765B-TzT-35, order Holophagae, Sva0485, and Xanthomonadales
were significantly increased, while those classified into Nitrosoarchaeum sp., and
family Acidobacteriaceae significantly decreased. In autumn, the dominant OTUs
classified into Anaerostipes hadrus, Acetobacter pasteurianus, Acidibacter sp., Eubacterium
sp., Faecalibacterium sp., Lactobacillus vini, Lactobacillus sp., Roseburia inulinivorans,
Ruminococcus bicirculans, Ruminococcus sp., Subdoligranulum sp., Serratia marcescens,
Methylomirabilis sp., Koribacter sp., Nitrosotalea sp., Methanoperedens sp., family
Nistrospiraceae, Gallionellaceae, and FW13 were significantly increased, while those
classified into Sideroxydans sp., Haliangium sp., Sulfuricurvum sp., and family
Nitrosomonadaceae, order NBi-j, class Acidobacteria, and ML635J-21 significantly
decreased. In winter, the dominant OTUs classified into Carnobacterium maltaromaticum,
Telluria mixta, Enterobacter sp.,Methylotenera sp., Solibacter sp., family Methylococcaceae,
Gemmatimonadaceae, order MSBL5, Holophagae, NB1-j, and Holophagae were
significantly increased, while those classified into family Nitrospiraceae, MIZ17, 0319-
6A21, order TRA3-20, and class Acidobacteria significantly decreased. Finally, in spring,
the dominant OTUs classified into Clostridium sp. ND2, Sideroxydans sp., Terracidiphilus
sp., Geobacter sp., Arthromitus sp., Gallionella sp., Sulfuricurvum sp., Sphingomonas sp.,
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Nitrotoga sp., family Nitrospiraceae, NIZ17, Acidobacteriaceae, class Acidobacteria,
ML635J-21, and SAGMCG-1 were significantly increased, while those classified into
Koribacter sp., and class JG37-AG-4 significantly decreased.

Among sampling sites, we detected 43 dominant OTUs with significant differences
across this elevation gradient. The relative abundances of the most significantly different
dominant OTUs gradually changed with elevation: those classified into Methanoperedens
sp., family ASC21, Gallionellaceae, Nitrospiraceae, order 43F-1404R, Sva0485, and MSBL5
were diminished from sampling site I through V, whereas those classified into Solibacter sp.,
Sphingomonas sp., Terracidiphilus sp., and family Acidobacteriaceae gradually increased.

More OTUs were detected from the lakeshore RMs in spring than in the other seasons
(Kruskal-Wallis test, χ2

= 11.935, p = 0.008; Fig. S3A). The OTU counts at LC were more
diverse than those occurring in the other two lakes (Kruskal-Wallis test, χ2

= 13.611, p =
0.001; Fig. S3B). Although there was a trend for the OTU counts to decline from sampling
site I to V, no significant difference was detected among the sampling sites (Kruskal-Wallis
test, χ2

= 4.878, p = 0.30; Fig. S3C). The Shannon indexes were not significantly different
among the four seasons (Kruskal-Wallis test, χ2

= 7.396, p = 0.060; Fig. S3D). However,
the Shannon indexes of the RMs at LC exceeded those of the other lakes (Kruskal-Wallis
test, χ2

= 21.112, p< 0.001; Fig. S3E). No significant difference was detected among
the five sampling sites in the Shannon index of the lakeshore RMs (Kruskal-Wallis test,
χ2
= 2.619, p= 0.624; Fig. S3F). Chao 1 index of the lakeshore RMs in SP was significantly

higher than other seasons (Fig. S3G), while the Goods’ coverage of the lakeshore RMs
in SP was significantly lower than other seasons (Fig. S3J). No significant difference was
detected among the lakes and sampling sites in the Chao1 index and Goods’ coverage (Figs.
S3H, S3I, S3K, and S3L). Because the sampling sites were closely related to ASD, we also
analyzed the correlation between the α diversity indexes and the ASD. Our results showed
that except Shannon index significantly positively correlated with ASD (F-test, F = 4.35,
p = 0.04; Fig. S4), OTU count, Chao1 index, and Goods’ coverage did not significantly
correlate with ASD (F-test, p> 0.05; Fig. S4).

Although theCAbased on allOTUs did not absolutely distinguish theRMs fromdifferent
lakes, seasons, or sampling sites (Figs. 4A–4C), the CCA with Monte Carlo testing and
MANOVA revealed significant differences in the RMs among lakes (MANOVA, F = 5.99,
p< 0.01), seasons (MANOVA, F = 3.51, p< 0.01), and sampling sites (MANOVA,
F = 4.03, p< 0.01) (Fig. 4D). NMDS result also showed that the RMs had trends to
distinguish according to lakes and sampling sites (Fig. S5).

As dispersal limitation caused by geographic distance is one of the major mechanisms
that maintain β-diversity of microbial communities (Eisenlord, Zak & Upchurch, 2012;
Ni et al., 2014; Cao et al., 2016; Shirani & Hellweger, 2017), we analyzed the variation of
the weighted UniFrac distances between the sampling sites with the geographic distances.
Our results showed that the weighted UniFrac distances significantly increased with the
increases of the geographic distances (Fig. 5). However, the R2 of the regression equations
were very low (<0.20; Fig. 5).
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Full-size DOI: 10.7717/peerj.10078/fig-4

Influence of environmental factors on the taxonomic composition of
RMs
CCA was used to analyze which environmental factors best explained the microbiota
structure in lakeshore rhizospheres. Since SD and ASD, pH and elevation, and OC and
TN were significantly correlated with each other (the absolute value of Pearson correlation
R-values >0.9 and p-values < 0.001; Fig. S6), the elevation, OC, and ASD variables were
deleted before conducting the CCA. When performed with the Monte Carlo test, it showed
that FRWL and pH (or elevation) were the most important factors, followed by TN (or
OC), moisture and TP, for significantly influencing the lakeshore RMs (Fig. 6A) and their
dominant microbiota (Fig. 6B).
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To analyze which dominant OTUs were influenced by hydrological and soil
physiochemical variables, linear regressions were used. The FRWL was a positive predictor
of the dominant OTUs in the genus Candidatus Koribacter, genus Candidatus Solibacter,
family Acidobacteriaceae, and class Acidobacteria, but it was negatively related to the
dominant OTUs in the genus CandidatusMethanoperedens and the phylumBathyarchaeota
(Table S3). A greater soil pH negatively affected the dominant OTUs in the genus
Candidatus Koribacter, genus Candidatus Solibacter, genus Sphingomonas, genus RB41,
family Rhodospirillaceae, family Acidobacteriaceae, family FW13, order Sva0485, and
class Acidobacteria, but positively influenced those OTUs in the genus Geobacter, family
Nitrospiraceae, order 43F-1404R, order Sva0485, and phylum Bathyarchaeota. Both soil
TN and TP largely had a positive influence on the dominant OTUs in the family 0319-6A21
and family Rhodospirillaceae, respectively (Table S3).

DISCUSSION
Rhizospheric microbiota (RM) not only play significant roles in plant growth, nutrition,
and health (Mendes et al., 2011; Philippot et al., 2013; Panke-Buisse et al., 2015; Gill et al.,
2016), but they can directly affect a wide range of ecosystem processes (Fierer & Jackson,
2006). Hence, maintaining rhizosphere microbial diversity was necessary to persist the
ecological functions of RM (Schimel, Bennett & Fierer, 2005; Standing et al., 2005). In
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the present study, we found that the compositions of RM were different among lakes,
seasons, and elevation sites in subtropical lakeshore areas located in the Yangtze River
floodplain (Fig. 4), with hydrological and soil physiochemical variables, such as the FRWL,
rhizosphere soil pH (or elevation as it significantly correlated with pH; Fig. S6), TN (or
OC as it significantly correlated with TN; Fig. S6), and TP, being the major factors driving
the observed bacterial changes over space and time (Fig. 6).

Hydrological conditions are usually taken into considerationwhen studying plants in lake
habitats (Van Geest et al., 2005; Raulings et al., 2010). In the Yangtze River floodplain lakes,
Zhang et al. (2018) concluded the FRWLwas themost important factor for determining the
distribution of lakeshore plants, followed by relative elevation and SD. Further, hydrological
factors were also strongly correlated with the architectural andmorphological traits of plant
roots in lakeshore areas of Yangtze floodplain lakes. Taken together, this demonstrates
hydrology’s importance for affecting the structure and function of above-ground and
below-ground tissues of lakeshore plants.

In the measured physiochemical variables in our study, FRWL was a factor that
significantly influenced lakeshore RM, likely because FRWL not only can affect RM
directly but it also influences the lakeshore’s plant composition, root development, and soil
physiochemical variables (such as the level of oxygen in soil). Several studies have indicated
that plant community diversity and the genotypes of individual plants can influence the
composition of their associated RM communities in non-cultivated ecosystems (Whitham
et al., 2006; Schweitzer et al., 2008; Philippot et al., 2013). For our three lakes, their lakeshore
plant communities are easily classified into distinguishable layers, with the distribution
of plants in each layer relatively uniform in response to different hydrological conditions,
and the spatial configuration of their root systems is distinct among the three lakes (Zhang
et al., 2018). Therefore, the indirect effects caused by hydrology contribute importantly to
the RM differences found among the lakes, seasons, and sites in our study.

Soil pH was another factor significantly influencing the RM in this study. The stress of
residing in suboptimal pH environments is known to impact the diversity and composition
of microbial communities in a range of terrestrial and aquatic environments (Hörnström,
2002; Bååth & Anderson, 2003). Fierer & Jackson (2006) even found that the diversity of soil
bacterial communities was unrelated to site temperature, latitude, and other environmental
variables, but was strongly affected by soil pH, with bacterial diversity highest in neutral
soils but lower in acidic soils. Therefore, significantly different pH conditions across the
three lakes likely contributed in a large way to the differing RM community compositional
structure that we found (Fig. 2E).

TN was significantly different between lakes, and between seasons (Fig. 2), and also
significantly influenced the structure of RMs. Many significantly different OTUs, such
as Nitrospira sp. (Hovanec et al., 1998; Lücker et al., 2010), Nitrosotalea (Restrepo-Ortiz
et al., 2018), and Nitrotoga (Lücker et al., 2015), participate in nitrogen or sulfur cycle
in freshwater habitats. Those microorganisms may be more sensitive to TN, which
could explain the differences in their OTUs between lakes and seasons. That microbiota
compositional differences between seasons can continually persist has been reported (Yan et
al., 2017). The significantly different OTUs between seasons—such as Ruminococcus sp. (Ze
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et al., 2012), Faecalibacterium sp. (Benus et al., 2010), and Clostridium sp. (Loo et al., 2005;
Kim, Jeong & Chun, 2007)—are commonly found in human gut and aquatic sediment,
where they participate in polysaccharide metabolism. Their respective polysaccharide
metabolism capacity probably plays a critical role in the carbon cycle of lakeshores and is
significantly influenced by seasons.

The compositions of the RMs in different seasons over a 1-yr period also changed
considerably (Fig. 4D). Since plant developmental stage, climate and other environmental
factors fluctuate seasonally, the changes in RMs across seasons were reasonably expected
(Williams et al., 2013). However, seasonality probably did not directly change the RMs, but
rather it indirectly changed them via altered soil physiochemical variables: TN, OC, and
pH were significantly different between seasons (Fig. 2) and they significantly influenced
the RMs (Fig. 6). However, considering these variables together explained just a very small
portion of RM diversity (Fig. 6), we therefore suggest many unmeasured variables such as
soil temperature probably also significantly influenced the RM communities, as shown in
other work (Xue et al., 2015).

It is also worthwhile to compare broadly the phylum composition of lake sediment
microbiota, which is typically dominated by Firmicutes, Proteobacteria, Bacteroidetes,
Actinobacteria, and Chiloroflexi (Krett & Palatinszky, 2009; Paul et al., 2016; Korenblum,
Jiménez & Elsas, 2016). The phyla dominating the RMs in our subtropical lakeshore areas
are similar to those occurring in terrestrial environments (Uroz et al., 2010; Mendes et al.,
2011; Peiffer et al., 2013), despite the RMs we examined being dominated by Firmicutes,
Proteobacteria, and Actinobacteira (Fig. 3). This result suggests that the rhizosphere
ecosystem could specifically enrich the microbiota originating from soil environments, not
unlike that found elsewhere (Berg & Smalla, 2009; Philippot et al., 2013).

CONCLUSIONS
In conclusion, by investigating the composition of RMs in three lakes over four seasons and
among five sampling sites, we found that different microbial phyla exhibited differential
responses to changes in season, lake, and habitat. The Acidobacteria, Actinobacteria,
Bacteroidetes, Bathyarchaeota, Gemmatimonadetes, and Proteobacteria all differed
considerably among the three lakes, with more than half of these dominant phyla
showing marked changes in abundance between seasons, while DHVEG-6, Ignavibacteriae,
Nitrospirae, Spirochaetes, and Zixibacteria varied substantially across the sampling
sites. The fluctuation range of water level and pH were the most important factors
significantly influencing the rhizospheric microbial communities and their dominant
microbiota, followed by TN, moisture, and TP in soil. Additionally, the weighted UniFrac
distances between sampling sites significantly increased with the increases of the geographic
distances.
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