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ABSTRACT
Soil salinization is the primary obstacle to the sustainable development of agriculture
and eco-environment in arid regions. The accurate inversion of themajor water-soluble
salt ions in the soil using visible-near infrared (VIS-NIR) spectroscopy technique
can enhance the effectiveness of saline soil management. However, the accuracy of
spectral models of soil salt ions turns out to be affected by high dimensionality and
noise information of spectral data. This study aims to improve the model accuracy
by optimizing the spectral models based on the exploration of the sensitive spectral
intervals of different salt ions. To this end, 120 soil samples were collected from
Shahaoqu Irrigation Area in Inner Mongolia, China. After determining the raw
reflectance spectrum and content of salt ions in the lab, the spectral data were pre-
treated by standard normal variable (SNV). Subsequently the sensitive spectral intervals
of each ion were selected using methods of gray correlation (GC), stepwise regression
(SR) and variable importance in projection (VIP). Finally, the performance of both
models of partial least squares regression (PLSR) and support vector regression (SVR)
was investigated on the basis of the sensitive spectral intervals. The results indicated
that the model accuracy based on the sensitive spectral intervals selected using different
analyticalmethods turned out to be different: VIPwas the highest, SR came next andGC
was the lowest. The optimal inversionmodels of different ionswere different. In general,
both PLSR and SVR had achieved satisfactory model accuracy, but PLSR outperformed
SVR in the forecasting effects. Great difference existed among the optimal inversion
accuracy of different ions: the predicative accuracy of Ca2+, Na+, Cl−, Mg2+ and SO4

2−

was very high, that of CO3
2− was high and K+ was relatively lower, but HCO3

− failed to
have any predicative power. These findings provide a new approach for the optimization
of the spectral model of water-soluble salt ions and improvement of its predicative
precision.
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INTRODUCTION
Soil salinization, one of themost important causes of land desertification and deterioration,
has posed serious threat to agricultural development and sustainable utilization of natural
resources (Shahid & Rahman, 2011;Abbas et al., 2013). 950million ha of soil worldwide has
become salinized (Schofield & Kirkby, 2003). Soil salinization is eroding and degenerating
the arable soil at the speed of 10 ha/min (Graciela & Alfred, 2009). Soil remediation and
management are very difficult in China because of such complex natural factors as climate,
terrain and geology, and human factors as unreasonable irrigation and disruption of
ecological balance. The total area of saline soil in China is 36 million ha (Li et al., 2014),
accounting for 4.88% of the total area available nationwide (The National Soil Survey Office,
1998). Saline soil usually has a high concentration of salt ions with a series of effects on
the plants such as physiological draught, ion toxicity and metabolic disorder, thus forming
‘‘salt damage’’ (Munns, 2002; Tavakkoli et al., 2011). In addition, one major cause of the
inaccuracy of soil salinity spectral measurement is that pure salts seldom exist in the soil
because of some trace salt ion elements are always fixed in soil crystals. Therefore, quick
and accurate acquisition of the detailed information of the various salt ions content in the
soil can enhance the pertinence and effectiveness of saline soil management.

The traditional quantitative estimation of soil salt contents usually includes such steps
as field soil sampling in fixed points, experiments in the laboratory and comprehensive
statistical analysis (Urdanoz & Aragüés, 2011). Such a method is incapable of the dynamic
monitoring of saline soil in a large area because of its high consumption of time and
energy, small number of measuring points and poor representativeness (Ding & Yu, 2014).
Compared with conventional laboratory analysis methods, remote sensing technology
has been widely used due to its rich information, continuity, high precision and low cost
(Ben-Dor, 2002; Viscarra Rossel et al., 2006; Viscarra Rossel & Behrens, 2010; Viscarra Rossel
& Webster, 2012). The various soil constituents (contents of water, salt, organic matter
and so forth) can be acquired conveniently from remote sensing data (Gomez, Viscarra
Rossel & McBratney, 2008; Yu et al., 2010; Periasamy & Shanmugam, 2017). Hence, with
the abundant spectral reflection information within the VIS-NIR intervals of soil salinity, it
is feasible to improve the accuracy of soil salinization inversion (Al-Khaier, 2003; Ben-Dor
et al., 2009; Abbas et al., 2013).

The application of VIS-NIR spectral analysis technique has been proved effective
in improving the accuracy of quantitative estimation and eliminating the external
disturbance to some extent (Dehaan & Taylor, 2002; Metternicht & Zinck, 2003; Farifteh
et al., 2008). The univariate linear regression on the basis of soil salinity index developed
for CR (continuum removed) reflectance can be used as a method for soil salt content
estimation (Weng, Gong & Zhu, 2008). Due to the strong correlation between soil electrical
conductivity (EC) and soil salinity, EC is also one of the important indicators for evaluating
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soil salinization degree. A variety of approaches have been used to acquire the EC in the
field soil, including the partial least squares regression (PLSR) and multivariate adaptive
regression splines (MARS) (Volkan Bilgili et al., 2010; Nawar, Buddenbaum & Hill, 2015),
logarithmic model (Xiao, Li & Feng, 2016a), Bootstrap-BP neural network model (Wang
et al., 2018d) and satellite remote sensing technology (Nawar et al., 2014; Bannari et al.,
2018). In addition, the differential transformation (Xia et al., 2017) and fractional derivative
(Wang et al., 2017; Wang et al., 2018c) can fully utilize the potential spectral information
and enhance model accuracy. The methods of spectral classification (Jin et al., 2015) and
water influence elimination (Chen et al., 2016; Peng et al., 2016b; Yang & Yu, 2017) work
well in improving the quantitative inversion accuracy of soil salinity. Therefore, the remote
sensing technique is reliable to inverse the soil salinity quantitatively on different scales.

The quantitative analysis of VIS-NIR spectral intervals can help evaluate the content
of some chemical elements (Viscarra Rossel et al., 2006; Farifteh et al., 2008; Cécillon et al.,
2009; Ji et al., 2016) due to the different characteristic absorption spectrum in soil chemical
elements. Besides, there exists a correlation between some principal salt ions (Na+, Cl−)
and spectral reflectance (Jiang et al., 2017). Therefore, VIS-NIR spectroscopy technique can
be used to obtain the contents of the soil salt ions to a certain extent. The spectral response
characteristics of mid-infrared (MIR) spectroscopy are better than those of VIS-NIR
spectroscopy in predicting soil salinity information, the latter has high predicting accuracy
of the total salts content, HCO3

−, SO4
2− and Ca2+, followed by Mg2+, Cl− and Na+

(Peng et al., 2016a). The spectral models have satisfactory prediction of the SAR (sodium
absorption ratio) of soil salinization evaluation parameter, which is composed of the
contents of Ca2+, Mg2+ and Na+ (Xiao, Li & Feng, 2016b). Qu et al. (2009) found that the
contents of the total salt, SO4

2−, pH and K++Na+ have a higher inversion accuracy using
spectral data to create PLSR model. The different pretreatment of the different ion models
varies by creating and analyzing PLSR model that demonstrates relatively good predictive
effects like ion contents of Ca2+, Mg2+, SO4

2−, Cl−, and HCO3
− (Dai et al., 2015). Overall,

PLSR is a frequently used and robust linear model for quantitative research because it has
inference capabilities which are useful to model a probable linear relationship between
the reflectance spectra and the salt ions content in soil. However, the non-uniform data
and non-linear reflectance in spectral information of some soil chemical elements lead to
the reduction in model accuracy (Viscarra Rossel & Behrens, 2010; Nawar, Buddenbaum &
Hill, 2015). In particular, support vector regressions (SVR) based on kernel-based learning
methods has the ability to handle nonlinear analysis case with highmodel accuracy (Vapnik,
1995; Peng et al., 2016a; Hong et al., 2018b). Over the past several decades, the use of SVR
for classification and regression has been extensively applied in soil VIS-NIR spectroscopy
(Ben-Dor, 2002; Xiao, Li & Feng, 2016b; Hong et al., 2018a). Moreover, the SVR model
works well in estimating the contents of K+, Na+, Ca2+ and SO4

2− in the soil (Wang et al.,
2018a). Thus, the correct way of modeling helps to guarantee the model accuracy (Farifteh
et al., 2007).

Many researches focused on the inversion of soil salinity using spectral information.
Nevertheless, little research has explored the eight water-soluble salt ions (K+, Ca2+,
Na+, Mg2+, Cl−, SO4

2−, HCO3
− and CO3

2−) using spectral information in the soil. The
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model fitting of ions and spectral information still needs improving (Farifteh et al., 2008;
Peng et al., 2016a). Apart from the suitable multivariate statistical analysis method that
can partly improve the inversion effects, reduction of redundant information is another
identified approach to further optimize the model (Bannari et al., 2018; Stenberg et al.,
2010). Plenty of studies have demonstrated that spectral variable selection methods can not
only reduce the complexity of calibration models, but also improve the model predictive
performance (Hong et al., 2018a). To select the optimal spectral variable subset, scholars
have investigated varied methods such as gray correlation (GC) (Li et al., 2016; Wang
et al., 2018b), stepwise regression (SR) (Zhang et al., 2018) and variable importance in
projection (VIP) (Qi et al., 2017), and have achieved satisfactory effects. In addition, all the
three methods have been widely applied in many studies, such as plant physiology, food
engineering, mathematical statistics (Oussama et al., 2012;Maimaitiyiming et al., 2017; Liu,
Yang & Wu, 2015). However, few studies have concentrated on the use of variable selection
algorithms in the inversion of soil salt ions.

This study aims to: (1) build the optimal model of soil salt ions using VIS–NIR
spectroscopy technique; (2) compare the models based on the sensitive spectral ranges
selected using GC, SR andVIPmethods for different soil ions; (3) compare the performance
of PLSR and SVR models, and identify the optimal models for different ions.

MATERIALS AND METHODS
Study area
Hetao Irrigation District (HID), with Yin Mountains at its north, the Yellow River at its
south, Ulanbuh Desert at its west and Baotou at its east, lies in Bayannur League, Inner
Mongolia, China. It consists of irrigation areas of Ulan Buh, Jiefangzha, Yongji, Yichang
and Urat, and it is China’s largest irrigation district with a total size of 5740 km2 (Yu et
al., 2010). In addition, HID is an important production base of cereal and oil plants in
China with major crops of wheat, corn and sunflower. Shahaoqu Irrigation Area (SIA), a
typical region of saline soil in HID, was chosen as the study area. SIA (107◦05′∼107◦10′E,
40◦52′∼41◦00′N) is located in the central east of Jiefangzha Irrigation Area. SIA belongs
to typical continental climate, having hot summers, chilly winters, rare precipitation and
strong evaporation. Its mean annual temperature, precipitation, potential evaporation is
about 7.1 ◦C, 155 mm and 2,000 mm, respectively. Physiographically, the mean elevation
and slope of SIA are about 1,030 m and 1/10,000, respectively. According to the World
Reference Base for Soil Resources (WRB), the local soil texture is mainly silty clay loam
with varying degrees of saline soil. Over the years, due to its gentle terrain slope, poor
groundwater runoff, intense land surface evaporation and irrational farming activities,
about 60% of the land within the district has been affected by various degree of salinization,
which seriously restricted the agricultural development (Wu et al., 2008; Gao et al., 2015).

Sample collection and chemical analysis
The Hetao irrigation district administration gave field permit approval to us (NO.
2017YFC0403302). To ensure the representativeness of soil samples, the samples were
randomly gathered from a total of 120 sampling units on a grid of 16 m ×16 m (because
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Figure 1 Distribution of sampling sites in the study area. (A) Location map of Shahaoqu Irrigation
Area. (B) Sampling location in Shahaoqu Irrigation Area.

Full-size DOI: 10.7717/peerj.6310/fig-1

the spatial resolution of GF-1 satellite imagery is 16 m) in the study area during October
12∼22, 2017 (Fig. 1). In each unit, approximately 0.5 kg of topsoil (0–5 cm) was collected at
four randomly selected sampling sites and thenmixed thoroughly to obtain a representative
sample. Overall, a total of 120 soil samples were acquired, and each sample was stored
in a plastic bag, labeled and sealed. A portable global position system (GPS) was used
to determine the coordinates of sampling points. Subsequently, the soil samples were
transported to the lab to receive a series of such treatments as sufficient natural air-drying
for two weeks and rubbing through a 2 mm sieve to exclude small stones and other
impurities. Each sample was divided into two subsamples to be used for spectra collection
and physiochemical analysis.

Each 50 g of soil sample was put into a respective flask, and 250 ml of distilled water (the
ratio of water to soil is 5:1) were added into each flask. The water-soluble ion contents were
measured in the filtrate obtained from full soaking, oscillation and filtration (Aboukila &
Norton, 2017). Ca2+ and Mg2+ were measured using EDTA titration, Na+ and K+ flame
photometry, CO3

2− and HCO3
− double indicator-neutralization titration, Cl− silver

nitrate titration, and SO4
2− EDTA indirect complexometry (Bao, 2000). The content of

CO3
2− was too low (approximately 0) in some soil samples because CO3

2− is liable to
integrate with Ca2+ andMg2+ as sediment in a weak alkaline solution (Table 1). Coefficient
of variation (CV) reflects the degree of discreteness, and a positive correlation exists in two
variables. The high CV helps to build a robust model (Dai et al., 2015). The grading of CV
showed a wide range of variation among different ions, among which the ion contents of
K+, Na+ and SO4

2− are over 100%, showing a strong variability, and those of CO3
2−, Cl−,

Ca2+, Mg2+ and HCO3
− are between 10% and 100%, having a moderate variability.
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Table 1 Descriptive statistics of soil water-soluble salt ions content.

Statistical
index

Minimum/
g kg−1

Maximum/
g kg−1

Mean/
g kg−1

Standard
deviation

Coefficient
of variation/%

CO3
2− 0.000 0.066 0.020 0.020 98.86

HCO3
− 0.171 0.666 0.316 0.099 31.27

SO4
2− 0.047 40.892 9.073 10.828 119.34

Cl− 0.145 23.234 4.825 4.711 97.65
Ca2+ 0.080 4.111 0.697 0.669 95.95
Mg2+ 0.039 1.952 0.706 0.606 85.91
K+ 0.001 5.727 0.936 1.358 145.14
Na+ 0.016 23.035 5.014 5.563 110.94

Laboratory spectral measurements and pretreatments
The soil samples were put into black vessels with a diameter of 10 cm and depth of 2 cm for
spectral data collection and the surfaceswere smoothedwith a straightedge in the laboratory.
The spectral data of the soil samples were measured using ASD (Analytical Spectral Devices,
Inc., Boulder, CO, USA) FieldSpec R©3 spectrometer with spectral range from 350–2,500
nm. This instrument is equipped with two sensors whose spectral resolutions are 1.4 nm
and 2 nm, for the region of 350–1,000 nm and 1,000–2,500 nm, respectively. The spectral
data was measured in a dark room with the light sources which have halogen lamps of 50
W, 50 cm from the sample soil surfaces, and 30◦ incident angle to reduce the effects of
external factors to the minimum. The field angle of fiber-optics probe is 5◦, and it is 15 cm
from the sample soil surface. The light source and spectrometer had been fully preheated,
and the spectrometer had been corrected with a standardized white panel (99% reflectance)
prior to each measurement to reduce measurement error. Each sample soil was measured
in four directions (3 turns, each is 90◦), the spectrum was collected five times in each
direction, and altogether there were 20 curves of the spectrum (Hong et al., 2018b). These
curves were used as the raw spectral reflectance (Rraw) after having the arithmetic mean in
ViewSpecPro software version 6.0. The gaps of the spectral curves near 1,000 nm and 1,800
nm were corrected using the Splice Correction function (Xiao, Li & Feng, 2016a).

The fluctuation would affect the accuracy of subsequent modeling because of such
disturbance as the external environment, instrument noise and random error in spectral
data collection. In general, a series of effective pretreatment, including smoothing,
resampling and transformation etc., can eliminate the external noise to some degree,
and then enhance the spectral characteristics (Ding et al., 2018). Therefore, it is necessary
to pretreat Rraw in the following steps. (i) The marginal wavelength (350–399 nm and
2,401–2,500 nm) of higher noise in each soil sample was removed, then remaining spectrum
data was smoothed with filter method (window size is 5 and polynomial order is 2) using
Savitzky-Golay (SG) (Savitzky & Golay, 1964) via Origin Pro software version 2017SR2.
(ii) The spectral data between 400 and 2,400 nm was resampled with a 10 nm of sample
interval to keep the spectral features and remove redundant information (Xu et al., 2016).
A new spectral curve consisting of 200 wave bands was obtained. (iii) The precise Rraw−SNV

was obtained by using the standard normal variable (SNV) to eliminate the effects of soil
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Figure 2 Spectral curves of all soil samples. (A) Reflectance spectral curves. (B) Standard normal vari-
able reflectance curves.

Full-size DOI: 10.7717/peerj.6310/fig-2

particle size, surface scattering and baseline shift on the spectrum data (Xiao, Li & Feng,
2016b; Barnes, Dhanoa & Lister, 1989). The spectral curves of Rraw and Rraw−SNV are shown
in Figs. 2A and 2B. Notably, comparison indicated that the spectral curve in Fig. 2B was
much smoother than that in Fig. 2A, which made for the subsequent modeling.

Gray correlation (GC)
The GC, as one grey system theory, seeks the primary and secondary relations and analyzes
the different effects of all the factors in a system (Deng, 1982; Li et al., 2016). Its calculation
process is as follows: the reference sequence is X0={x0(t ),t = 1,2,...,n}, the comparative
sequence is Xi = {xi(t ),t = 1,2,...,n}, and the formula of the gray correlation degree
(GCD) between X0 and Xi is

GCD=
1
n

n∑
t=1

γ (x0(t ),xi(t )) (1)

where γ (x0(t ),xi(t ))= minimint |x0(t )−xi(t )|+ρmaximaxt |x0(t )−xi(t )|
|x0(t )−xi(t )|+ρmaximaxt |x0(t )−xi(t )|

ρ is the distinguishing coefficient within [0,1] . ρ was set as 0.1 in this paper.
The inconsistent dimension between the spectral data and the contents of different

ions has some effects on the data analysis. Therefore, normalizing the spectral data
preprocessing method can reduce these disadvantageous effects (Liu, Yang & Wu, 2015;
Wang et al., 2018b). In this paper, the larger the GCD of a certain band is, the closer relation
the band and the ion content has, and vice versa.

Variable importance in projection (VIP)
The VIP is a variable selection method based on PLSR (Oussama et al., 2012). The
explanatory power of the independent variables to the dependent variables is achieved
by calculating the VIP score. The independent variables are sequenced according to the
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explanatory power (Qi et al., 2017). The VIP score for the j-th variable is given as:

VIPj =

√
p∗

∑F
f=1SSYf ∗W2

jf

SSYtotal ∗F
(2)

Where p is the number of independent variables; f is the total number of components;
SSYf is the sum of squares of explained variance for the f -th component and p the number
of independent variables. SSYtotal is the total sum of squares explained of the dependent
variable. W2

jf gives the importance of the j-th variable in each f -th component. The higher
value VIPj has, the stronger explanatory power the independent variable has over the
dependent variable. The VIP scores of independent variables have been recognized as a
useful measure to identify important wavelengths when the score is more than 1 (Wold,
Sjöström & Eriksson, 2001; Maimaitiyiming et al., 2017).

Model construction and validation
Two-thirds of the samples were used for modeling (n = 80) and one third for validation
(n = 40) using Kennard-Stone (K-S) to calculate the Euclidean distance among different
samples to ensure the statistical characteristics of modeling and the validation datasets
resembled that of the whole sample set (Kennard & Stone, 1969).

The PLSR and SVR models were applied to the quantitative inversion of different
water-soluble salt ion contents in the saline soil in this paper. The PLSR model is a new
stoichiometric statistical model. Compared with the traditional multivariate least squares
regression (MLSR), PLSR can overcome the multicollinearity among the variables, reduce
the dimension, synthesize and filter the information, extract the aggregate variables with
the strongest explanatory power in the system, and exclude the noise with no explanatory
power (Wold, Sjöström & Eriksson, 2001). The optimal fitting model was built using the
number of optimal principal components through full cross validation. SVR model is
a new machine learning method based on the principle of structural risk minimization
provided by the statistical learning theory. This model is characterized by its ability of
solving such problems as limited sample size, nonlinear data processing and spatial pattern
recognition of high-dimension data (Vapnik, 1995). During the modeling in this study,
the type of SVR and kernel were set as epsilon-SVR and linear function, respectively; the
penalty parameter C and nuclear parameter g were acquired by a grid-searching technique
and a leave-one-out cross validation procedure. The optimal values of C and g were
selected when the minimum RMSECV (root mean squared error of cross validation) was
produced (Xiao, Li & Feng, 2016b). The two models were constructed and validated using
the Unscrambler software version X10.4 (CAMO AS Oslo, Oslo, Norway).

Precision indices of determination coefficient of calibration (Rc
2), determination

coefficient of prediction (Rp
2), rootmean squared error (RMSE) and ratio of performance to

deviation (RPD) were used to evaluate the performance of these models. RPD classification
was adopted to facilitate the interpretation of predictive results: a model is considered as
excellent when RPD ≥ 2.5, as very good when 2.0 ≤ RPD < 2.5, as good when 1.8 ≤ RPD
<2.0, and as satisfactory when 1.4 ≤ RPD <1.8 and can only distinguish between high and
low values when 1.0 ≤ RPD <1.4 (Viscarra Rossel, Taylor & McBratney, 2007). Generally,
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Figure 3 Correlation coefficients of soil water-soluble salt ions content with standard normal variable
reflectance.

Full-size DOI: 10.7717/peerj.6310/fig-3

Table 2 Max correlation coefficient and band intervals of soil water-soluble salt ions content with
standard normal variable reflectance.

Water-soluble
salt ions

Number of
significant bands

Maximum correlation
coefficient

Maximum correlation
band intervals/nm

Ca2+ 190 −0.877 1,940∼1,950
Cl− 192 −0.882 1,990∼2,000
CO3

2− 146 0.552 1,870∼1,880
HCO3

− 1 0.235 2,200∼2,210
K+ 178 0.630 1,850∼1,860
Mg2+ 186 −0.848 1,990∼2,000
Na+ 181 −0.752 2,010∼2,020
SO4

2− 178 0.749 1,860∼1,870

the most robust model would be the one with the largest Rc
2, Rp

2 (approach to 1) and RPD
value and the lowest RMSE value.

RESULTS
Correlation between water-soluble salt ions content and spectral
reflectance
The correlation coefficients (Pearson correlation) between each soil salt ion content and
Rraw−SNV in the range of 400–2,400 nm were tested with the significance level of P < 0.01
(|r | = 0.234 or above). The curves of correlation coefficients of soil salt ions were plotted
in Fig. 3 and the numbers of bands passing the significance test were counted in Table 2.
The curve patterns of SO4

2−, Cl−, Ca2+, Mg2+, K+ and Na+ were similar (Fig. 3). From
400 nm to about 550 nm, the correlation coefficients rose sharply from negative to positive,
moved with a gentle depression until 1,400 nm, plummeted and surged up to 1,560 nm
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Figure 4 Gray correlation degree (GCD) for soil water-soluble salt ions content with standard normal
variable reflectance.

Full-size DOI: 10.7717/peerj.6310/fig-4

(among the curves, the change of Ca2+ was the sharpest), and maintained a relative
stable state to 1850 nm. And then from 1,850 to 2,400 nm, dramatic oscillating variations
alternated between rise and fall. In the intervals of 400–1,400 nm and 1,850–2,400 nm the
curve pattern of CO3

2− was similar to that of other ions such as SO4
2−. But between 1,400

nm and about 1,850 nm, the curve took on a unique pattern: sustained oscillating rise. The
coefficient curve of HCO−3 displayed a smaller variation, smoothly fluctuating between
−0.2 and 0.2. The complex variation of the coefficient curves of different ions revealed rich
spectral information.

Selection of characteristic wavelength
Characteristic wavelength selection based on GC method
The curves of gray correlation degree for soil water-soluble salt ions content and Rraw−SNV

were shown in Fig. 4. The correlation coefficient curves of the seven ions except CO3
2−

resembled those of the GCD of the Rraw−SNV. Generally, the curves exhibited patterns
of ‘‘oscillatory rise, fluctuation, rapid rise and fall, and oscillatory fluctuation’’. The gray
correlation curves of CO3

2− followed a pattern of ‘‘ascending, plummeting, and smooth
transition’’. The analysis of the GC curve amplitude showed the amplitudes of Cl−, Mg2+

and Ca2+ were relatively large, and those of Na+, SO4
2−, K+ and HCO3

− were relatively
small, and that of CO3

2− was relatively gentle.
The order of the maximal GCD was: Cl− (0.561) > Mg2+ (0.559) > Ca2+ (0.551) > Na+

(0.508) > SO4
2− (0.494) > K+ (0.470) > HCO3

− (0.465) > CO3
2− (0.416). To ensure that

each salt ion had sensitive bands as far as possible, the GCD threshold value was set as 0.40
to select the wavelength. The sensitive band was counted through gray correlation method
(Table 3). The numbers of sensitive bands of different ions could be sequenced from the
largest to the smallest as follows: Mg2+ (110) > HCO3

− (105) > Cl− (101) > Ca2+ (53) >
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Table 3 Max gray correlation degree and band intervals of soil water-soluble salt ions content with
standard normal variable reflectance.

Water-soluble
salt ions

Sensitive band
numbers

Maximum gray
correlation degree

Maximum gray
correlation
degree intervals/nm

Ca2+ 53 0.551 1,650∼1,660
Cl− 101 0.561 1,650∼1,660
CO3

2− 14 0.416 1,740∼1,750
HCO3

− 105 0.465 560∼570
K+ 15 0.470 1,650∼1,660
Mg2+ 110 0.559 1,650∼1,660
Na+ 36 0.508 1,650∼1,660
SO4

2− 21 0.494 1,650∼1,660

Na+ (36) > SO4
2− (21) > K+ (15) > CO3

2− (14). Therefore, the orders of sensitive band
numbers and maximal GCD values had great difference. Furthermore, the band intervals
corresponding to the maximum GCD of different salt ions were as follows: CO3

2− was
near-infrared between 1,740 and 1,750 nm, HCO3

− was green light between 560 and 570
nm, and the rest of six ions were near-infrared between 1,650 and 1,660 nm.

Characteristic wavelength selection based on SR method
Feature band intervals were selected by stepwise regression method in SPSS software
version 23.0 (IBM, Chicago, IL, USA), and the significance levels of variables acceptance
and rejection were set at 0.10 and 0.15 (Zhang et al., 2018). The parameter indexes of
feature band intervals selection were shown in Table 4 by stepwise regression method at
maximum adjusted R2.
Great difference existed among the optimal SRmodels of different ions, and the numbers

of band intervals accepted by the model range from 3 to 8 (Table 4). The SR model fitted
well with the adjusted R2 greater than 0.8 when the number of selected independent
variables was considered. Meanwhile, SR model of each ion was statistically significant
(p < 0.001). Therefore, the band intervals selected by the SR models were used as the
independent variables of PLSR and SVR models.

Characteristic wavelength selection based on VIP method
Curves of VIP scores of soil water-soluble salt ions content and Rraw−SNV were shown in
Fig. 5. Max VIP scores and band intervals obtained from VIP method of soil water-soluble
salt ions content and Rraw−SNV were shown in Table 5.

The curves patterns of seven ions were similar except HCO3
− (Fig. 5). These curves

exhibited violent oscillation in the intervals of 400–800 nm and 1,900–2,400 nm, gentle
transition between 800 nm and around 1,400 nm, and fluctuant rise from 1,400 to 1,900
nm. In contrast, the curve of HCO3

− showed oscillatory rise from 400 to 1,400 nm, a ‘‘U’’
shaped motion from 1,400 to 1,900 nm or so, and a rapid fall and oscillation to 2,400 nm.
The numbers of sensitive bands based on VIP method displayed the following sequence:
Cl− (85) > Na+ (83) > HCO3

− (79) > SO4
2− (74) > Mg2+ (69) = Ca2+ (69) = K+ (69) >
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Figure 5 The Variable importance in projection (VIP) scores for soil water-soluble salt ions content
with standard normal variable reflectance.

Full-size DOI: 10.7717/peerj.6310/fig-5

Table 4 Parameter indexes of feature band intervals selection by stepwise regressionmethod.

Water-soluble
salt ions

Sensitive
band
numbers

Band
intervals/nm

Adjusted
R2

Standard
error

Sig.

Ca2+ 7 1,040∼1,050, 1,090∼1,100,
1,900∼1,910, 1,920∼1,930,
2,200∼2,210, 2,310∼2,320,
2,370∼2,380

0.942 0.529 <0.001

Cl− 8 730∼740, 910∼920,
1,890∼1,900, 1,970∼1,980,
1,990∼2,000, 2,180∼2,190,
2,200∼2,210, 2,290∼2,300

0.975 1.063 <0.001

CO3
2− 4 1,280∼1,290, 1,360∼1,370,

1,380∼1,390, 1,420∼1,430
0.836 0.012 <0.001

HCO3
− 3 2,200∼2,210, 2,260∼2,270,

2,290∼2,300
0.934 0.085 <0.001

K+ 6 740∼750, 810∼820,
1,160∼1,170, 1,890∼1,900,
2,210∼2,220, 2,390∼2,400

0.817 0.706 <0.001

Mg2+ 6 1,130∼1,140, 1,930∼1,950,
1,990∼2,000, 2,100∼2,110,
2,170∼2,180

0.973 0.152 <0.001

Na+ 6 740∼750, 820∼830,
1,860∼1,870, 2,210∼2,220,
2,260∼2,270, 2,390∼2,400

0.942 1.812 <0.001

SO4
2− 6 610∼620, 1,140∼1,150,

1,960∼1,970, 2,210∼2,220,
2,290∼2,300, 2,390∼2,400

0.947 3.255 <0.001
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Table 5 Max VIP scores and band intervals of soil water-soluble salt ions content with standard nor-
mal variable reflectance.

Water-soluble
salt ions

Sensitive
band numbers

MaximumVIP
scores

MaximumVIP scores
intervals/nm

Ca2+ 69 1.97 1,440∼1,450
Cl− 85 1.42 560∼570
CO3

2− 67 2.01 1,440∼1,450
HCO3

− 79 2.37 1,410∼1,420
K+ 69 1.73 1,880∼1,890
Mg2+ 69 1.49 1,870∼1,880
Na+ 83 1.55 1,880∼1,890
SO4

2− 74 1.74 1,880∼1,890

CO3
2− (67). The sequence of the maximal VIP scores was HCO3

− (2.37) > CO3
2− (2.01)

> Ca2+ (1.97) > SO4
2− (1.74) > K+ (1.73) > Na+ (1.55) > Mg2+ (1.49) > Cl− (1.42). The

spectral interval of the maximal VIP scores of Cl− was from 560 to 570 nm, Ca2+, CO3
2−

and HCO3
− were concentrated between 1,410 and 1,450 nm; and K+, Mg2+, Na+ and

SO4
2− were from 1,870 to 1,890 nm.

Construction and analysis of PLSR model
The sensitive bands were obtained using different band selection methods of GC, SR and
VIP to build PLSR model. The results of PLSR model were shown in Table 6.

The models of the six ions Ca2+, Cl−, CO3
2−, Mg2+, Na+ and SO4

2− performed well
using VIP method (Rc

2 is close to 1). The models based on the bands of Ca2+, Cl−, Mg2+,
Na+ and SO4

2− selected using the SR method displayed good fitting effect, and those of
Ca2+, Mg2+ and Na+ using the GC method exhibited good fitting effect.

In terms of verification accuracy, VIP method had excellent prediction of Ca2+, Na+,
SO4

2−, SR method had excellent prediction of Ca2+, Mg2+, Na+, SO4
2− (the RPD of Ca2+

was up to 3.95), and GC method did not show strong prediction power over any ions.
On the contrary, all the three models demonstrated poor forecasting power over HCO3

−.
The RPDs of SR-HCO3

− and VIP-HCO3
− were 0.64 and 0.93 respectively. Therefore, VIP

method had the best modeling effect and SR method had the best forecasting effect, and
GC method had poor modeling and forecasting effects on the salt ions inversion in the
PLSR model.

Construction and analysis of SVR model
The sensitive bands were obtained by using different band selection methods of GC, SR
and VIP to build SVR model. The results of SVR model were shown in Table 7.

The modeling accuracy of SVR model was similar to that of PLSR model. But the
verification accuracy of ions was different between the two models. VIP method had the
excellent prediction of Ca2+, Cl−, Mg2+, Na+, SR method had the excellent prediction of
Ca2+, Mg 2+, Na+, SO4

2−, and GC method did not show strong prediction power over
any ions. The prediction results of Ca2+ were the best: the RPD of VIP and SR models
were 3.93 and 3.97, respectively. Overall, in the SVR model, VIP method exhibited the best
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Table 6 Calibration and validation results of soil water-soluble salt ions content from the PLSR inver-
sionmodels using the GC, SR and VIP wavelength selection methods.

Wavelength
selection methods

Water-soluble
salt ions

Latent
variables

Calibration
sets

Validation sets

Rc
2 Rp

2 RMSE/(g kg−1) RPD

Ca2+ 7 0.897 0.724 0.362 1.71
Cl− 7 0.796 0.565 3.150 1.35
CO3

2− 5 0.660 0.649 0.012 1.21
HCO3

− 7 0.646 0.285 0.088 0.96
K+ 1 0.388 0.258 1.209 0.85
Mg2+ 6 0.891 0.767 0.295 1.99
Na+ 7 0.840 0.805 2.589 1.88

Gray
correlation

SO4
2− 4 0.561 0.360 8.711 0.87

Ca2+ 7 0.965 0.937 0.168 3.95
Cl− 2 0.861 0.729 2.434 1.80
CO3

2− 4 0.685 0.742 0.010 1.80
HCO3

− 3 0.340 0.154 0.094 0.64
K+ 5 0.722 0.563 0.931 1.37
Mg2+ 4 0.933 0.849 0.236 2.52
Na+ 3 0.901 0.868 2.145 2.67

Stepwise
regression

SO4
2− 5 0.918 0.889 3.807 2.75

Ca2+ 3 0.909 0.865 0.249 2.57
Cl− 4 0.930 0.862 1.725 2.48
CO3

2− 9 0.865 0.617 0.012 1.44
HCO3

− 9 0.704 0.263 0.090 0.93
K+ 5 0.664 0.566 0.945 1.43
Mg2+ 3 0.910 0.840 0.243 2.34
Na+ 8 0.939 0.902 1.801 3.15

Variable
importance
in
projection

SO4
2− 8 0.919 0.872 4.038 2.75

performance for modeling and predicting the salt ions content, SR method was the second,
and GC method was relatively poorer.

DISCUSSION
Comparison among the results of different salt ions content in
estimating
The optimal band selection method varied in some degree from the optimal modeling
method (Tables 6 and 7). The comparison was made between the measured value and the
estimated value of all the ions concerned under the optimal model (Fig. 6). The sequence
of the forecasting power of the ions was Ca2+ > Na+ > Cl− > Mg2+ > SO4

2− > CO3
2− >

K+ > HCO3
−, and it was the same as that of the modeling power.

Obviously, the verification result showed that most data points of the five ions, Ca2+,
Na+, Cl−, Mg 2+ and SO4

2−, were concentrated near line 1:1. The optimal models of
these five ions had very strong predicative power with the RPD above 2.5 (Tables 6 and 7).
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Table 7 Calibration and validation results of soil water-soluble salt ions content from the SVR inver-
sionmodels using the GC, SR and VIP wavelength selection methods.

Wavelength
selection methods

Water-soluble
salt ions

Calibration
sets

Validation sets

Rc
2 Rp

2 RMSE/(g kg−1) RPD

Ca2+ 0.910 0.752 0.337 1.73
Cl− 0.652 0.500 3.275 1.05
CO3

2− 0.688 0.664 0.012 1.14
HCO3

− 0.563 0.328 0.083 0.70
K+ 0.421 0.269 1.155 0.61
Mg2+ 0.934 0.781 0.289 2.07
Na+ 0.809 0.764 2.851 1.85

Gray
correlation

SO4
2− 0.565 0.397 9.046 0.52

Ca2+ 0.964 0.940 0.164 3.97
Cl− 0.893 0.790 2.186 2.15
CO3

2− 0.605 0.583 0.013 1.16
HCO3

− 0.327 0.164 0.095 0.56
K+ 0.717 0.578 0.874 1.26
Mg2+ 0.936 0.875 0.214 2.75
Na+ 0.903 0.864 2.171 2.61

Stepwise
regression

SO4
2− 0.915 0.893 3.862 2.71

Ca2+ 0.960 0.935 0.173 3.93
Cl− 0.949 0.897 1.483 2.98
CO3

2− 0.883 0.664 0.012 1.56
HCO3

− 0.669 0.280 0.088 0.91
K+ 0.645 0.565 0.888 1.23
Mg2+ 0.965 0.877 0.214 2.51
Na+ 0.958 0.872 2.211 2.76

Variable
importance
in
projection

SO4
2− 0.914 0.865 4.106 2.48

Compared with the previous researches, model prediction effects of K+ and Na+ (Qu et al.,
2009); Ca2+, Na+ and Mg2+ (Viscarra Rossel & Webster, 2012); HCO3

−, Ca2+, Cl−, Mg2+

and SO4
2−(Dai et al., 2015); HCO3

−, Ca2+ and SO4
2− (Peng et al., 2016a); K+, Na+, Ca2+

and SO4
2− (Wang et al., 2018a) were satisfactory. Although the results of this study are

not exactly the same as these previous researches, it still shows the rationality own to some
extent. In addition, this result shows that band selection has realized the goal of removing
the irrelevant information, and plays a major role in improving the inversion accuracy of
salt ions.

In Fig. 6, the data points of CO3
2− and K+ were relatively dispersed in the verification

result. The CO3
2− had a relatively good predictive power (RPD = 1.80) and the K+ had

a normal predictive power (RPD = 1.43). Notably, HCO3
− had no predicative power

(RPD = 0.96) because the slope was under the 1:1 line and the data points were most
discrete (Fig. 6D). The predicting effect of HCO3

− was different from that of Peng et al.
(2016a) and Dai et al. (2015), but similar to that of Wang et al. (2018a). The cause of this
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Figure 6 Validation of soil water-soluble salt ions content based on the best model. (A) Ca2+ with SR-
SVR model. (B) Cl− with VIP-SVR model. (C) CO2−

3 with SR-PLSR model. (D) HCO−3 with GC-PLSR
model. (E) K+ with VIP-PLSR model. (F) Mg2+ with SR-SVR model. (G) Na+ with VIP-PLSR model. (H)
SO2−

4 with VIP-PLSR model.
Full-size DOI: 10.7717/peerj.6310/fig-6
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result needs to be further studied. Overall, it is vital to make some efforts to improve the
robustness and accuracy of these ion models. Xiao, Li & Feng (2016b) failed to predict
Na+, Mg 2+ and Ca2+, but applied the SVR model to forecasting SAR after the SNV
transformation and the performance was satisfactory (RPD = 2.13). Analogously, first
derivative reflectance (FDR) index was calculated to effectively predict SAR by Xiao, Li &
Feng (2016a). In addition, Viscarra Rossel & Webster (2012) forecasted the content of Na+

after logarithmic pretreatment with VIS-NIR spectral technique (RPD = 2.10). Thus, salt
ion indexes construction and variable transformation processing are helpful approaches to
improve the correlation with the spectra so as to establish satisfactory models.

A little difference existed in the applicability between PLSR and SVRmodels on inversing
the content of ions. Both methods could produce satisfactory results in conformity with
that of Peng et al. (2016a). In addition, the optimal inversion models and prediction
models for each ion were different: SR-PLSR model and SR-SVR model for Ca2+, VIP-
SVR model and SR-PLSR model for CO3

2−, SR-PLSR model and VIP-PLSR model for
K+, VIP-PLSR model and GC-PLSR model for HCO3

−, respectively. Among them, the
performance of the optimal inversion model of Ca2+ resembled that of the prediction
model. The results suggested that the ion models with poorer performance frequently
demonstrated uncertainty in the inversion process (Peng et al., 2016a). Generally, as the
major water-soluble ion components in the two highly soluble salts of sodium and kali, Na+

and K+ exhibit great difference in the spectral characterization degree (Dai et al., 2015).
Therefore, the spectral characters of water-soluble salt ions are not necessarily determined
by the number of dissociative ions, so more pertinent experiments and analysis should be
conducted to explore the response mechanism.

Correlation analysis and inversion performance
The raw spectral reflectance curve of each soil sample presented distinct shapes (Fig. 2A).
One of the prime reasons for this phenomenon is that the absorption features in these
soil samples were related to soil salt crystal contents and types, as well as various chemical
bonds (e.g., C-H, O-H, N-H). The results were in accordance with those in previous
studies (Viscarra Rossel et al., 2006; Viscarra Rossel & Webster, 2012; Dai et al., 2015; Peng
et al., 2016a; Wang et al., 2018a), which demonstrated that soil VIS-NIR spectra could be
used to determine part of soil salt ions contents in some degree.

Traditionally, correlation analysis helps reveal the relationships between soil salt ions
content and VIS-NIR spectra, and it indicates modeling effects to some degree (Weng, Gong
& Zhu, 2008). In the current research, the number of the significant bands of different ions
could be sequenced from the largest to the smallest as follows: Cl− (96%) > Ca2+ (95%)
> Mg2+ (93%) > Na+ (90.5%) > K+ (89%) = SO4

2− (89%) > CO3
2− (73%) > HCO3

−

(0.5%), the correlation coefficients of different ions ranged from the largest to the smallest
as: Cl− (−0.882) > Ca2+ (−0.877) > Mg2+ (−0.848) > Na+ (−0.752) > SO4

2− (0.749)
> K+ (0.630) > CO3

2− (0.552) > HCO3
− (0.235) (Table 2). Thereby, five ions (Cl−,

Ca2+, Mg2+, Na+ and SO4
2−) had more significant relationship with reflectance spectra.

Although there were some differences between forecasting power ranking and correlation
ranking, the optimal models of these five ions had the excellent predictive results (Fig. 6).
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Nevertheless, the other three ions (K+, CO3
2− and HCO3

−) had weak correlations and
unsatisfactory predictive power. In particular, HCO3

− had only one significant band and
the worst prediction effects. But in most cases, the sensitive band numbers of HCO3

−

were not the least in comparing the results of the three wavelength selection methods
(Tables 3–5). Thus, we conjecture that the different calculation mechanisms cause a certain
inconsistency between modeling performance and sensitivity. In addition, the optimal
method of finding out their responding spectrum varies from one ion to another in the
soil. In future study, it is practically significant to adopt various methods to select the
optimal bands in the inversion of soil ions.

Effects of wavelength selection on estimation models
The massive complex spectra often contain a large amount of redundant information
irrelevant to the ions contents. The selection of feature spectra is hence a critical step
to create a robust model. From Tables 3–5, we could see the great difference exist in the
number of wavelength selected with the threemethods: VIPmethod had the largest number
of wavelengths (34.5%∼42.5%), SR method had the smallest number of wavelengths
(1.5%∼4%) and number of wavelengths (7%∼55%) varied greatly by GC method.

Our experiment with three wavelength selection methods also indicated that different
methods yielded different results. Among the three methods, the VIP method produced
the best results, followed by SR method, while the GC method performed least ideally. We
argue that the GC method is not necessarily an inappropriate method as some results are
still acceptable. However, GC method could distinguish the primary relationships among
the factors in the system by calculating and comparing GCD (Deng, 1982; Liu, Yang &
Wu, 2015). In the field of spectral analysis, the application of GC method could better
identify sensitive spectral indices, select sensitive bands and optimize inversion model (Li
et al., 2016). On the other hand,Wang et al. (2018b) used GCmethod to extract the feature
bands of soil organic matter content to construct the model with stronger generalization
capability. Therefore, the soil compositions have a strong impact on the performance
of spectral model. This conclusion is consistent with previous research results (Viscarra
Rossel et al., 2006; Viscarra Rossel & Webster, 2012; Xiao, Li & Feng, 2016b). The VIP values
were calculated with VIP method, in the process of PLSR analysis to further evaluate the
significance of each wavelength for model prediction (Wold, Sjöström & Eriksson, 2001;
Maimaitiyiming et al., 2017; Qi et al., 2017). VIP method often produces the best results
in the modeling set because it can distinguish between useful information and inevitable
noises in the set. Oussama et al. (2012) adopted this method to reduce almost 75% of
the total data set for a simplified model of high accuracy. Additionally, as a simplified
regression linear model, SR method not only preserves significant bands but also solves
multicollinearity problems effectively (Xiao, Li & Feng, 2016a; Xiao, Li & Feng, 2016b). It
has great optimization effect on model complexity by adjusting the significance level of
selected and excluded variables (Zhang et al., 2018). Compared with the selection results
with VIP method, SR method could be used to extract fewer bands to establish ions (except
for K+, CO3

2− and HCO3
−) forecasting models with RPD above 1.80. Therefore, it is

meaningful to make further simplification of the model while ensuring its accuracy.
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Research limitations
This study clearly demonstrated that VIS-NIR spectral analysis technique is an effective
method to detect salt ions content of salinity soil in the irrigated district. In terms of
extracting feature wavelengths to estimate ions content, our work provides a comprehensive
comparison and evaluation approaches. Such endeavor is critically and practically
important to further enhance the model performance of the soil salt ions. The application
of machine learning algorithms with strong applicability to solve nonlinear relationship
between variables, such as Ant Colony Optimization-interval Partial Least Square (ACO-
iPLS), Recursive Feature Elimination based on Support Vector Machine (RF-SVM), and
Random Forest (RF) has been proved to be a useful approach to obtain the effective
information of soil organic matter (Ding et al., 2018). To further improve the prediction
accuracy, the more machine learning algorithms should be applied to the analysis of
sensitive spectral regions and the construction of stable models in future study. In addition,
the application of multi-source remote sensing platforms such as Landsat, GaoFen-5,
Hyperion and unmanned aerial vehicle (UAV) in soil salt ions estimation has not been
investigated. Therefore, further research should focus on the possible combination of
multiple approaches and remote sensing data at different scales to estimate soil salt ions
content.

CONCLUSIONS
This study investigated the feasibility of estimating soil water-soluble salt ions content
via VIS-NIR spectral model. Different methods were applied to the selection of response
bands interval to construct robust inversion models. Among them, VIP method could
select larger number of wavebands with the highest accuracy, SR method could select the
smallest number of wavebands with good accuracy. However, the number of wavebands
obtained using the GC method varied greatly with poor accuracy. The PLSR and SVR
models achieved good effects on the modeling and forecasting of most ions content.
Moreover, the PLSR model was slightly more than the SVR model in terms of the number
of ion models with good predictive effects (RPD over 2.0). The models of Ca2+, Na+, Cl−,
Mg2+ and SO4

2− displayed the highest prediction accuracy, and the RPDs were 3.97, 3.15,
2.98, 2.75 and 2.75, respectively, while those of other ions were poor. Overall, the best
wavelength selection methods, models and inversion results of soil salt ions were different.
In the future, the combination of band selection methods and spectral model will have
a great potential for predicting some soil salt ions content in the salinization area. Such
an approach can be utilized to assist decision makers toward the determination of soil
salinization levels.
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