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ABSTRACT

Proteins interact with small molecules to modulate several important cellular
functions. Many acute diseases were cured by small molecule binding in the active
site of protein either by inhibition or activation. Currently, there are several
docking programs to estimate the binding position and the binding orientation of
protein-ligand complex. Many scoring functions were developed to estimate the
binding strength and predict the effective protein-ligand binding. While the accuracy
of current scoring function is limited by several aspects, the solvent effect, entropy
effect, and multibody effect are largely ignored in traditional machine learning
methods. In this paper, we proposed a new deep neural network-based model named
DeepBindRG to predict the binding affinity of protein-ligand complex, which learns
all the effects, binding mode, and specificity implicitly by learning protein-ligand
interface contact information from a large protein-ligand dataset. During the initial
data processing step, the critical interface information was preserved to make sure
the input is suitable for the proposed deep learning model. While validating our
model on three independent datasets, DeepBindRG achieves root mean squared
error (RMSE) value of pKa (—logKy or —logK;) about 1.6-1.8 and R value around
0.5-0.6, which is better than the autodock vina whose RMSE value is about
2.2-2.4 and R value is 0.42-0.57. We also explored the detailed reasons for the
performance of DeepBindRG, especially for several failed cases by vina. Furthermore,
DeepBindRG performed better for four challenging datasets from DUD.E database
with no experimental protein-ligand complexes. The better performance of
DeepBindRG than autodock vina in predicting protein-ligand binding affinity
indicates that deep learning approach can greatly help with the drug discovery
process. We also compare the performance of DeepBindRG with a 4D based deep
learning method “pafnucy”, the advantage and limitation of both methods have
provided clues for improving the deep learning based protein-ligand prediction
model in the future.
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Machine Learning
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INTRODUCTION

Many complex diseases still prevailed due to lack of effective therapeutic drugs; for instance,
many type of cancers, dengue viral disease, Human Immunodeficiency Virus, hypertension,
diabetes, and Alzheimer’s disease (Iyengar, 2013; Zahreddine ¢ Borden, 2013). As the
mechanism and targets of these complex diseases gradually being explored, developing
effective drugs to block the disease related pathway by protein-ligand interaction becomes
possible (Copeland, Pompliano ¢ Meek, 2006). In the post genomics era, although

some novel therapeutic methods, such as immunotherapy, have tremendously progressed,
small molecule drug design is still a dominant way to combat diseases (Anusuya et al.,
2018). About 70% approved drugs in the DrugBank database belong to the small molecule
category (Wishart et al., 2008). Currently, the drug development is a long-term and
costly process, spending about billions of US dollars and taking several years to develop
a single on-market drug (Politis et al., 2017). In order to solve the paradox of increasing
requirement for new drug and low efficiency of drug development, many researches

are focused on developing computational methods to aid the drug discovery

(Heifetz et al., 2018).

Some molecular drugs exert their therapeutic effect usually by blocking or activating
protein targets. Computational virtual screening by molecular docking of ligands against
protein target is a widely used procedure to identify active drug like molecules (Chen, Li &
Weng, 2003; Verdonk et al., 2003; De Vries et al., 2007; Jayaram et al., 2012; Paul &
Gautham, 2016). The docking procedures consider various binding conformations by
rotation and transition of the ligands. Further, the ligand flexibility also was taken into
account in some docking softwares (Trott ¢ Olson, 2010). Some commercial and academic
free docking softwares also consider the flexibility of protein as well, but are
computationally more expensive (Friesner et al., 2004; Zhao & Sanner, 2007). Docking
score was often used to estimate the protein-ligand binding affinity. A typical scoring
function is usually based on physical or knowledge based and it usually contains Van der
Waals interaction term, electrostatic interaction term, hydrogen bond term, a highly
approximate solvation term and surface contact area term, sometimes even approximate
entropic term (Guo et al., 2004; Chaudhary, Naganathan ¢ Gromiha, 2015).

In recent years, there is a trend of using machine learning to predict the binding affinity
from structural data (Ragoza et al., 2017; Jiménez et al., 2018; Oztiirk, Ozgtir & Ozkirimli,
2018) and it is reviewed in detail (Ain et al., 2015; Wéjcikowski, Ballester ¢ Siedlecki,
2017). Comparing to the simplified and fixed scoring function, arbitrary functions were
used in machine learning models that are capable of transforming the input to the output
label in the training process. The machine learning approach allows greater flexibility
in selecting features compared to existing scoring functions. Traditional machine learning
requires predefined features based on expert knowledge. There are many protein-ligand
complex structure datasets available, some with experimental binding affinity value
(Colwell, 2018). These data can be used for training, validation, and testing for
the developed protein-ligand prediction model. Recently, deep learning has achieved
impressive success in image recognition and language processing. Since deep learning
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can easily create binary or multi-class classifiers or regressions, it has been relatively and
widely used by bioinformaticians (Min, Lee ¢ Yoon, 2017).

Deep neural network contains many more layers and enables the model stronger
in identifying more complicated patterns (LeCun, Bengio ¢ Hinton, 2015). Convolutional
neural networks (CNNs) are suitable for image recognition. The convolutional operations
reduce the number of weights tremendously compared with the fully connected neural
networks. The filters which share same weight can extract features automatically from the
data. There are several famous CNN models, for example, ResNet, which is the winner
of ImageNet Large Scale Visual Recognition Competition 2015 in image classification.
The deep learning approach benefits largely from the computational power of graphics
processing unit.

Besides of the model architecture and various parameter settings, how to represent
the protein-ligand interface data is a critical problem (Du et al., 2016). In a very recent
work (Stepniewska-Dziubinska et al., 2018), the authors developed a method “pafnucy” by
using four-dimensional (4D) matrix to construct the input data and three-dimensional
(3D) coordinate information as an extra dimension about atom property. In order to
reduce the computational spending, such method includes only the protein region that is
present around the ligand. Using 4D matrices to represent the protein-ligand information
can be very effective in keeping the spatial and chemical information, which is critical
to determine the binding affinity. Another advantage is that the 4D matrix format is
quite suitable for CNN learning.

Considering the above facts, we proposed a native-like protein-ligand identification
method by applying the ResNet CNN model with a two-dimensional (2D) binding
interface related matrix as input. To estimate the native protein-ligand effectively, the
interface information, such as atom pairs, atom type, and spatial information were kept
appropriately for balancing the computational efficiency and accuracy. Instead of using
4D to include all the spatial information and atomic type, we use 2D map to simplify the
information as a picture like format. ResNet allows much deeper layers to identify more
complex feature that may contribute to the protein-ligand binding affinity. Based on
the data processing and ResNet model, we built a regression model that can accurately
predict the protein-ligand binding affinity. By comparing our method performance in
diversified datasets with other methods including traditional docking scores and 4D based
deep learning scoring method, we show the generalized advantage and limitation of the
current protein-ligand affinity prediction method, and provide helpful clues to overcome
those limitations for protein science community.

MATERIALS AND METHODS

Dataset

The protein-ligand binding complex coordinates and binding strength data are retrieved
from PDBbind database version 2018 (Liu et al, 2015). The PDBbind dataset is a
comprehensive collection of high-quality protein-ligand complex structures along with
experimentally determined binding affinity values. The ligands with rare occurring atoms,
such as SE, SX, are excluded in our atom type list. We excluded redundant complexes
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Figure 1 The workflow of model training and testing. Full-size k&) DOT: 10.7717/peerj.7362/fig-1

present in the CASF-2013 (Li et al., 2018), CSAR_HiQ_NRC_set (Dunbar et al., 2013)
and Astex Diverse Set (Hartshorn et al., 2007) leading to a total of 15,425 crystallized
protein-ligand complexes. The data were then divided into 13,500 training set, 1,000
validation set, and 925 testing set and these datasets are non-redundant and independent.
Several familiar protein-ligand complex datasets were chosen as independent test sets,
including the CASF-2013 set, CSAR_HiQ_NRC_set, and Astex Diverse Set. Each of
the datasets contains 195, 343, and 74 protein-ligand complexes, respectively. These
datasets are used for testing the model performance as independent sets, and can help
in detecting generalization problems related to database specific artifacts. The structures
in three external datasets were prepared and stored in the format as in the PDBbind
database. The range of experimental binding affinity for each class has been provided
in Table S1A. The maximum binding affinity of the training set is around 13, the test set is
around 9 for group A and B and 13 for group C, and for the validation set, it is 11 for group
A and B and 14 for group C, respectively.

Preparation of protein-ligand complexes

In order to standardize the atom name and type in the PDB coordinate file, the Amber
tool was used to convert the ligand into mol2 format, and the protein into PDB format
(Case, 2018). Except for the B atom type, all other atom types in the ligand are taken from
the generalized amber force field. Together with the B atom type, a total of 84 atom types
were used for the ligand. The protein atom type is taken from the Amber99 force field,
with 41 types. The atom types are listed in Table S1B. We use one hot representation to
encode ligand type and protein atom type, respectively, resulting in an 84-dimension one
hot representation for each ligand atom type, and 41-dimension one hot representation
for each protein atom type. Further, we grouped ligands in the dataset into three types
such as A, B, and C based on LogP value (The group A have LogP < —1, group B have -1 <
LogP < 1 and group C have LogP > 1, respectively) for analyzing the performance of our
model which is presented in Table S2.
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The workflow of the methodology is shown in Fig. 1. In the initial step, we consider a
dataset from the PDBbind database and represent interface spatial information in 2D
format. The data has been used to develop a predictor by CNN and the ResNet model.
The resulting model is tested and validated by using standard procedures. Further, we
validated our model on various independent datasets from DUD.E database with no native
complexes. The detailed procedures for each and every step are presented in the
following sections.

Computation of protein—ligand atom pairs

We compute the interactions between protein atom and ligand atom in order to keep the
critical contact information. Several cutoff values were tried, and we choose 0.4 nm as
final setting. In order to keep the spatial information between the pairs, we cluster the
protein atoms into five groups using kmeans from the sklearn package (Pedregosa et al.,
2011). During the input file preparation, the atom pairs belonging to the same class group
were written nearby. In this way, the neighbor information of protein atoms in the
same class can be partly kept. The one hot representation of each atom type in the atom
pairs is concatenated in the same line. The concatenation representation of pairs was
written into files line by line. We define the maximum line number as 1,000, which cover
almost all of the pair numbers. In order to unify the input format, if the pair number

is smaller than 1,000, lines with all 0 will be filled, if the pairs number is larger than
1,000 which is rare, the later part will be removed.

Network architecture of the model

The keras (Chollet, 2015) package with tensorflow (Abadi et al., 2016) as backend was used
to construct the deep neural network model. We have constructed a ResNet and a normal
CNN model. The ResNet was chosen as the final network model, and the normal

CNN model was used for comparison. The main architecture of ResNet consists of seven
blocks, each of which contains one layer with kernel size of 1 x 1, one layer with kernel size
of 3 x 3, and one layer with kernel size of 1 x 1. Computational cost was significantly
reduced with this type of architecture. At the end of ResNet, a max pool layer and a flatten
layer were added to transform 2D feature map to one-dimensional (1D) vector. This 1D
vector could be used as input of final dense layer outputting the ultimate prediction.
RMSprop optimizer was used to train the network with 0.001 learning rate and 64
examples per mini-batch. Our ResNet model architecture is shown in Fig. 2. The normal
CNN model structure is shown in Fig. S1.

Training and testing

The training process automatically tunes the weights for minimizing the loss function.
The independent test set can guide the choice of hyperparameter. We have used different
input parameters. For instance, the influence of hydrogen, the influence of atom type,
and the influence of atom pair distance, respectively. The hyper-parameters such as epoch,
percentage of dropouts, were evaluated. The model complexity influence was evaluated by
comparing the performance of normal CNN model and ResNet model. We check the
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convergences by observing the change in mean squared error (MSE) value both in training
and test sets over the increasing epoch number. Figure S2A shows the performance of
the final model with different epoch numbers. The optimal performance of validation set is
around epoch 20 and the performance has no significant improvement in validation set
after this value. More training leads to overfitting and hence we adopt the epoch 20 as the
final number.

The limited data with complex network can lead to overfitting. We used different
dropout values to check the performance discrepancy among the training and validation
sets. Figure S2B shows the performance of the model for the weight dropout of 20-70%.
It was found that 50% dropout has the optimal performance; bigger dropouts will
reduce the accuracy, while lower dropout cause overfitting. To avoid overfitting,

a controlled dropout with multiple iterations is performed and Fig. S2B reveals the
50% dropout corresponding to the lowest MSE value for both the validation and
training dataset. The final model with epoch 20, and 50% dropout, is selected for
DeepBindRG.
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Evaluation and validation

The metrics such as mean absolute error (MAE), MSE and root mean squared error (RMSE),
mean absolute percentage error (MAPE) and symmetric mean absolute percentage error
(SMAPE), and correlation coefficient (R) value were used to estimate the performance of the
deep learning network model. Both MAE and RMSE are most common metrics used to
measure the average magnitude of the error. The RMSE gives a relatively high weight to large
errors, which is useful when large errors are undesirable. The correlation coefficient R was
used to measure the strength and direction of a linear relationship between predicted

and experimental measured binding affinity. Since the overfitting problem makes the
validation extremely important, we choose several independent validations sets to further
test the performance, and also compare the performance with the traditional docking score,
machine learning score, as well as some recently developed deep learning methods.

Protein—ligand binding affinity prediction without experimental
structure

In order to further validate the performance of DeepBindRG without experimental
structures, we choose four datasets randomly from DUD.E database (Mysinger et al., 2012)
and obtained affinity data from DUD.E web server. The four datasets are kith, jak2

and egfr, cdk2, which all contain protein structure as well as bunches of active ligands
with binding affinity. Since the data from DUD.E have no experimental structure of
protein-ligand binding complex, we use autodock vina docking software to generate the
protein-ligand binding complex. We used three strategies to choose the conformation
which are possibly near native to perform final prediction. They are DeepBindRG_X
(the top autodock vina predicted conformations were used as the final prediction),
DeepBindRG_Y (all the autodock vina predicted conformations were used as the
ligand-protein complex) and DeepBindRG_Z (among all the generated conformation, we
selected the top predicted value of DeepBindRG as final prediction). The pocket size
was set to include the active binding site, around 25, 25, 25 A. The docking center is
defined as the center of the protein pocket. For each protein-ligand docking, we generate
20 conformations. Each of the conformation is subjected to prediction by the DeepBindRG
model, and we choose the top score to represent the protein-ligand binding affinity.
We used autodock vina score for comparison with the score of DeepBindRG.

RESULTS

DeepBindRG performance on the training, validation, and testing sets
The DeepBindRG model’s performance on the training and test set were shown in Table 1.
The correlation coefficient between the prediction scores and experimentally measured
binding affinity was assessed with the Pearson’s correlation coefficient (R) and standard
deviation (RMSE). R = 0.6779 is achieved for the training dataset whereas R = 0.5829
and 0.5993 for validation and testing datasets. The errors on training and validation sets
monitored during deep learning are presented in Fig. S2. Prediction error was measured with
RMSE, MAE, MAPE, and sMAPE. In terms of sMAPE, our results are comparable with
autodock vina and pafnucy.
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Table 1 The performance of the ResNet regression model DeepBindRG, Autodock Vina, and

Pafnucy.
Data set R MAE MSE RMSE MAPE SMAPE Size
DeepBindRG performance
Training set 0.6779 1.1153 1.9896 1.4105 21.5282 8.8678 13,500
Validation set 0.5829 1.2067 2.267 1.5057 22.7713 9.6429 1,000
Testing set 0.5993 1.2049 2.241 1.497 22.4016 9.5895 925
CASF-2013 0.6394 1.4829 3.3015 1.817 28.8105 11.9433 195
CSAR_HiQ_NRC_set 0.6585 1.3607 2.9719 1.7239 63.0363 11.1805 343
Astex_diverse_set 0.4657 1.3355 2.6274 1.6209 20.7896 9.9863 74
Autodock Vina performance
CASF-2013 0.5725 1.9462 5.7647 2.401 38.1536 14.2026 195
CSAR_HiQ_NRC_set 0.5707 1.7268 5.237 2.2884 52.8847 13.89 343
ASTEX_diverse_set 0.422 1.7068 4.8518 2.2027 27.0829 11.7127 74
Pafnucy performance
CASF-2013 0.5855 1.5131 3.4192 1.8491 30.979 11.784 195
CSAR_HiQ_NRC_set 0.7167 1.2419 2.4787 1.5744 54.5188 9.973 343
Astex_diverse_set 0.5146 1.1732 2.1473 1.4654 19.6549 8.4168 74

The performance of our method after grouping the ligands based on LogP reveals the
binding affinity of hydrophobic ligands (Group B and C) can be predicted better than
the hydrophilic ligands (Group A) which is presented in Table S3. In order to check the
robustness of our model, we also performed five random sub-sampling validations
(Table S4). It is found that the model has similar performance (R = ~0.6) over each run.
The performance of the normal four-layer CNN model on the training and testing set are
also shown in Table S5. It is found that our model DeepBindRG performs better than
the CNN model (R = ~0.5). We note that the normal CNN have serious overfitting, while
adding large dropout would decrease both the testing and training set performance.

The performance of using element as atom type is shown in Table S6; the performance
(R = ~0.5) is not as good as DeepBindRG, but only using element is more flexible
for the application.

DeepBindRG performance on CASF-2013, CSAR_HiQ_NRC_set, and
ASTEX diverse_set

We have chosen CASF-2013, CSAR_HiQ NRC_set, and ASTEX_diverse_set as extra
testing data set, which contains 195, 343, 74 protein-ligand complexes, respectively. The
performance of DeepBindRG on these three extra testing datasets are presented in Table I,
by using R value, MAE, MSE, MAPE, sMAPE, and RMSE as performance indicators.
The R value for CASF-2013 and CSAR_HiQ NRC_set is about ~0.6, whereas it is low
for Astex_diverse_set (R = ~0.46). It is also observed from Table 1 that pafnucy performs
better than DeepBindRG on two datasets out of three, both in terms of correlation
coefficient and RMSE. After careful examination, we found there is one case 1YVF of
Astex Diverse Set was in the training set of pafnucy. Also, there are 201 cases of the
CSAR_HiQ_NRC_set are in the training set of pafnucy, which is about 201/343
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overlapping. Also, Pafnucy works well only for native protein-ligand complexes and its
performance on docked structure is poor as shown in Table 1. We have compared

the performance of autodock vina and pafnucy (Deep learning CNN method)
(Stepniewska-Dziubinska et al., 2018) with DeepBindRG, and the results are shown in
Table 1. The deep learning method pafnucy achieves R value of 0.5855 for CASF-2013,
0.7167 for CSAR_HiQ_NRC_set and 0.5146 for Astex_diverse_set, respectively.

The relatively better performance of pafnucy indicates the incorporation of detailed atomic
spatial information helps to improve prediction of protein-ligand binding affinity in
high resolution crystal structures.
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Figure 3 shows the correlation coefficient between predicted values over the experimental
values for the three datasets with only few outliers. We compared the performance of
DeepBindRG on the CASF-2013 dataset with other models extracted from the literature
reports (Li et al., 2014). The performance of DeepBindRG on the CASF-2013 achieves a
R value of 0.6394, which is better than other methods such as X-Score, ChemScore,
ChemPLP, PLP1, and G-Score, with R values of 0.61, 0.59, 0.58, 0.57, and 0.56,
respectively. The standard deviation in regression (SD) of DeepBindRG on the CASF-2013 is
1.7306, which is also better than X-Score, ChemScore ChemPLP, PLP1, and G-Score
which have SD value of 1.78, 1.82, 1.84, 1.86, and 1.87, respectively. The RMSE value of
DeepBindRG on the CASF-2013 is 1.8170, which is higher comparing to the RMSE values of
the validation and testing datasets (around 1.5). The possible reason is that many complexes
in the CASF-2013 contain relatively small ligands (about 44.62% ligand with size smaller
than 40), whereas training dataset has relatively lower percentage of such small ligands
(about 32.07% ligand with size smaller than 40).

The performance of DeepBindRG on the CSAR_HiQ_NRC_set achieves an R value of
0.6585, and a RMSE value of 1.7239, which indicates the relative strong correlation and
small deviation between predicted and experimental measured values. From Fig. 3B,
it is observed that the predicted value is highly correlated with the experimental value.
Only few outliers such as 1swk and 2c1q have most significant deviation between the
experimental affinity value and docking prediction (shown in Fig. S3). The possible reason
is that the two connecting aromatic ring regions (marked by green ellipse in figure)
occurred in the training data of DeepBindRG model. It should also be noted that the
R value for the ASTEX_diverse_set is not as good as other datasets (0.422), while it still
performs better prediction than the autodock vina.

Ten failed predictions by autodock vina on the CASF-2013 were shown in Table 2 and
Fig. 4. Six failures are due to overestimation of hydrophobic interaction, especially pi-pi
interaction, and three failures are due to overestimation of hydrogen bond interaction.
4edw was seriously underestimated by autodock vina, because of the surrounding charged
amino acids. The interaction mediated by water or ion may be seriously underestimated by
autodock vina, as in the 4edw case, the pocket is formed in the core of protein, it can
contain more water molecules than other polar cases. The proteins like 1nvq, 2yki, 3coy,
3e93, 3g2n, and 4dew have extra volume space after ligand binding, indicate possible
solvent effect on these cases (Table S7). We suspect that underestimation of the
water effect will artificially increase the autodock vina predicted binding affinity of
hydrophobic dominant binding (e.g. 1nvq, 2yki, 3coy, 3e93), while decrease in autodock
vina predicted affinity is due to polar dominant binding (4dew). The autodock vina
predicted binding affinity of 3g2n is overestimated due to hydrogen bond and
charge-charge interaction.

DeepBindRG performance on DUD.E dataset

In order to further test the effectiveness of our method, we selected the data samples from
DUD.E dataset. Since the DUD.E dataset does not contain the experimental protein-
ligand binding complex, it is a much more challenging test for our DeepBindRG model.
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Table 2 The selected cases that DeepBindRG had significant better performance than the vina score
in the CASF-2013 data set.

PDBID  Experimental  Vina score DeltaG_vina DeepBindRG DeltaG_DeepbindRG
affinity predicted affinity

2yki 9.46 16.1137 6.6537 8.1597 1.3003
4dew 7 0.6853 6.3147 5.8712 1.1288
3acw 4.76 10.2398 5.4798 6.2444 1.4844
3n86 5.64 10.9262 5.2862 6.1666 0.5266
1gpk 5.37 10.1323 4.7623 6.3859 1.0159
3e93 8.85 13.3378 4.4878 7.3438 1.5062
3g2n 4.09 8.5575 4.4675 4.9792 0.8892
3su2 7.35 11.6916 4.3416 6.9883 0.3617
Invq 8.25 12.5577 4.3077 6.6401 1.6099
3coy 6.02 10.2338 4.2138 5.9635 0.0565
Vina MAPE 79.9297
Vina sMAPE 15.3444
Vina correlation 0.4362
DeepBindRG MAPE 29.3784
DeepBindRG sMAPE 7.5111
DeepBindRG correlation 0.8519

Note:

We define the significant better as DeltaG_vina >4, while DeltaG_DeepbindRG <2. The average error and correlation
coefficient are provided below the table.

The performance of DeepBindRG, Autodock vina, and pafnucy on four randomly selected
subsets are shown in Table 3. The autodock vina score has larger RMSE values for all
the four subsets, 3.9817, 2.4542, 2.5514, and 1.795, which indicates its prediction hardness
in some of such challenge cases. We have tested the performance of our model with three
strategies for final conformation selection, X, Y, and Z.

Except kith dataset, the DeepBindRG_Z shown better performance than
DeepBindRG_X, DeepBindRG_Y in terms of RMSE. The correlation coefficient between
predicted and experimental binding affinities are presented in Fig. S4. The DeepBindRG_Z
resulted in top predicted score of DeepBindRG as final prediction among all the
generated conformation has better performance than other strategy. Although, the most
predictive model seems to be DeepBindRG_Z on the Kith dataset (R = 0.66), But it is
the one with the largest RMSE. All other models are completely unpredictive and the
RMSE is just quantifying the amplitude of the noise or the spread of experimental
values themselves. We notice that for some prediction cases of DeepBindRG, the R value is
close to zero, while the RMSE value is relatively small. However, it should be noted that the
accuracy of DeepBindRG has a lot of room for further improvement. The major challenges
are: (1) how to generate conformations as close as possible to native structure, and (2) how
to select a conformation that is native-like. From Table 3, it is observed that the
inconsistent prediction of all the three methods on four datasets with no experimental
structure indicates the discrepancy between testing and real application. The predictions
of Jak2 and egfr datasets are extremely poor, this is because of high flexibility of
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Figure 4 Examples of ligand-protein interaction in the CASF-2013 data set that can be correctly identified by our DeepBindRG, but are not
predicted by vina score (DetaG_vina >4, while DetaG_DeepbindRG <2). Among them, the affinity of 4dew is underestimated, while all other nine
cases are overestimated. The vina score seems to overestimate pi—pi interaction (A, 1gpk; B, 1nvq; C, 2yki; D, 2acw; F, 3e93) hydrophobic interaction
(I, 3su2) and hydrogen bond interaction (E, 3coy; G, 2g2n; H, 3n86), and underestimate polar/electrical interaction, or interaction meditated by
water or ion (J, 4edw). Full-size K&l DOT: 10.7717/peerj.7362/fig-4
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Table 3 The performance of the DeepBindRG and autodock vina on the datasets from DUD.E

database.

R MAE MSE RMSE Size
kith dataset
DeepBindRG_X* 0.4742 1.823 4.2923 2.0718 57
DeepBindRG_Y* 0.3156 1.3382 2.6312 1.6221 1,127
DeepBindRG_Z* 0.5588 2.123 5.336 2.31 57
Vina score 0.6664 3.8567 15.8536 3.9817 57
Pafnucy” 0.4673 3.2789 11.6922 3.4194 57
Jak2 dataset
DeepBindRG_X* —0.028 1.1715 2.2772 1.509 107
DeepBindRG_Y* 0.0189 1.4913 3.2848 1.8124 2,078
DeepBindRG_Z* —0.0195 0.9314 1.525 1.2349 107
Vina score 0.1037 2.1678 6.0232 2.4542 107
Pafnucy” —0.1186 1.0141 1.5354 1.2391 107
Egfr dataset
DeepBindRG_X* —0.0705 1.124 2.1048 1.4508 542
DeepBindRG_Y* —-0.0241 1.3153 2.8598 1.6911 10,614
DeepBindRG_Z* —0.0314 1.043 1.7365 1.3177 542
Vina score 0.0146 2.2055 6.5095 2.5514 542
Pafnucy” 0.1701 1.1253 1.8209 1.3494 542
Cdk2 dataset
DeepBindRG_X* 0.2205 1.0317 1.61 1.2689 474
DeepBindRG_Y* 0.1947 1.3589 2.5988 1.6121 9,027
DeepBindRG_Z* 0.2797 0.7854 0.9238 0.9612 474
Vina score 0.0554 1.5393 3.2222 1.795 474
Pafnucy” 0.1230 0.7346 0.8277 0.9098 474

Notes:

DeepBindRG_X": the top autodock vina predicted conformations were used as the final prediction.
DeepBindRG_Y™: all the autodock vina predicted conformations were used as the ligand—protein complex.
DeepBindRG_Z™: among all the generated conformation, we selected the top predicted value of DeepBindRG as final
prediction.

Pafnucy”: among all the generated conformation, we selected the top predicted value of Pafnucy as final prediction.

amino acid residues in the ligand binding pocket. Since the ligand binding pocket is
flexible, receptor reshapes around pockets, and stabilizes the complex by complementary
hydrophobic interactions and specific hydrogen bonds with the ligand. The fluctuating
nature of ligand binding pockets and inaccurate identification of near native pockets
may be the reason for inconsistent prediction of all the three methods on

DUD.E datasets.

DISCUSSION

The increasing availability of experimental protein-ligand complexes have allowed us to
learn the underlying rules of protein-ligand interactions from the data by deep learning
method. However, our work shows several challenges need to overcome before deep

learning-based protein-ligand affinity estimators when applied to real applications. Both
the DeepBindRG and pafnucy have poor performance on the four datasets from DUD.E
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while comparing with other extra test sets which have experimental conformation,

this indicates the current method needs improvement in close-to-real application.

The structure-based method requires high accurate protein-ligand binding conformation
before prediction, while the accurate protein-ligand binding conformation is hard to
obtain and such process is relatively time-consuming.

There are several situations that can seriously affect the prediction accuracy: (1) the
native-like conformation is not in the conformation pool (usually generated by molecular
docking); (2) the criterion to select native-like conformation is not accurate enough;

(3) the model trained by the accurate experimental structures cannot identify near to
native conformation. The distribution discrepancy between training data and real
application data is another challenge. In the training dataset, the strong binders are
dominant, while in the real application, the non-binders are dominant, and weak binders
are usually more than the strong binders. This can lead to the poor performance of the
model. Our work shows above generalized problem of current deep learning methods, and
indicates protein-ligand binding estimator models should focus to solve such problem
instead of pursuing high accuracy on data which have experimental structure. A possible
solution is to add many near native conformations to the training data set, for instance, the
near-native as positive, and docked non-binder complexes as negative. Another possible
solution is to increase the accuracy and efficiency of the docking method in sampling
native-like conformation.

CONCLUSION

In the present work, we developed a deep learning model “DeepBindRG” for identifying
native-like protein-ligand complex. The accuracy of our method for evaluating
protein-ligand binding affinity is comparable with pafnucy which uses much complicated
4D input representation. In normal cases, the simple deep learning model is susceptible
to the artificial enrichment of the dataset, resulting in overly optimistic predictions of
training dataset and test data set; however, DeepBindRG has performed well for several
external independent data sets from different source. Since the datasets from DUD.E do
not contain a native protein-ligand, this test is very challenging and close to real
application. In this paper, we demonstrated the potential of ResNet and CNNs in
identifying native-like protein-ligand complexes than other publicly available popular
methods. Our result shows the more complicated CNN model ResNet can improve the
prediction result comparing to the normal CNN. We also show that our model using more
elaborate atom types from force field as input performs better than the simple element-
based input. Using more spatial information of the interface between protein and ligand
will aid to predict the affinity strength by implicit learning critical factors that determine
protein-ligand interactions. By comparing with the 4D based CNN model pafnucy, our
research shows the generalized problem (extreme dependent on native protein-ligand
conformation) of the current deep learning model in protein-ligand affinity prediction,
and indicates several critical point for developing high accurate protein-ligand affinity
model: keeping spatial information; using deeper neural network to learn more abstract
information; making the training and testing data set have the same feature distribution as
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the real application; keeping the elaborately atom type information. We believe
DeepBindRG is a promising model to facilitate the drug development process, especially in
discovering novel biologically active lead compounds for specific therapeutic protein
targets. Our software is freely available for download in the GitHub public repository
(https://github.com/haiping1010/DeepBindRG).
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