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ABSTRACT

The anthocyanin content in leaves can reveal valuable information about a plant’s
physiological status and its responses to stress. Therefore, it is of great value to accurately
and efficiently determine anthocyanin content in leaves. The selection of calibration
method is a major factor which can influence the accuracy of measurement with
visible and near infrared (NIR) spectroscopy. Three multivariate calibrations including
principal component regression (PCR), partial least squares regression (PLSR), and
back-propagation neural network (BPNN) were adopted for the development of
determination models of leaf anthocyanin content using reflectance spectra data (450—
600 nm) in Prunus cerasifera and then the performance of these models was compared
for three multivariate calibrations. Certain principal components (PCs) and latent
variables (LVs) were used as input for the back-propagation neural network (BPNN)
model. The results showed that the best PCR and PLSR models were obtained by
standard normal variate (SNV), and BPNN models outperformed both the PCR and
PLSR models. The coefficient of determination (R?), the root mean square error
of prediction (RMSE,), and the residual prediction deviation (RPD) values for the
validation set were 0.920, 0.274, and 3.439, respectively, for the BPNN-PCs model, and
0.922, 0.270, and 3.489, respectively, for the BPNN-LVs model. Visible spectroscopy
combined with BPNN was successfully applied to determine leaf anthocyanin content
in P. cerasifera and the performance of the BPNN-LVs model was the best. The use
of the BPNN-LVs model and visible spectroscopy showed significant potential for the
nondestructive determination of leaf anthocyanin content in plants.

Subjects Agricultural Science, Plant Science, Spatial and Geographic Information Science

Keywords Anthocyanin content, Reflectance spectra, Back-propagation neural network, Partial
least squares analysis, Principal component analysis

INTRODUCTION

Anthocyanins are a large group of water soluble flavonoid pigments (Strack, 1997; Iwashina,
2000), the common pigment, that occur in all tissues of higher plants, including the leaves,
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stems, roots, flowers, and fruits. They are responsible for a wide range of plant colors,
such as blue, purple, violet, magenta, red and orange (Fennema, 1996; Lai et al., 2019),
but they often appear red (Gould et al., 1995; Van Den Berg ¢ Perkins, 2005; Gould, Davies
& Winefield, 2009). Anthocyanins serve many functions, including pollinator attraction,
as protectants (Gould, Davies & Winefield, 2009), as antioxidants (Gould, McKelvie ¢
Markham, 20025 Yang et al., 2017), and as osmoprotectants (Chalker-Scott, 1999). These
compounds also play a photo-protective role (Liakopoulos et al., 2006), and act as optical
barriers (Close ¢ Beadle, 2003; Solovchenko ¢ Merzlyak, 2008). A number of environmental
stresses, such as strong light, low temperature, UV-B irradiation, wounding, drought,
bacterial and fungal infections, deficiencies in nitrogen, phosphorus and potassium, and
certain herbicides and pollutants can result in the significant accumulation of anthocyanins
(Saure, 1990; Garriga et al., 2014; Zhang et al., 2018), which are thus often referred to as
“stress pigments” (Chalker-Scott, 1999). In addition, anthocyanins accumulate transiently
in juvenile and senescing leaves in many plant species under unfavorable conditions
(Karageorgou ¢ Manetas, 2006; Merzlyak et al., 2008; Zeliou, Manetas & Petropoulou,
2009; Garriga et al., 2014). Thus, anthocyanin content can serve as an indicator of leaf
senescence and environmental stresses in many plant species (Neill & Gould, 1999; Gitelson
& Merzlyak, 2004), so the accurate detection and quantitative assessment of anthocyanin
can provide important and valuable information about the physiological responses

and adaptation of plants to environmental stresses (Gamon & Surfus, 1999; Gitelson,
Chivkunova & Merzlyak, 2009; Ustin et al., 2009). The traditional method to determine
anthocyanin content has been the wet-chemical method (Gitelson & Merzlyak, 2004;
Gitelson, Merzlyak & Chivkunova, 2001; Steele et al., 2009). This method is laborious, time-
consuming, expensive, and requires the destruction of leaves for measurement (Solovchenko
et al., 2001; Merzlyak, Solovchenko ¢ Gitelson, 2003; Steele et al., 2009). In addition, this
measurement method does not allow the measurement of changes in pigments over time
in a single leaf (Garriga et al., 2014).

Visible and near infrared reflectance (Vis/NIR) spectroscopy has been widely used in
recent decades to measure pigments. The spectral absorbance properties of pigments are
present in the reflectance spectra of leaves, thus measurements of reflected radiation can be
used as a non-destructive method to quantify pigments (Blackburn, 2007). Non-destructive
technology based on spectrum analysis has several advantages over conventional methods,
including simplicity, sensitivity, inexpensive, good reliability of the method, and high
performance (Viscarra Rossel, McGlynn & McBratney, 2006; Kira, Linker ¢» Gitelson, 2015;
Nagy, Riczu ¢ Tamds, 2016). This technique can be applied at different spatial scales
and in a large number of samples (Visia ¢ Gitelson, 2005; Lobos et al., 2014). Compared
with traditional multispectral techniques, hyperspectral remote sensing, which provides a
continuous reflectance spectrum with narrow wavebands, can characterize vegetation and
provide a considerably greater amount of information than what can be obtained using
traditional multispectral techniques (Goetz, 2009; Mulla, 2013). Therefore, recent research
has focused on developing techniques to analyze plant spectra to more accurately quantify
pigment concentrations (Blackburn, 2007). Most research has focused on the estimation
of chlorophyll and carotenoid content, but little is known about anthocyanin estimation
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from reflectance spectra, and most pigment measurement studies utilize linear/or simple
nonlinear models (Chappelle, Kim ¢» McMurtrey, 1992; Gitelson, Merzlyak ¢ Chivkunova,
2001; Blackburn, 2007). For anthocyanins, various models (called vegetation indices) have
been developed based on the spectral information (e.g., Gitelson, Merzlyak ¢ Chivkunova,
2001; Gitelson & Merzlyak, 2004; Gitelson et al., 2006; Gitelson, Chivkunova & Merzlyak,
2009; Van Den Berg ¢ Perkins, 2005; Merzlyak et al., 2008; Steele et al., 2009; Garriga et al.,
2014; Liu et al., 2015; Manjunath, Shibendu ¢ Dhaval, 2016).

The empirical statistical approach is a main approach to building relationships between
spectral data and biochemical or biophysical parameters. The modern spectral technique
(especially hyperspectral data) generally produces abundant data for the analyzed object.
However multi-collinearity is a common problem inherent to hyperspectral dataset
(Mirzaie et al., 2014). There are convoluted interrelations between individual values of
reflectance and biological properties (Garriga et al., 2014). Moreover univariate regression
models based on vegetation indices, which typically use two to three bands, cannot
capture the intrinsic relationships between the observed remote sensing data (especially
hyperspectral data) and biochemical or biophysical parameters of interest (Camnips-Valls
et al., 2006). Furthermore, the selection of calibration method is a main factor influencing
measurement accuracy with visible and near infrared reflectance (Vis/NIR) spectroscopy
(Mouazen et al., 2010). Hence, it is important to use multivariate calibration algorithms to
better develop the relationship between spectral data and the analyzed object and compare
predictive performance (Mouazen et al., 2010; Li ¢ He, 2010). Linear and nonlinear
multivariate calibration techniques include principal component regression (PCR), partial
least squares regression (PLSR), and back-propagation neural network (BPNN), and have
been widely and successfully applied in spectra analysis (Vasques, Grunwald ¢ Sickman,
2008; Liu et al., 2008; Atzberger et al., 2010; Li ¢ He, 2010; Kinoshita et al., 2011; Mirzaie et
al., 20145 Gomes et al., 2017; Wang et al., 2018). The PCR and PLSR analyses are the most
common techniques for spectral calibration and prediction (Viscarra Rossel, McGlynn &
McBratney, 2006), and these two methods may reduce the effect of the multi-collinearity
problem. The artificial neural network (ANN) has many advantages such as nonlinear
mapping, high accuracy for learning, and good robustness (Atkinson, 1997; Keiner ¢ Yan,
1998). For this reason, artificial neural networks are increasingly used in visible and near
infrared reflectance (Vis/NIR) spectroscopy (Liu et al., 2008; Gomes et al., 2017).

Prunus cerasifera (P. cerasifera), commonly called cherry plum, is a Prunus deciduous
small trees that is natives to western Asia and the Caucasus. Its leaves contain high
amounts of anthocyanins, which makes them appear purple. P. cerasifera has become a
very popular ornamental landscape tree in large part because its showy purple foliage
retains excellent color throughout the growing season. The leaves of P. cerasifera exhhibit a
wide range of anthocyanin contents, making P. cerasifera a good object to study the content
of leaf anthocyanins in plants. To the best of our knowledge, no work has explored the
combination of PLSR or PCR with ANN for the analysis of leaf anthocyanin content of
P. cerasifera using visible spectroscopy (450—600 nm).

In this study, the leaf anthocyanin content of P. cerasifera was investigated with visible
spectroscopy based on three multivariate calibrations. The objectives of the present
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work were: (1) to investigate the feasibility of using visible spectroscopy to determine
the anthocyanin content in P. cerasifera leaves; (2) to determine the optimal spectral
pretreatments after the comparison of Savitzky-Golay (SG) smoothing, standard normal
variate (SNV), multiplicative scattering correction (MSC), first derivative(1-Der), standard
normal variate in combination with transformed baseline (SNV+TB), Savitzky-Golay
smoothing in combination with first derivative (SG+1-Der), and multiplicative scattering
correction in combination with first derivative (MSC+1-Der); (3) to develop the best
calibration models to estimate the leaf anthocyanin content in P. cerasifera comparing the
prediction power of principal component regression (PCR), partial least squares regression
(PLSR), and back-propagation neural network (BPNN). The results of this study are a
preliminary step forward for improving monitoring of the growing status and biological
parameters of plants using spectroscopic techniques.

MATERIALS AND METHODS

Leaf samples

In total, 456 pieces of P. cerasifera leaves were collected from the Northwest A & F University
campus between March and May of 2015. These leaves, ranging in color from dark green
with little red to completely red, were picked from P. cerasifera of different ages and oriented
in different directions from the stem. After detachment, the leaves were immediately sealed
in plastic bags with a small amount of water, labeled as different samples, and then placed
on ice for transport to the laboratory. Healthy and homogeneously colored leaves without

visible symptoms of damage were used for experiments.

Laboratory analyses of anthocyanin content

The anthocyanin content was quantitatively measured from the same leaf samples used
for reflectance measurement. Several small pieces were cut from the leaves and then 0.15
g of samples were extracted with 0.1 mol L™! hydrochloric acid methanol solution using
the soaking extraction method. For total anthocyanin extraction, 24 h of soaking time was
performed. The resulting extracts were immediately assayed spectrophotometrically, and
the anthocyanin content was expressed as a function of leaf amount (i.e., wumol g~!). The
methods used are described in detail in the literature (Xiong et al., 2003).

Spectrum measurement and pretreatment

The reflectance spectra of the leaves were measured with a SVC HR-1024i spectrophotome-
ter (Spectra Vista Corporation, Poughkeepsie, N, USA) equipped with a SVC reflectance
probe and interfaced with a personal computer. During measurement, an internal tungsten
halogen lamp provided artificial illumination. The HR-1024i spectrophotometer measures
radiance with a spectral resolution of 3.5 nm in a wavelength range of 350 to 1,000 nm.
Before measuring the reflectance spectra of the leaves reference measurements were made
by rotating the sample holder plate to position the white reference panel facing the probe
window. Target measurements were then taken by inserting a leaf between the sample
holder plate and the window. For accurate measurement of the reflectance of the leaves,
three reflectance measurements were acquired for each leaf and each sample included four
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Figure 1 Correlation coefficient between anthocyanin content and Spectra of P. cerasifera leaves.
Full-size Gal DOI: 10.7717/peerj.7997/fig-1

leaves of the same color. Thus, average values were calculated of twelve spectra sample to
establish a single representative reflectance spectrum.

The anthocyanin absorption peaks in situ were around 540-550 nm in the visible/near-
infrared (Vir/NIR) rang (Gitelson, Merzlyak ¢» Chivkunova, 20015 Merzlyak et al., 2008).
The analysis showed a high correlation between total anthocyanin content and reflectance
spectra between 350 and 600 nm, and relative low correlation at the other wavebands
(Fig. 1). Signals in the first 100 nm were removed to avoid a low signal-to-noise ratio.
Finally, only wavelength bands between 450 and 600 nm, which avoided the effect of leaf
structure and the strongest absorption of chlorophyll and water, were employed for the
calculations.

To remove system noises and external disturbances and to select the best pretreatment
method, some pretreatments were performed on the spectra and the results were compared
(Liu et al., 2008; Liu ¢ Liu, 2013). The reflectance spectra were first imported into the SVC
HR-1024i software (Spectra Vista Corporation, USA). Overlapping detector data were
removed, and then resampling in 1 nm intervals was performed. Next, seven types of
pretreatments were applied and compared: standard normal variate (SNV), multiplicative
scattering correction (MSC), Savitzky-Golay smoothing (SG), first derivative (1-Der),
standard normal variate combined with transformed baseline (SNV+TB), multiplicative
scattering correction combined with first derivative (MSC+1-Der), and Savitzky-Golay
smoothing combined with first derivative (SG+1-Der). SNV, MSC, and SG smoothing
were applied to remove the multiplicative effects of scattering, random noise, and spectral
baseline shift (Chu, Yuan & Lu, 2004; Zhao, Qu & Cheng, 2004; Liu et al., 2008; Bao et al.,
2012). The first derivative pretreatment method was applied to decrease the baseline shift
(Liu et al., 2008). The raw reflectance spectra and preprocessed spectra of P. cerasifera
leaves are shown in Figs. 2A—2H. All pre-processing steps were implemented using the
Unscrambler 9.7 (Camo Inc., Oslo, Norway).

Liu et al. (2019), PeerdJ, DOI 10.7717/peerj.7997 519


https://peerj.com
https://doi.org/10.7717/peerj.7997/fig-1
http://dx.doi.org/10.7717/peerj.7997

Peer

Reflectance (Raw)
Reflectance (SNV)

T T T T ! T T T T |
430 40 510 540 570 600 4 480 510 50 570 &0
wavelenth nm) Wavelenth (nm)

Reflectance (MSC)
Reflectance (SG)

450 480 510 540 570 600

Wavelenth {nm)

Reflectance (MSC+-Der]

Reflectance (1-Der)
o
2
{
)

Reflectance (SNV+BS)
Reflectance (SG+1-Der)

450 480 510 540 670 600 450 480 510 540 570 600
Wavelenth ¢nm) Wavelenth (nm)

Figure 2 Spectra of P. cerasifera. leaves. (A) The raw spectra of P. cerasifera leaves; (B) SNV; (C) MSC;
(D) SG; (E) 1-Der; (F) MSC+1-Der; (G) SNV+TB; (H) SG+1-Der.
Full-size &al DOI: 10.7717/peerj.7997/fig-2

Establishment of calibration models
Principal component regression

Principal component regression (PCR) is a method to relate variations in a response variable
(Y-variable) to the variations of several predictors (X-variables), with explanatory or
predictive purposes. This method performs particularly well when the various X-variables
express common information with a high amount of correlation, or even collinearity
(Martens ¢» Naes, 1989). The optimal number of principal components (PCs) for a model
was determined by examining a plot of leave-one-out cross-validation residual variance
against the number of loadings (Mouazen et al., 2010).

Partial least squares regression

Partial least squares (PLS) analysis is a bilinear regression method (Arana, Jaren ¢ Arazuri,
2005) is widely utilized as a multi-analysis method in spectroscopy (Soriano et al., 2007; Li
¢ He, 2010; Wu et al., 2011; Zhang et al., 2018). Partial least-squares regression can reduce
data noise and computation time, with only minor loss of the information contained in the
original variables. The main procedure is to extract the PLS factors and determine the linear
correlationships between the PLS factors and chemical constituents. In the development
of the PLS model, leave-one-out cross-validation was used to evaluate the quality and to
prevent overfitting of the calibration model (Mouazen et al., 2010). All calculations of the
PCR and PLSR were also implemented based on the Unscrambler V9.7.
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Back-propagation neural network

The most popular neural network is BPNN, a type of nonlinear neural network used to
solve classification and regression problems. BPNN models usually provide better results
than traditional statistical methods. However, extreme long training time requirements
and over-fitting are two main limitations of ANN calibration when using raw spectral data
points or when too many spectral data points are selected as inputs (Mouazen et al., 2010).
Many studies have shown that adopting PCs or LVs as input for BPNN is an effective
way to reduce computation resources and improve the robustness of ANN calibration
(He et al., 2006; Janik et al., 2007; Mouazen et al., 2010; Mirzaie et al., 2014). Hence, in this
study BPNN analyses were performed using LVs obtained from PLSR (BPNN-LVs) and
PCs obtained from PCA (BPNN-PCs). The first five PCs (spectra preprocessed by SNV)
were considered as input variables in this study, since they could explain nearly 95% of
the variance. The first five LVs (spectra preprocessed by SNV) also were applied as input
variables of the BPNN model, as the residual variance was the first minimum value (Brown,
Bricklemyer ¢ Miller, 2005).

A standard three-layer feed-forward network composed of one input layer, one hidden
layer, and one output layer (one node) is usually applied for spectral calibration and
prediction (Liu et al., 2008; Mouazen et al., 2010; Mirzaie et al., 2014; Gomes et al., 2017;
Wang et al., 2018). Therefore a simple-hidden-layer neural network was used in this study
to estimate the anthocyanin content in P. cerasifera leaves. Each node in ANN represents
a “neuron”, and is associated with a transfer (activation) function that sums the outputs
from that node and passes them to the next layer in the network. The tan-sigmoid function
and a linear function were respectively adopted in the hidden and in the output layers. The
numbers of neurons in the hidden layer was optimized by trial-and-error. For network
training, we used Levenberg—Marquardt (TRAINLM), and the early stopping technique was
used to avoid overfitting problems (Demiuth, Beale ¢ Hagan, 2010; Mirzaie et al., 2014). All
BPNN calculations were implemented using the Neural Networks toolbox of MATLAB.
The theory of ANN has been described previously (He et al., 2006). During training, the
number of nodes in the hidden layer was constantly readjusted. When the number of nodes
of the hidden layer was set at five, a very good result was achieved. In this way, the BPNN
model for anthocyanin content was obtained. The structure contained one input layer with
five modes, and the hidden layer contained five nodes and one output node.

To ensure that the calibration or validation set included samples that covered the
complete range of each chemical parameter, the 114 sample data (456 pieces of leaves,
four leaves per sample) were arranged in ascending order according to anthocyanin
content. Arranged from the lowest to the highest value, two of every three samples
were selected for inclusion in the calibration set (76) and the remaining one-third of
the samples were considered the validation set (38). Therefore, each sample was only
used in either the calibration or the validation sets, but not both sets. To compare the
performances of different calibration models, the same calibration and validation sets
were used to test all of the models. Previous studies have assessed the accuracy and
the estimating performance of different models in terms of absolute prediction accuracy
(RMSE), the coefficient of determination (R?), and the residual prediction deviation (RPD)
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Table 1 The statistical values of anthocyanin content.

Data sets Sample Minimum Maximum Mean Standard
number deviation

Calibration 76 0.36 4.61 1.99 0.98

Valibration 38 0.41 3.96 1.93 0.95

All samples 114 0.37 4.61 1.97 0.97

(Saeys, Mouazen & Ramon, 2005; Viscarra Rossel, McGlynn ¢ McBratney, 2006; Vasques,
Grunwald & Sickman, 2008; Mouazen et al., 2010; Kinoshita et al., 2011; Hu, 2013; Du et al.,
2013; Mirzaie et al., 2014; Gomes et al., 2017). In this study, the performance of all models
was evaluated by the following indices: the coefficients of determination of calibration
(R%.a1) and validation (R?,,), the root mean square errors of calibration (RMSE.) and
validation (RMSE,), and the residual prediction deviations of calibration (RPD,) and
validation (RPDy,). The detailed formulas of these indices are as published previously (Hu,
2013). Based on experience and previous reports (Viscarra Rossel, McGlynn ¢ McBratney,
20065 Saeys, Mouazen ¢ Ramon, 2005), the R? and RPD values were classified as follows:
R? < 0.5 with 1.0 < RPD < 1.4 indicates poor models/predictions able to distinguish only
high and low values; 0.5 < R2 <0.65, 1.4 < RPD <1.8 indicates fair models/predictions
which can be used for assessment and correlation; 0.65 < R? < 0.80, 1.8 < RPD <2.0
indicates good models/predictions where quantitative predictions are possible; 0.80 <R?
<0.90, 2.0 < RPD <2.5 indicates very good quantitative models/predictions, and R? > 0.90,
RPD > 2.5 indicates excellent models/predictions. Generally, a good model should have
higher R? and RPD values, and lower RMSE values.

RESULTS

Features of spectra

The raw reflectance spectra of P. cerasifera leaves are shown in Fig. 2A. The processed
spectra, SG, SNV, MSC, 1-Der, SNV+TB, SG+1-Der, and MSC+1-Der values are shown in
Figs. 2B—2H, respectively. The raw spectra appeared homogeneous, as can be seen by visual
inspection of the data in Fig. 2A. As shown in Fig. 2A, the spectral curves are relatively flat
between 450 and 500 nm, but the raw spectra between 500 and 600 nm show significantly
different features and a notable decrease in the green range around 550 nm with increased

anthocyanin content.

Statistical values of properties of interest

The statistics of the measured anthocyanin content for the 114 P. cerasifera leaf samples
determined in this study are listed in Table 1 and include the minimum, maximum, mean,
standard deviation (S.D.), and number of samples for the different data sets. The reference
values of anthocyanin content exhibited a broad range of variation, a result that facilitated
calibration.
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Table 2 Prediction results of anthocyanin content by PCR with different preprocessing in calibration
and validation sets.

Pretreatment PCs Calibration Validation
R, RMSE, RPD, R, RMSE, RPD,,
Raw 5 0.7-77 0.462 2.117 0.7-43 0.477 1.973
SNV 5 0.934 0.250 3911 0.888 0.315 2.988
MSC 7 0.915 0.286 3.419 0.844 0.372 2.530
SG 5 0.776 0.463 2.112 0.741 0.479 1.965
1-Der 6 0.810 0.427 2.290 0.843 0.373 2.523
MSC+1-Der 8 0.881 0.337 2.902 0.881 0.337 2.793
SNV+BS 5 0.933 0.253 3.865 0.864 0.347 2.712
SG+1 —Der 8 0.857 0.370 2.643 0.864 0.348 2.705
PCR models

PCR analysis was applied for the calibration and prediction of anthocyanin content. Eight
different models for anthocyanin content were developed with different spectra. Different
PCs were applied to build the optimal calibration models. The prediction results of the
calibration and validation sets are shown in Table 2. Comparison of these models show
that the spectra preprocessed by SNV displayed the best performance for anthocyanin
content prediction. The values of R?,,;, RMSE p> and RPDy, in the validation set from the
optimal PCR model were 0.888, 0.315, and 2.988, respectively. This prediction accuracy
was therefore classified as very good. The performances using SG and Raw were poor,
with the R?,; and RPDy,; for both models that were lower than 0.80 and 2.0, respectively.
According to the aforementioned criteria, we can only say that these two models might
be of some value in quantitative prediction of anthocyanin content. However, the other
five PCR models yielded RPD,, values above 2.5 and the R?,, values in the range of 0.80
< R?<0.90, which indicated the suitability of these models for very good quantitative
predictions of leaf anthocyanin content. Figure 3A shows the reference versus predicted
value plots for anthocyanin content using the optimal PCR model. The closer the distance
the sample points are to this solid line represents better predictive results. As indicated in
Fig. 3A, the sample points in the calibration and validation sets were distributed near, but
not tightly close to the ideal line. Also, several dots were lovated far from the ideal line,
indicating a large predictive error.

PLSR models

Partial least squares regression (PLSR) models using the pretreatment spectra were
also tested and the results are shown in Table 3. According to the results, the optimal
preprocessing for anthocyanin content also was SNV, based on the values of the prediction
performance evaluation indices. The values of the optimal determination coefficients
R%,a1, RMSE,,, and RPD,, for the validation set were respectively 0.901, 0.295 and 3.191.
This prediction accuracy was classified as excellent. The performance using MSC+1-Der
was the worst of the tested models, with the smallest predicted R?,; and RPDy, values
and the largest RMSE,, values. Overall, the RPDy, values above 2.0 and the R2,, values
above 0.8 for all PLSR models indicated that these models provide very good quantitative
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Table 3 Prediction results of anthocyanin content by PLSR with different preprocessing in calibration
and validation sets.

Pretreatment LVs Calibration Validation
R, RMSE, RPD, RZ, RMSE, RPD,;

Raw 9 0.9-33 0.254 3.850 0.8-73 0.336 2.801
SNV 5 0.943 0.233 4.197 0.901 0.295 3.191
MSC 4 0.894 0.318 3.075 0.847 0.368 2.558
SG 9 0.928 0.262 3.732 0.878 0.329 2.861
1-Der 5 0.886 0.330 2.963 0.882 0.323 2.914
MSC+1-Der 5 0.921 0.274 3.569 0.802 0.419 2.246
SNV+BS 5 0.943 0.234 4.179 0.891 0.311 3.026
SG+ 1-Der 5 0.884 0.332 2.945 0.883 0.323 2914

predictions for leaf anthocyanin content. The plot of reference versus predicted values for
anthocyanin content using the optimal PLSR model is shown in Fig. 3B. The sample points
in the calibration and validation sets are distributed much closer to the ideal line, but there
was still a large deviation between the predicted values and the actual value in the PLSR
models. Although according to the evaluation criteria, the optimal PLSR model should be
an excellent model/predictor, the results showed that it was not ideal for use in practical
analysis.

BPNN models

The performance of BPNN models was next validated using the validation set, and the
prediction results are shown in Table 4 and Fig. 4. As shown in Table 4, the values of
R, RMSE,,, and RPDy, in the validation set were 0.922, 0.270, and 3.489, respectively,
for the BPNN-LVs model and 0.920, 0.274, and 3.439, respectively, for the BPNN-PCs
model. Based on these values, both models showed excellent prediction accuracy. Very
small differences in R?, RMSE,, and RPD values were observed between the BPNN-LVs
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Table 4 Prediction results of anthocyanin content by BPNN models in calibration and validation sets.

Model Calibration Validation
R%, RMSE, RPD, R%, RMSE, RPD,,

BPNN-PCs 0.958 0.203 4.648 0.920 0.274 3.439

BPNN-LVs 0.961 0.195 4.819 0.922 0.270 3.489
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Figure 4 Measured vs. predicted values for anthocyanin content obtained by BPNN-PCs model (A)
and BPNN-LVs model (B). Black open circles represent calibration samples and solid circles represent
validation samples. The solid lines correspond to the ideal results which meant the predicted values were
equal to the reference values.

Full-size Gal DOI: 10.7717/peerj.7997/fig-4

model and the BPNN-PCs model. The performance of the BPNN-LVs model was a little
better than that of the BPNN-PCs model. The plots of reference versus predicted values
points for anthocyanin content using the BPNN models are shown in Fig. 4. The sample
plots were tighter about the ideal line than those obtained using the PCR and PLSR models
(see Fig. 3). The results show that the BPNN models outperformed the PCR and PLSR
models, with very good agreement between the predicted values and the actual values in
the BPNN models. This high prediction precision could satisfy the accuracy standards for
practical applications and these results should support further research of in-field detection
methods for anthocyanin content in plant leaves.

DISCUSSION

The raw spectra of P. cerasifera leaves between 500 and 600 nm show a notable decrease in
the green range around 550 nm with increase of anthocyanin content. The main spectral
feature of anthocyanin absorption in vivo is a peak around 550 nm; consistent with the
finding of Gitelson, Merzlyak ¢ Chivkunova (2001) that the peak magnitude was closely
related to anthocyanin content. In this study, three calibration methods were tested using
all of the spectral reflectance of the selected wavebands to build models. The selected
wavebands should be sensitive to the anthocyanin, and insensitive to chlorophyll, water,
and the effects of leaf structure, and the wavebands between 450 and 600 nm meet this

requirement. The study results showed that spectral reflectance between 450 and 600 nm
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well-predicted leaf anthocyanin content in P. cerasifera. Other studies have also used the
visible wavelength bands to predict leaf anthocyanin content (e.g., Gitelson, Merzlyak ¢
Chivkunova, 2001; Gitelson et al., 2006; Steele et al., 2009; Garriga et al., 2014).

In addition, as shown in Tables 2 and 3, comparison of the results using the same
pretreatments in the PCR and PLSR models, the difference values of R?, RMSE, and RPD
were greater than 0.05, 0.06, and 0.8, respectively, for the calibration set and predicted
values of most models. The better results for the calibration set indicate that the calibration
model was not very stable. The sample points for the calibration and validation sets of the
PLSR model are distributed much closer to the ideal line than those of the PCR model
(Figs. 3A and 3B), indicating that the PLSR model outperformed the PCR model.
Comparison of the prediction results of PCR and PLSR models with the same pretreatment
reveals better performance of PLSR models compared to that of the PCR models, which
is consistent with the results of another study (Vasques, Grunwald & Sickman, 2008). This
may be because the PLSR model can simultaneously consider the spectral data matrix (X)
and the target chemical properties matrix (Y) (Liu ¢ Liu, 2013). Of the BPNN models, the
performance of the BPNN-LVs model was a little better than that of the BPNN-PCs model.
Mouazen et al. (2010) reported similar results for the prediction of selected soil properties
using Vis/NIR spectroscopy.

Both the leave-one-out cross-validation and predictive results showed that the BPNN
model outperformed the PCR and PLSR models (Tables 2—4, and Figs. 3 and 4). The result
is consistent with results from other studies of VNIRS of predictions for total anthocyanin
content in new-season red-grape homogenates with PLSR and ANN (Janik et al., 2007).
Additionally, Liu et al. (2008) reported similar results for the determination of acetolactate
synthase activity and protein content of oilseed rape (Brassica napus L.) leaves using
Vis/NIR spectroscopy. Janik, Forrester ¢ Rawson (2009) and Mouazen et al. (2010) also
reported similar results for the prediction of selected soil chemical and physical properties
using mid-infrared or Vis/NIR spectroscopy. The higher performance of the BPNN model
may be because it can the nonlinear relationship typical of spectrum analysis, while PLSR
and PCR models, which are built upon a linear algorithm, do not consider certain latent
nonlinear information in the spectral data (Li ¢ He, 2010). The performance of the BPNN-
LVs model was a little better than that of the BPNN-PCs model according to the R, RMSE p>
and RPD values. Mouazen et al. (2010) reported similar results for the prediction of selected
soil properties using Vis/NIR spectroscopy. Thus, we have demonstrated the feasibility of
using spectral reflectance between 450 and 600 nm to estimate leaf anthocyanin content in
P. cerasifera under laboratory conditions. Of cause, the canopy architecture of plants may
be very complex under field conditions. In future work, additional samples and samples of
different species samples should be prepared for calibration based on both laboratory and
field conditions to expand testing of the BPNN-LVs model and improve model stability for
future practical applications. Additionally, chlorophyll’s interference should be considered
for samples with low to moderate anthocyanin content (Gitelson, Chivkunova ¢ Merzlyak,
2009). Future work could be done to discover useful information or effective wavelengths
or wavebands for the non-destructive determination of anthocyanin content of plants.

Liu et al. (2019), PeerdJ, DOI 10.7717/peerj.7997 12/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.7997

Peer

CONCLUSIONS

The anthocyanin content was successfully determined by spectral reflectance between 450
and 600 nm combined with chemometric methods. In the PCR and PLS models, spectra
the preprocessed by SNV achieved the best performance for the prediction of anthocyanin
content. Acceptable prediction accuracies were achieved by the PCR and PLS models, but
this level of accuracy may be not satisfactory for practical applications. The performance
of the PLSR models was better than that of the PCR models, but the BPNN models showed
greatly improved predictive capacity. The two BPNN models were developed for the
prediction of anthocyanin content outperformed the PCR and PLSR models. The R?,,
RMSE,,, and RPDy, values for the validation set using the BPNN-LVs model were 0.922,
0.270, and 3.489, respectively, and those of the BPNN-PCs model were 0.920, 0.274, and
3.439, respectively. Thus, the performance of the BPNN-LVs model was best. The results
indicate that visible spectroscopy combined with BPNN calibrations can successfully
determine the leaf anthocyanin content in P. cerasifera. Based on the results achieved in
this study, it is recommended to adopt BPNN-LVs analysis as the best modeling method
to predict plant leaf anthocyanin content. The use of spectral reflectance data between 450
and 600 nm here represents a significant contribution to methods for the nondestructive
determination of leaf total anthocyanin content.
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