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ABSTRACT

Computational methods are driving high impact microscopy techniques such as
ptychography. However, the design and implementation of new algorithms is often
a laborious process, as many parts of the code are written in close-to-the-hardware
programming constructs to speed up the reconstruction. In this article, we present Sci-
ComPty, a new ptychography software framework aiming at simulating ptychography
datasets and testing state-of-the-art and new reconstruction algorithms. Despite its
simplicity, the software leverages GPU accelerated processing through the PyTorch
CUDA interface. This is essential for designing new methods that can readily be
employed. As an example, we present an improved position refinement method based
on Adam and a new version of the rPIE algorithm, adapted for partial coherence setups.
Results are shown on both synthetic and real datasets. The software is released as open-
source.

Subjects Algorithms and Analysis of Algorithms, Computer Vision, Scientific Computing and
Simulation, Software Engineering

Keywords Computational microscopy, Ptychography, Phase retrieval, GPU computing, Recon-
struction Algorithms, Position refinement, Partial coherence, Soft-X-ray, Software framework

INTRODUCTION

Today, modern microscopy fully relies on cutting edge computing. The contemporary
presence of a large Field Of View (FOV), high resolution and quantitative phase
information is the distinctive characteristic of the ptychography diffraction imaging
technique (Rodenburg & Faulkner, 2004; Pfeiffer, 2018). This phase retrieval scheme is
commonly solved through a computationally intensive procedure—a reconstruction—
which requires algorithms written in a low-level language or following complex HPC
paradigms. Writing such programs is typically done by an expert software engineer, and this
step may discourage the prototyping or the study of new methods. Ptychography algorithms
are complex not only in their implementation, but also per se: simple computational
systems suffers from setup inconsistencies, which usually takes the form of bad parameter
modelling of positions (Zhang et al., 2013), distances (Guzzi et al., 2021b), illumination
conditions (Thibault ¢» Menzel, 2013), just to enumerate a few. Such problems produce very
noticeable artefacts. To improve the quality of the reconstructions, parameter tweaking
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becomes essential (Reinhardt ¢» Schroer, 2018), especially for common setups; powerful
but even more advanced and complex algorithms (Enders ¢ Thibault, 2016; Mandula et
al., 2016; Marchesini et al., 2016) are thus employed.

State of the art

Iterative algorithms such as ePIE (Maiden ¢ Rodenburg, 2009) or DM (Thibault et al., 2008)
are typically employed for the reconstructions. Recently, the rPIE algorithm (Maiden,
Johnson ¢ Li, 2017) has been proposed and studied: while being reasonably simple, it
provides a fast convergence to a good object estimate (Maiden, Johnson ¢ Li, 2017).
Compared to ePIE, we noticed that the rPIE algorithm, at least in our implementation, also
provides alarge computational FOV, which is comparable to the one seen in more advanced,
but also computational eager, optimisation algorithms (Guizar-Sicairos ¢ Fienup, 2008;
Thibault ¢~ Guizar-Sicairos, 20125 Guzzi et al., 2021b). Indeed, these latter methods are
used to refine a previous reconstruction, as they are more prone to stagnation (Thibault ¢
Guizar-Sicairos, 2012). Being new, the rPIE algorithm is currently lacking of: (i) a public
implementation; (ii) a model decomposition approach; (iii) a tested position refinement
routine. As a whole, a recipe is missing for this kind of algorithm.

Proposed framework - SciComPty

In this article, we describe how these three elements can be combined within the SciComPty
GPU framework, a new software released as open-source (Guzzi et al., 2021a), entirely
written in the PyTorch (Paszke et al., 2019) Python dialect. Our reconstruction recipe is
tested against other solutions and then the results are reported. We designed a fast position
refinement technique exploiting Adam (Kingma ¢» Ba, 2015) as a feedback controller. To
do so, a fast subpixel registration algorithm (Guizar-Sicairos, Thurman ¢ Fienup, 2008) has
also been implemented via a PyTorch GPU code. This latter element has many uses, for
example in CT alignment (Guzzi et al., 2021c), or super-resolution imaging (Guarnieri et
al., 2021; Guzzi et al., 2018). The details are described in the “method section”. The software
and algorithms capabilities are illustrated (“Results section”) with reconstructions from
simulated and real soft-X-ray data acquired at TwinMic (Elettra) (Gianoncelli et al., 2016;
Gianoncelli et al., 2021). Within the “Discussion section’’, we will elaborate more on the
features of the reconstructed images. The datasets and the code can be accessed at Guzzi et
al. (2021a) and Kourousias et al. (2022).

Background

Ptychography aims at recovering the 2D specimen transmission function O(x,y) € C
starting solely from a set of diffraction patterns (Williams et al., 2006; Pfeiffer, 2018). In a
transmission setup (Fig. 1), a coherent and monochromatic wavefield P(x,y) € C is shined
onto the specimen (z = zp), placed between the source and the detector (z = z;). In the
thin sample approximation (Paganin, 2006), the exit-wave Yy, (x,y) transmitted by the
object becomes:

Yexw (2, 7) =V (x,y,2,) =P(x,y) - |0(x,y)| .l P0Gy (1)
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Figure 1 (A) P(x,y) is shined onto an object O(x, y), producing ¥, (x,y). At the detector we observe
|¥4(x,y)|?. (B) ptychography uses overlapped illumination (e.g., 4x oversampling) to solve the phasing.
The model in Eq. (1) is repeated for each illuminated region.

Full-size Gl DOI: 10.7717/peerjcs.1036/fig-1

During the path from the sample to the detector, free-space propagation occurs (Paganin,
2006), modelled by the D, operator (Schmidt, 2010):

‘//d(xa)’) = w(x’)/’zd) =Dzd—zo{1l’exw(xay)} =Dzd—zg{P(x’)”Za) : O(X,J/)}- (2)

Finally, a 2D photon detector is used to reveal the intensity (magnitude squared) of the
incident radiation, producing a real, discrete, and quantised image I(x,y), which is the
diffraction pattern.

I(x,y) =valx,y) - ¥g(x,y). (3)

Ptychography employs translation diversity to over-condition the problem; a large
illumination (probe) is indeed scanned across the sample, by imposing a large overlap
on each illuminated region (Fig. 1B); as a result, the object is highly oversampled. A
ptychography dataset (real or simulated) is thus composed of multiple diffraction patterns,
paired with their corresponding translation coordinates. Geometry and illumination
metadata complete the description of a particular instance of the computational forward
model.

During the reconstruction process, the model described by Eq. (3) must be inverted
to gather back the object transmission function O(x,y). Since this inversion cannot, in
general, be done analytically, an iterative procedure is employed. Modern versions of
the ptychography reconstruction algorithms (Thibault et al., 2008; Maiden ¢ Rodenburg,
2009) automatically perform the factorisation of the P(x,y) and O(x,y) functions. In a
typical imaging-oriented ptychography experiment like ours, the recovery of P(x,y) is just
a by-product, though mandatory for the O-P factorisation.

METHODS

Virtual experiment
Reconstructions apart, SciComPty offers a simple method to perform virtual experiments.
To simulate a ptychography dataset, one can implement the general transmission model
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of Eq. (3), and assign particular values to its setup parameters. In the case of a far-field
setup (Schmidt, 2010), by fixing the detector pixel size §p, the corresponding pixel size at
the sample plane §; can be readily calculated (equation 1 in the supplementary material).
The recurring parameters in both simulations and reconstructions are W (detector size in
pixels), Sy (detector lateral dimension) and z;, (sample-detector distance). In a simulation,
;s normally defines the basis for the scanning movements, that in the simplest case follows a
grid pattern. Random jitter is added to the (x,y) coordinates, to prevent the raster scanning
pathology (Thibault et al., 2008; Dierolf et al., 2010; Edo et al., 2013). The overlap factor is
defined instead by the maximum step movement. The object function O(x,y) and the
illumination function P(x, y) are assembled in magnitude and phase providing two images
each. Defining such virtual experiment parameters follows what is actually done during a
real experiment (see Listing 1 in the Simulation section of supplementary material).

M-rPIE algorithm

In order to describe partial coherece beams (Chen et al., 2012) the wavefield is decomposed
into a set of mutually incoherent probe modes (Thibault ¢ Menzel, 2013; Odstrcil et al.,
2016; Liet al., 2016). For each sample position (x;,y;), the jth diffraction pattern I;(x,y)

can be modeled by:
M M

Li(x,y) =Y _ID:APy(x,3) - O, y, %, y)}* = Y _ID:Py(x,3) - 0;(x,3)I* (4)
p=1 p=1

where P, with p € {1,...,M} is a particular probe mode; 0; = 0;(x,y) = O(x,y,x;,y;) is
the cropped region of the object, corresponding to the jth illuminated area in the scan
sequence. To reconstruct an object with the model in Eq. (4), we solve for O(x, y) and a set
of M mutually incoherent probe functions P, = P,(x,y). A public implementation of rPIE
is currently missing and its multiprobe variant has not been reported yet. We implemented
it in SciComPty, calling it M-rPIE. The procedure to design the method follows what has
been done for one of the multimode-ePIE (M-ePIE) versions (Thibault ¢~ Menzel, 2013),
producing the following new update steps (2D arrays depending on x, y are in bold):

(wéxwp_j - PP ) Oj) ) 0;k .

, (5)
Bl0j] s+ (1= B0y

P; :Pp +Olp

M
Zp:l(]/,rlzxwp,j _PP 'oj) P;
Yyl Py )max + (1= ) Yoo [Py

As usual, ojf = 0]/- (x,y) and P, = PZ’) (x,y) represent the updated quantities respectively

(6)

0;=0j+ao

for the current object box and the current probe, while
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Wiy = Del [t — Vern )

V- 1\%

is the magnitude-corrected scattering wave produced by the pth illumination mode; «,,
and o, represent the update rates of the probe and object estimates and are typically set to
[0.5,1]. The role of each denominator is to weight the update where the exit wave is not
bright (Rodenburg & Faulkner, 2004; Maiden, Johnson & Li, 2017), reducing thus the noise
amplification. B and y are regularisation parameters: when set to 1, M-rPIE simplifies
to M-ePIE (Thibault ¢» Menzel, 2013; Maiden, Johnson ¢ Li, 2017). The net effect of the
modifications, weighted by 8 and y, is to slow down the update, by introducing a loss cost
given by 0;(x,y) and P,(x,y). Increasing the number of modes increases the iteration time
by the same factor: that is why it is extremely important the fact that SciComPty is actually
working on GPUs.

Adam-based position refinement

As the resolution increases, the effects of backlash and limited mechanical precision
become more and more noticeable. The positions vector is indeed populated by the
open-loop commands given to the stage. A correction method must then be introduced a
posteriori, increasing the reconstruction time. In Guizar-Sicairos & Fienup (2008); Guzzi et
al. (2021b) positions are corrected through an optimisation method, within the gradient-
based reconstruction; in Mandula et al. (2016), instead, the authors propose to use a
gradient-less method based on Powell (1964) to guide the position refinement procedure.
In this work, we consider a fast and reliable way to correct translations. Similarly to
Zhang et al. (2013); Tripathi, McNulty & Shpyrko (2014); Loetgering et al. (2015); Dwivedi
et al. (2018), it employs a 2D cross correlation signal, calculated at some points in the
reconstruction chain. The same principle is used also for CT alignment in Giirsoy et al.
(2017); Guzzi et al. (2021c), as the synthesised projection 0j(x,y) are inevitably centred;
when confronted with refined estimates (0]’- (x,y), XCORRy), or measured data (I(x,y),
XCORRp), geometrical shifts can then be measured. Figure 2 shows how such position
refinement scheme can be introduced in the canvas of a PIE reconstruction algorithm:
2D weighted phase correlation (Guizar-Sicairos, Thurman & Fienup, 2008) here is used to
determine the shift between two different estimates o and ojf (switch in position XCORRy
in Fig. 2, more details later) belonging to the same crop-box (x;,y;).

In this class of position refinement methods, the error signal (the 2D argmax of the 2D
cross-correlation) is extremely small and provides a correction factor that is cumulated at
each iteration. A gain factor 7); is indeed used to provide a correction. Here we propose to
use a spatially variant and adaptive gain factor, that can change iteration after iteration and
is probe-dependent. Our subpixel shift detection is based on the work (Guizar-Sicairos,
Thurman & Fienup, 2008) and its implementation in SciPy (Jones et al., 2001). We adapted
the same algorithm in PyTorch, allowing for fast GPU computation and avoiding costly
move operation between the two memory systems, as the core of the reconstruction
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Figure 2 Position refinement routine integrated into a PIE algorithm; the position error signal
(argmax of 2D cross-correlation) can be calculated meaningfully in two points, XCORR, or XCORRg
(purple boxes). The estimated positions (x,j) are then updated to (x;,y;)’ iteration by iteration.

Full-size Gal DOI: 10.7717/peerjcs.1036/fig-2

(M-rPIE) is already working on the GPU. To speed up the procedure for subpixel scales,
the matrix multiplication version of the 2D DFT is employed. An upsampled version of
the cross-correlation can then be computed within just a neighbourhood of the coarse
peak estimate, without the need for zero-padding. Each probe position is updated at each
iteration by the following expressions:

xj/ =X +1)x,j - argmax{XCORR;c(A, B}, (8)
X

y]-/ =y;j+ny,;-argmax{XCORR;c(4 B}, (9)
y

where 7, j and 7, ; are the gain factors (>> 1). The variable gain is calculated by using the
Adam optimization algorithm (Kingma & Ba, 2015): Adam is an extension to stochastic
gradient descent, and is nowadays widely used in deep learning (Zhang, 2018). While

in Stochastic Gradient Descent (SGD) the same learning rate is kept constant for all
the variables, Adam provides a per-parameter factor that is separately adapted as learning
unfolds. This is achieved by considering the evolution of each parameter. In our method, the
argmax of the 2D cross-correlation takes the place of the gradient in the Adam algorithm,
because its value will maximise the position error gradient. The resulting algorithm is then
reported in Alg. 1:
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Data: The cropped object 0j and its refined estimate o]f
Result: Gain parameters 7, j and 7, ; for the jth crop-box (the jth position vector
(x,9);)
Initialization as in Alg. 1 of Adam;
while reconstruction iteration > 0 do
t=t+1;
gr = argmax{XCORR;¢[ B} 5
proceed as from row 3 of Alg. 1 of Adam;

[...]

end

Algorithm 1: The modified Adam algorithm uses the argmax of the 2D phase correlation
as the gradient of the error, then the exponentially damped moving averages are updated
as in Adam.

RESULTS

Experiments on simulated and real data were performed. We compared the proposed
reconstruction recipe in SciComPty with other state of the art algorithms, also implemented
in the advanced PyNx software (Mandula et al., 2016; Favre-Nicolin et al., 2020). Simulated
data experiments are reported in the supplementary material and confirm that XCORR,
(see Fig. 2) is the best point to estimate the position error. From those results we defined
our strategy for the analysis of real datasets.

Synchrotron soft-X-ray experiments

Real data have been acquired at the TwinMic beamline of the Elettra Synchrotron facility.
We used a 1,020 eV (Fig. 3 and Fig. S1) and 1,495 eV (Fig. 4) soft-X-ray beam obtained
from a secondary source of 15 um. The zone plate has a diameter of 600 wm with a smallest
ring width of 50 nm. At those energies the focus length is respectively 36 and 24 mm.
The sample was placed at 370 wm from the virtual point source, providing a probe size of
roughly 9 pm. The sample-detector distance is set at roughly 75 cm. The Princeton camera
is based on a peltier-cooled CCD sensor with a resolution of 1,300 x 1,340 pixels, with a
pixel size of 20 pm.

Figure 3 shows a series of phase reconstructions of a group of chemically fixed
Mesenchymal-Epithelial Transition (MET) cells, grown in silicon nitride windows and
exposed to asbestos fibres (Cammisuli et al., 2018). The reconstruction in Fig. 3A has been
produced by the DM algorithm, while the one in Fig. 3B is the output of the ML algorithm
(Thibault & Guizar-Sicairos, 2012). In both, the position refinement method (Mandula
et al., 2016) is enabled. In the same configuration, similar results can be obtained by the
AP method (Marchesini, Tu ¢ Wu, 2016), that can be seen as a parallelised version of the
ePIE algorithm, implemented in PyNx. The reconstruction programs for these images
are listed in the Supplemental Information. Even if stunning, images in Figs. 3A and
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Figure 3 Reconstruction of a MET cells sample. (A) and (B) show respectively the output of DM and
ML, paired with the position correction algorithm (Mandula et al., 2016). (C) and (D) show the recon-
struction with the proposed recipe, using M-ePIE (C) and M-rPIE (D). The insets show how the latter

gives fewer ringing artefacts.
Full-size G4l DOI: 10.7717/peerjcs.1036/fig-3
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Figure 4 Reconstruction of a siemens star (magnitude) with different position refinement methods;
(A) Zhang et al., 2013; (B) Mandula et al., 2016; (C) no correction at all; (D) proposed method.
Full-size & DOI: 10.7717/peerjcs.1036/fig-4

3B appear blurry and full of artefacts. As expected, the ML algorithm provides a better
reconstruction than DM; a larger FOV can also be observed. In both, AP was essential to
create a meaningful P(x,y), that allowed the object to appear as “reconstructed”. At the
end of these reconstructions, it was also required to remove a phase modulation; many
details about this post-processing can be found in the supplementary material.

Conversely, Figs. 3C and 3D show the reconstructions obtained with SciComPty, for the
same set of parameters and pre-processed data; in either cases, the proposed Adam-based
position refinement method is used. Even the simple M-ePIE (Fig. 3C) is able to provide
a high quality reconstruction, if paired with the proposed position refinement method.
Reconstruction quality can be even increased if the proposed M-rPIE method is engaged
(Fig. 3D): the proposed recipe allows to resolve a large FOV, that becomes not only
comparable to the one in Fig. 3B, but in some cases (e.g., in the top left corner) even larger:
the bottom left fibre can be now observed in its entire length, as well as other cell organelles.
No post-processing is required at the end of these reconstructions. The reconstruction for
a different region of the MET sample can be found in Fig. 54.
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Figure 5 Reconstruction (phase), obtained using the full dataset (A, B) or a synthetic sparser version
(D, E). M-ePIE is used in (A, D), M-rPIE in (B, E). (C) and (F) show the canvas map for each dataset. The
white bar represents 10 pLm.

Full-size & DOLI: 10.7717/peerjcs.1036/fig-5

Figure 4 shows the effects of different position correction methods applied on another
real dataset, acquired at 1495 eV. Diffraction patterns are acquired following a regular
raster grid. Figure 4A shows the reconstruction with the position refinement algorithm in
Zhang et al. (2013); in Fig. 4B the algorithm in Mandula et al. (2016) is applied; Fig. 4C is
the reconstruction output with no position correction applied at all, while in Fig. 4D the
proposed Adam-based position correction is applied. As can be seen, even if with simple
features, this dataset is quite challenging to correct. While in Fig. 4A a form of correction
can be seen, the reconstruction in Fig. 4B is even worse than the one with no correction
at all (Fig. 4C). The proposed method (Fig. 4D) estimates the best correction, while being
fast. Note that in Fig. 4D the raster grid pathology is quite absent (actual positions are not
regularly spaced).

A large FOV is the most visible feature in any reconstruction employing M-rPIE
(Figs. 3D, 5B, 5E and S4). To better analyse this effect, and to disentangle it from the
position correction, a sparser dataset has been synthesised from the one of Fig. 4, producing
Figs. 5A and 5D which are respectively the reconstructions with M-ePIE with the full and a
sparse dataset (half of the probes); the canvas map (Kourousias et al., 2016) in Figs. 5C and
5F shows the two different densities. Figures 5B and 5E show instead the reconstruction
with the M-rPIE algorithm: for the same amount of sparsity, the reconstruction is way
more resolved in Fig. 5E than in Fig. 5D.
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Figure 6 Benchmark for the position refinement procedure implemented on CPU (Jones et al., 2001)
or on GPU (proposed method). The performance gain in terms of speed is about 10x.
Full-size &4l DOI: 10.7717/peerjcs.1036/fig-6

Implementation details

SciComPty software framework leverages GPU-based computing for the entire process.
The test configuration is reported in the supplementary material. The performance gain
obtained by carrying the reconstruction algorithm from the CPU to the GPU is about 10x
(0.1 s vs 1.3 s). The reason for such a large gain is the high number of GPU cores which
allow to parallelize array calculations. With no position correction, the performance in
terms of speed are comparable to other CUDA based solvers implemented in PyNx, which
is currently the fastest alternative. Regarding the position correction, at the best of our
knowledge, no implementation of Guizar-Sicairos, Thurman ¢ Fienup (2008) is readily
available for GPU computing; consequently, we implemented it in PyTorch GPU. Having
part of the algorithm on the GPU(reconstruction) and part on the CPU (registration)
would have been detrimental, due to the overhead given by the data transfer. It is indeed
extremely important that all the required arrays reside in the same domain, minimising
copy operations. Figure 6 shows the computation time measured for the registration
algorithm implemented on the two devices: the performance gain is of about an order of
magnitude. The acceleration is significant, as during the reconstruction the same operation
has to be performed for any position in the dataset.

DISCUSSION

A larger FOV is the most noticeable effect in the reconstructions obtained with M-rPIE (see
Fig. 3D and Fig. 54). A well-designed regularisation is considered to be the main candidate
for a successful phase-retrieval, that is shown to work better for under-sampled areas
(Fig. 5). This effects automatically translates in a better reconstruction in the case of sparser
scanning, as the higher resolving power can effectively cope with the missing information
between different subsequent measures. Sparse scanning means reduced acquisition and
reconstruction times, as well as lower radiation dose, and that is why the implementation
of the rPIE algorithm in both single and multi-probe versions is essential for a modern
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beamline. The fact that these algorithms are implemented on GPU, in a simple way and
using open-source tools, effectively allows to use these algorithms.

The positioning error induced naturally by the sample stage mitigates the raster grid
pathology (see Fig. 4), as the actual movements performed by the motors differs from the
position commands sent by the control software. Indeed, as backlash, irregular friction and
limited mechanical precision introduce a small irregular jitter, it is not required to add it
during a scan. Raster grid artefacts, howewer, are not an effect due to position error; the
pathology exists and is a consequence of sampling, as they appear also for perfectly ideal
simulations with regular grids (Fig. 52). A position refinement method applied a posteriori
may greatly reduce the artefact, if the actual positions are not regular. That is why a fast
implementation of a position refinement algorithm (as deployed by this work) is essential.
The Powell method in Mandula et al. (2016) tends to fail, as the loss function may be
incorrectly estimated by the optimiser. Two are the supposed main characteristics which
describe the performances of the Adam-based method: (i) being based on the evolution
of the error through many iterations, the gain estimation is more robust than a simple
look-back at the previous iteration; (ii) different regions of the sample may require different
gains, that have to be adjusted separately.

In CT alignment, the position error estimation is carried out at position XCORRp (see
Fig. 2). In supplementary material we briefly analysed the dynamics of this kind of error
signal, concluding that this configuration performs poorly in a ptychograpy environment,
compared to the proposed XCORR,: the use of complex quantities provides a more robust
estimate than its real-only counterpart; in addiction, images at the object plane tend to
be way more intercorrelated than the one at the detector plane, reducing the noise in the
cross-correlation.

CONCLUSION

In this article, we presented solutions for three major flaws in ptychography: complex
software architectures, partial coherence and position errors. By combining together the
proposed solutions, we provide a recipe that is giving good results in many ptychography
experiments performed at synchrotron and FEL laboratories (Elettra Sincrotrone Trieste).
The development of a multi-mode variant for rPIE is essential to reduce the overlap
condition, allowing for sparser measurements and thus providing shorter acquisition and
reconstruction time. This is critical for dynamics experiments (e.g., with many energies
and pump-probe delays). Reducing the lag between measurements and reconstruction

is a critical research path, which has a significant impact on all the fields that use this
kind of microscopy. We designed these solutions by employing our new GPU-accelerated
ptychography software framework, SciComPty, which can be used to easily study and
develop both state-of-the-art and new reconstruction algorithms. Throughout the text,
we presented several reconstruction examples from real and synthetic datasets, comparing
them to other state-of-the art solutions. The position refinement procedure relies on a fast
subpixel registration algorithm that also runs on GPU. The entire software is provided
to the research community as open source and can be downloaded from Kourousias et al.
(2022) and Guzzi et al. (2021a).
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